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ABSTRACT

This paper deals with the use of Multistate Homo-
geneous Markov Models (MHMM) to represent failure-time distri
butions in reliability analysis, with particular emphasis on
MHMM's representable by acyclic transition graphs (Triangular
MHMM's). It is shown that a generic TMHMM can be transformed
into an equivalent minimum-parameter form (canonical form).
This result is used to characterize the class of distributions
representable by TMHMM's. It is shown that, although not all
distributions which are linear combinations of exponential
terms can be exactly represented by a TMHMM, such models can
nevertheless be used to approximate as closely as desired any

reasonable failure-time distribution.
1. INTRODUCTION

Although widely employed in the reliability analysis
of complex systems, the theory of homogeneous Markov processes
is somewhat limited in its application by the essential assump
tion that the life and repair times of each component be expo-
nentially distributed (constant failure/repair rate). Many dis
tributions often used in reliability analysis do not follow
this simple exponential model: for instance, components either
exhibit degradation (increasing failure rate), or burn-in (de-
creasing failure rate), or both. The most obvious way to take
into account such behaviours is to pass to a nonhomogeneous mg
del, by letting the transition rates depend upon time; in this

way, however, both the theoretical elegance and the computatio
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nal convenience of the homogencecous model are lost.

A different approach consistc in representing each
component by a Multistate Homogenecus Markov Model (MHMM) [1]
[2], whose stochastic behaviour approuximates, according to
some given criterion, that of the original component. This ap-
proach is a generalization of well-krowr. techniques for appro-
ximating non-exporential distributions by combinationc of se-
rics and/or parallel confipurations with constant transition
rates (also known as "stage device", sce e.g. [3][4]). One of
the major advantages of this approach is that the overall sys
tem is thus still represented by a homogeneous Markov process,
so allowing the use of standard techniques for the analysis of
its behaviour.

In this context, the following questions arise natu-

rally:

a) What kind of distributions can be rcpresented by MHMM's?
b) Can we use MHMM's to approximate an arbitrary distribution

as close as we want?
¢) Can a generic MHMM be transformed into an equivalent canoni

cal form, i.e. a form having the minimum number of free pa-

rameters?

The answer to question c¢) is of noticeable practical
importance, for at least two reasons: first, a canonical form
would simplify the computation of the Lest approximation for a
given distribution, by not taking into account redundant para-
meters; second, the use of a minimal structure for each compo-
nent would also help to control the complexity of the overall
system model.

This paper presents some partial answers to the above
questions, by considering mainly MHMM's representable by acy-
clic transition graphs; they will be referred to as Triangular
MHMM's (TMHMM) since in that case the transition matrix can be
put in triangular form by a suitable reordering of the states.

The paper is organized as follows. Section 2 reports
some basic definitions and the major properties of MHMM's and
TMHMM's. In section 3 we show that a generic TMHMM can always
be transformed into any one of three canonical forms, the choice
among them being a matter of convenience. Section 4 deals with
the computation of canonical forms and the related subject of
their uniqueness. In section 5 the above results are used to

characterize the class of distributions representable by
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TMHMM's. In particular, we show that there are distributions
which, although being linear combinations of exponentials,

cannot be generated by a TMHMM (nor by a generic MHMM). This
negative result is, however, of little practical significance
since we also show that any reasonably well-behaved distribu-

tion can be approximated as well as desired by a TMHMM of suf-

ficiently high order.

2. BASIC DEFINITIONS AND PROPERTIES OF MHMM'S

Definition 1. An n-state MHMM (shortly, n-MHMM) is a time-con-
tinuous homogeneous Markov process with n discrete states re-

presented by the triple: (A4, Q, C), where

- Ais the transition rate matrix, i.e. a square matrix of or-

der n satisfying:
n
z =
Aikz 0 Vi # x, 21 A4 =0 Fk

We adhere to the convention of representing probability vec-
tors by column vectors; so, Aik is the transition rate from
state k to state i;
- Qis the initial probability vector, i.e. a column vector of
dimension n satisfying:
n
Q, 20 Vi, z Q9 =1
i=1
- C is the structure vector, i.e. a colum vector of dimension
n with 0/1- valued entries which represents a partitioning
of the set of n states into two mutually disjoint subsets U
and D, such that i € U if Ci =0 and i € D if Ci =1, U is
the set of '"up" states and D the set of "down" states.
With this definition, the state probability vector
P(t) is obtained by solving the standard Markov equation:

ap
= AP (1)

dat
under the initial condition P{(0) = Q. The formal solution of
(1) is

p(t) = A% Q,

t=20 (2)
The time function F(t) defined by:
F(t) = cT P(t) (3)
is the probability of the system being in some state 1e€D at
time t. Since we are dealing only with the use of MHMM's for

approximating failure-time distributions, we shall assume that
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the D set is ergodic, so that the down states can be grouped
together into a single absorbing state which shall be identifi
ed with state n; so, the structure vector C will always be

X
6(n,n) and will often be omitted for brevity . Ve

equal to

shall furthermore assume that CTQ = 0, i1.e. that the component

is initially "good"; under these conditions, (3) represents

the cumulative distribution function (cdf) of the transition

time from.the U set to the D set, i.e. of the failure time of

the component modelled by (A4, 2, C); it will be referred to as

the cdf of the MHMM. We shall sometimes use the notation

F(t; A,0) in order to make the dependence on A and @ explicit.
It will be useful to consider the relations correspond

ing to (2) and (3) in the Laplace transform domain. Let Ps(s)

be the transform of P(t); then eq. (2) rewrites as:

P(s) = (sI ~A)1Q (4)

where 1 is the identity matrix of order n, and (3) rewrites as:
- N(s)

Fs(s) = CT(sI - A) - 0 (s)
Q(s)

where N and Q are polynomials in s and Q(s) = det (sI - A) =
n
= Ql (s - “1)’ p, being the eigenvalues of A,

i=
Remark 2.1: Notice that Q(s) is specified by n-1 parameters
since one of the eigenvalues of A, by its definition, must be
zero. Furthermore, the condition CTQ = 0 implies F(0) = O and

so deg (N) £ n- 2. Taking also into account the condition

F(+o0) =s£im0 st(s) = 1 (nondegeneracy of the cdf), it can be
easily checked that (S5) is completely specified by no more

than 2 n- 3 parameters, i.e. that the cdf of an n-MHMM has 2 n- 3
degrees of freedom.

In the particular case of an MMM whose transition
graph has no cycles, the A matrix can always be put in lower
triangular form by a suitable reordering of the states. For
this reason such a model is called Triangular MHMM (TMIMM).

The major properties of TMHMM's have been stated in [2]; in
particular, from the properties of triangular matrices we get
the following

Property 1. The A matrix of an n- TMHMM has n- 1 negative real

elgenvalues and a single zerc eigenvalue; they coincide with

X (i,k)
] represents a column vector of dimension k with the
i-th entry equal to 1 and all other entries equal to O.
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the diagonal entries of A. From this property it follows that
for an n- TMHMM the denominator of (%) has the simple form:

n
Q(s) = s iI:Il(s + Ai) ' Ay = -4y

Definition 2. In an MHMM: (A, £, C) a path is a sequence of m

states i,, 1

1 PURRREE 1m such that

. #0 kK =1,2, oo, m-1
T dk oY

In other words, a path is a sequence of connected states in the
transition graph corresponding to A. Motice that for a generic
MHMM some statcs may appecar more than once in a path, while this

obviously does not happen for a TMIMN.

Definition 3, In an MHMM a state i is called essential if either
Qi # 0 or it belongs to some path starting from another state
k with @, # 0.

Definition 4. An MHMM is termed irreducible if all its states
are essential; otherwise it is reducible,

The proof of the following property is almost trivial:
Property 2. A reducible MHMM 1is cdf-equivalent to (i.e. has the
same cdf of) an irreducible MHMM of lower order, obtained by
delefing all non-essential states in the former.

Notice that series and parallel configurations of n
states are particular cases of n- TMHMM's. In particular, for
a series the A matrix is bidiagonal, so that it is completely
specified by its n- 1 nonzero diagonal entries. Such a matrix

will be termed an s-matrix.

Definition 5. For a given n- TMHMM: (A, Q) an elementary
series (ES) of order m < n isa m- TMHMM: “, d(l'm)) where A4

1s an s-matrix of order m with

A v = -A'ik - Aik,ik
where 11, 12, ey im form a path of A and im = n. Fig. 1 shows
a 4-TMHMM together with its ES's. A simple calculus shows that
the number of ES's for given n is at most 2n—1 - 1. An ES may

be represented by the notation:

E=<A A oe0 A, >
i, 7, ‘m-1

(recall that A; = 0}/ It is immediate that the cdf of an ES
m

has Laplace transform:
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Fig. 1 - A 4-TMHMM and its 7 elementary series.

Ai e Ai 1 m-1 Ai
F_(s) = L 2l - — I —X— (6)
; s(s+li1)...(s+lim_1) s s+lik

3. CANONICAL FORMS OF TMHMM'S

In the previous section we have seen that the cdf of
a n- MHMM has at moest 2 n- 3 free parameters; this figure should
be compared with the number of parameters needed to specify an
n- MMM, which is easily computed as N = (n- 1)2 + n- 2 for

G
a generic model and N, = n(n-1)/2 + n- 2 for the triangular

case. Since the reprezentation of a cdf byan MHMM is so high
ly redundant, we suspect the existence of some cdf-preserving
transformation able to reduce a given model to a form of mini
mal complexity (canonical form). The existence of such forms

will be stated in the following for the triangular case.

Theorem 1. The cdf of ann- TMHMM: (A, ) is a mixture of the
cdf's of its elementary series, where each ES has a weight

proportional to the product of the transition rates along the



Markov processes modelling 589

corresponding path and to the initial probability of the first
state in the path.

The proof of Th. 1 is given in the Appendix. This
result is useful also because it allows, at least for moderate
values of n, to write out Fs(s) of eq. (%) by simple inspec-
tion of the transition graph.

To proceed further, wc need the following definition
and lemma.

Definition 6. GCiven n positive real numbers ll = 12 b-3 ---erf>0,
their basic series (BS) are the n series of 2, 3, ..., n+ 1
states

BS1 =<11>

Bs, =<2.1 A, >

BS = <2.1 ).2 },n>
For a given n- TMHMM: (4, §) its n- 1 basic series are similar
ly defined using as Ai's the ordered set of the eigenvalues of
-4.
Lemma 1. Givenan n- TMHMM: (A4, ), the cdf of each of its ele-

mentary series is a mixture of the cdf's of its basic series.

The proof of this lemma is rather involved and is
reported in the Appendix.
It basically relies on the following identity: given

two positive real numbers a and b, with a < b,

a b ah
= W +{(1 - w) (7)

s + a s +b (s + a)(s + b)

where w = _3_ e(o,l]. This identity shows that an elementary
series contgining a stage with transition rate a can be substi
tuted (as long as the cdf is concerned) with a mixture of two
series, one containing a stage with transition rate b and the
other containing both a and b, provided that b > a. It is
therefore intuitive that by repeated use of (7) one can trans
form an ES into a mixture of BS's.

Ve now state the following

Theorem 2. The cdf of an n- TMHMM: (A, Q) is a mixture of the
cdf's of its basic series.

Proof: from Theorem 1 and Lemma 1.

From Th. 2 stems the following important

Corollary 2.1 (series canonical form). Any n- TMHMM: (4, Q) is
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" ecdf-equivalent to a series configuration (ﬁ, Q) with transition

rates.Ak+1’k = An—k equal to the eipenvalues of - A, so ordered

that ll - l2 - B Ao (see Fig. 2). Irn other words, the

1
schema of Fig. 2 is a canonical form for TMHMM's.

Q R % Qs

Fig. 2 - The series canonical form.

The proof is immediate since from Th. 2 it follows
that for any (A, ) there must exist nonnegative real numbers
Bi’ i=1,2, ..., n-1 such that

n~1

F(t; 4, ) = 3 By Fylt, 4) (8)

i=1
where 231 = 1 and Fi(t; A) is the cdf uf the i-th basic series

of A. But it is easy to see that the r.h.s. of (8) 1s the cdf

of the series configuration in Fig. 2, provided that ﬁi = Qn-i

q.e.d.
Remark 3.1: It can be easily checked that (8) has the right
number of degrees of freedom to be a minimal representation of
(4, Q); indeed, (8) is specified by 2 n - 3 parameters, namely
n - 1 transition rates and n -~ 2 independent initial probabi-
lities.

Although the above series form is probably the most
compact representation of a TMHMM, there are at least two
other forms which have the advantage that the initial probabi-
lity is concentrated in the first state (i.e. Q = 6(1’n)).
This property is particularly useful when using the TMHMM as a
failure model for a component imbedded in a larger system
since it allows, e.g., to represent a repair action (with the
repaired component "as good as new") by a simple transition
from state n to state 1.

Canonical form A. Given the ordered set of n- 1 positive real
numbers 112 }.2 > 02 ) é(l'n)

the form (A*, ) is canoni

n-1’
cal for n- TMHMM's with eigenvalues - li' where



Markov processes modelling 591

[ .
A ]
A - *n-1 TAn

xn--2 An-1 —An—2

X, 0 0 0 Ay 0
X, € [0, }.1] i=1,2, ..., n-1
n-1
2% 7 A

corresponding to the schema of Fig. 3. The proof is almost
trivial since it is easy to see that the cdf of this form
coincides with (8) when X, = 3131.

Xn-1 e A An-2 A

Fig. 3 - Canonical form A.

Canonical form B. Given the ordered set ).12 },2 > "'Zln 1?
the form (A, 6'%'™) is canonical for n-TMHMM's with the

prescribed eigenvalues, where

-4 N
X, A,
g 0 X, —13
e
Ll1—x1 Ag—xz - ces Ap-1 OJ

x, € [0, Ai‘] y 1=1,2,...,n-2
corresponding to the schema of Fig. 4. The proof of canonicity
can be obtained by comparing the cdf of this form with that of
the series form. Let Yy = xi/ﬁ.i; then the cdf of (Z, (5(1'n))
is given by (8) provided that



592

ALDO CUMANI

(9)

=~
>
I
-~
Juny
—
[y
I
-~
"
~

Fig. 4 - Canonical form B.

After some algebraic manipulation, one- gets the so-

lution of (9) with respect to the yi's as

1
1 - 3
k=1 Py
T (o)
1- 3 By
k=1

provided that iil Bk # 1. Let us suppose that this last con-
dition is satis?iéd for all i =1, 2, ..., n-2; then it is
easy to see that for any choice of Bi such that Bi > 0, zﬂi= 1,
the condition O £ yis 1 is satisfied for all i, so that Z‘is
a legitimate transition rate matrix. Since there is a one-to-
one correspondence between the series canonical form and

A, é(1,n)

Remark 3.2: It is interesting to notice what happens if, for

), then the latter is canonical too, q.e.d.

some i < n-1, kél By = 1 while ;éi By # 1. In this case y, =0
and Yk for k > 1 as given by (10) is undefined; however, this
is only possible if Bk = 0 Fk > i, so that (9) is satisfied
by any choice of yk's for k > i. Indeed, in this case the ca-
nonical form bccomes a reducible TMHMM since the states 1i+1,
i+2, ..., n~-1 are no more reachable from state 1. We should
notice, however, that under such conditions alsc the other two
forms are reducible: in the series form, if Bk = 0 for k= 1+1,

..y, D=1, the states 1, 2, ..., n-i-1 are not essential, and
in form A the same happens for states 2, 3, ..., n-i.

Remark 3.3: Notice that if an MHMM is reducible, then there
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must be some pole-zero cancellation in the corresponding Fs(s)
{t.e., P(s) and Q(s) must have some common factors) whilc the

cenverse 1s not true, in peneral. For example, the 3- THMHMM of
Fig. % a (which is in cancnical form) has

2 1

Fe(s) = + = =

€]
+
w
-

(s + 3)(s + 1) s + 3 (s + 3)(s + 1) s + 1
and is therefore cdf-eaquivalent to the 2- TMHMM of Fig. © b.
Hewever, the schema of Fig. 5 a is not reducible in the sense

of Definition 4.
1
2 1 1 ::

(a) (b)

Fig. 5 - a) an irreducible 3-TMHMM;
b) a 2-TMHMM cdf-equivalent to the former.

4. COMPUTATION OF CAMNOMICAL TFORMS

We now consider the problem of computing the parame-

ters of a canonical representation of a given n- TMHMM: (4, Q).

Ve shall focus on the series form, sincé the other two are
easily obtained from the former by simple relations.

The computation of the ﬁi's appearing in (8) is
best done in the Laplace transform domain. To this purpose,

rewrite (8) as:

‘n-1
Folsi A = I, Py (si ) (11)
where
Ay Ape e d, Av Aneecd (844, Deeo(s+d )
Fsi(S; 4) = 1 %2 i _ 172 i i+1 n-2° _
s(s+11)...(s+li) s(s+11),,,(s+1n_1)
n, (s)
= (12)
Q(s)

where Ni(s) is a polynomial of degree n-i-1 in s. By equating

(11) and (5) one gets: ne1

N(s) = i§1 BiMj(s)
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which, after cquating separately the coefficients of sk,
k = n~2, n-3, ..., 1, 0, becomes a system of n-1 linear equa
tions in the ﬁi's which turns cut to be in triangular form
with nonzerp diaponal coefficients, hence nonsingular and
casily solvable by Gaussian elimination,

It should be remarked that nonsingularity of the
above defined system implies the uniqueness of the solution
vector £ = [ﬂn—l Bn—2 YA 0]T

since Q(s) is fixed by the eigenvalues of A, N(s) is itself

for given N(s) and Q(s); but,

unique so that we conclude that the series canonical form of
(A, Q) is unique. This uniqueness property may be transferred
immediately to canonical form A, and also to form B provided
that there is no pole-zero cancellation as mentioned in

Remarks 3.1 and 3.2 (in that case we need some convention for uni

quely defining the undefined yi's, e.g.'yi = 0).

5, EXACT AND APPROXIMATE REPRESENTATION OF CDF'S BY TMHMM'S

Ve now consider the problem of characterizing the

class of cdf's generated by TMHMM's.

Definition 7. A real-valued function F(t) over [0,+ o) is of
class Rc(n) (Rational Laplace Transform cdf of order n) iff
it is a cdf and its Laplace transform is a rational function,

i.e. a ratio of two polynomials in s:

N(s)
Fs(s) = L{F(t)} =

Q(s)
where deg (Q) = n.

The n zeros of the denominator Q(s) are the poles
of Fs(s). Notice that for F{(t) to be an'honest cdf, Fs(s) must
have a single pole at s = 0 with unit residue, and the other
poles must have negative real part. We shall also assume that
deg (N) < deg (Q)-2 in order to have F(0) = 0, i.e. no mass

at the origin.

Definition 8. A function F(t) is of class Nc(n) iff it is of
class Rc(n) and its n-1 non-zero poles are real (negative, by
the above remark).

By eq. (5) and Prop. 1 one immediately gets
Property 3. The c¢df ofan n- MHMM is of class Rc(n)
Property 4. The cdf ofan n-~ TMHMM is of class Nc(n)

We notice that the so defined classes contain many

distributions often used in reliability analysis, e.g. the
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simple exponential which is Nc(l) and the gamma distributions
with integral parameter @ which are NC(G).

It should be noticed that any F(t) €& Rc(n) is also
Rc(k) Vkx > n, since one can always multiply both numerator
and denominator of Fs(s) by a common factor of degree k- n>0

without affecting the cdf. The same holds for Nc(n).

Definition 9. Tc(n) is the class of cdf's realizable by
n-~ TMHMM's. Obviously, Tc(n)C: Nc(n).

We are now able to answer the question: what cdf's
are representable by ann- TMHMM (i.e., what cdf's belong to
Tc(n))? By the results of sections 3 and 4, we have the
Property 5. Tc(n) is the subset of Nc(n) whose elements admit
a series canonical representation with Bi 2 0.

This proposition is less trivial than it appears,
since we can give examples of cdf's which are Nc(n) but not

Tc(n).

Example 1. Let
) -t 1 2
F(t) =1 -¢e (1 + — t7)
2

then
52 + s + 1
F (s) 2 —mm (13)
s 3
s(s + 1)

hence F(t) € NC(A). Now, if there is a canonical 4~ THHMM

yielding F(t), it must have ll = 12 = 13 = 1 and

=1 B,=-1  B3=1

We see that [BS’ 32, 51, 0]T is not a probability
vector. But we have proved that the series canonical form of
ann- TMHMM is unique, so we concludc that there is no 4~ TMHMM
yielding F(t), since any such TMHMM should yield nonnegative
Bi‘s when reduced to canonical form. Hence F(t) e Nc(4) but
F(e) & T_(4).

For this particular case, the problem may be circum
vented by ralsing the order of the model, i.e. by introducing
"dummy" poles in Fs(s). For example, 1f both numerator and de
nominator of (13) are multiplied by s+ 2, we may show that
F(t) e Tc(5) by constructing the 5- TMHMM of Fig. 6 with

Ap=2 Ay=A;=4,=1
By =1/2 B,y =B3=0 By = 1/2

which yields F(t) as its cdf.
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Q1=1/2 Q4=1/?

@ 1 @ 1 © 1 O 2 ©

Fig. 6 - The 5-TMHMM which realizes the cdf of Example 1.

Example 2. Let

F(t) = 1 - e 5(1 + £2) (14)
then
52+ 1
FS(S)=
s(s + 1)°

hence again F(t) e NC(4). But we can show that F(t) & Tc(n)
for any finite order n. Indeed, we have the following
Property 6. Given the cdf ofan n- MHMM, the corresponding den
sity is nonzero for any finite t > O.

The proof is given in the Appendix. Now, the densi-
ty of (14) is

£(t) = e (1 - t)°

and so f(t) = 0 for t = 1. Hence, there can be no n- TMHMM

with finite n yielding F(t) as its cdf, q.e.d.

The above examples should not induce, however, pes-
simistic conclusions about the usefulness of the Markov appro
ach. Indeed, we can show that
Property 7. Any reasonably well - behaved cdf can be approxima
ted as close as desired by an n- TMHMM for sufficlently large n.

Let F(t) be a cdf such that F(0) = 0 and R(t)= 1- F(t)

the corresponding survival function; define

=< k
Ry (t) = 3 R(k/Z) oAt _fffl__ (15)

k=0 k!
then

lim Ry(t) = R(t)
A—

uniformly in every finite t- interval [5]. Now define Rnl(t)

as
n-1 k
-2t (At)
R_,{(t) = a, e — (16)
ni keo K "y
where
a = R(k/A).

then it is clear that Fnl(t) =1 - Rnl(t) is the cdf of the

series (n+1) - TMHMM of Fig. 7, provided that Bi = a -a,,

i-1 i
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n-1 Bn-2"8-1 8,78

Fig. 7 ~ Approximation of a cdf by an n-TMHMM.

i=1, ... n-1, Bn=a furthermore,

n-l;
n1__1'm°:’f'n',_(t) = F(t)
A —~roo
which implies that F(t) can be approximated as closely as
desired by Fnl(t) in any finite t- interval by choosing suf-
ficiently large values of n andA.

It should be noticed that for a cdf which is the
output of some MHMM: (/L f, C) the above result can be some-

what strengthened by using, instead of (1%),

R*(t) = °Z° ay e_lt.ﬂ. (17)
k=0 k!

with

qk i=1, 2, ..., n

=l .+ Ak e, Ei =1-cC,,
It can be s%own that if A > mal>:|/]ik |, then q,.=0 and
(17) is an exact represcntation of R(t)lzﬁot only in thé
limit A — o) [6].

It should be remarked that the above is not meant
to be an efficient way to approximate a given cdf by an n- TMHMM.
In a practical case, we would use a canonical model of some
given order n in an optimization procedure, such as the one rg
ported in [2], in order to get “optimal" values of the 2n -3

parameters 11 eoe A and ﬂl e ﬂn—z' In most cases of inte

n-1
rest such a procedure is likely to produce a good approxima-
tion of F(t) even for small values of n, and we refer the

reader to the cited work for examples justifying this asser-

tion.

6. CONCLUDING REMARKS

From a practical point of view, the major result of
this work is the existence, uniqueness and simple form of the
canonical representation of TMHMM's. The use of triangular mo
dels in a special - purpose optimization program aimed at pro-
ducing the best markovian approximation of a given cdf has

been proposed in [2]; incorporation of a canonical structure
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in this program is expected to yield a significant improvement
of its efficiency. Indeed, as long as the number of parameters
of the model exceeds the number of degrees of freedom of its
cutput, we expect the existence of many different sets of parameter
values yielding the same output, and this is likely to cause
problems such as slow convergence or even oscillations. For
example, one may easily give examples of n- TMHMM's with the
same cdf and the same eigenvalues, but differently ordered on
the diagonal of the A.matrix; so, it is well possible that the
optimization procedure be trapped in an oscillation between
two such configurations without ever reaching the optimal solu
tion. This problem, however, 1s easily avoided if the canoni-
cal ordering of the Zi’s is incorporated as a constraint in
the program.

Our results do not answer, however, the more general
question of the existence of canonical forms for non- triangular
MHMM's. The problem with these latter is that they may have com
pPlex poles, so that we lose the possibility of imposing upon
them a strict ordering as in the real case. We should mention
that the use of complex probabilities and/or transition rates
has already been suggested in the literature [3], but in this
way the model does no more represent a real Markov process.

It should be remarked that, although the use of non-real mo-
dels is perfectly legitimate until their input- output beha-
viour does represent a real process, in some cases it may be
difficult to verify this last condition. For example, if an
n- TMHMM in canonical form A is used to compute a best Mar-
kovian approximation of a given distribution, the condition
of nonnegativity of the transition rates ensures, at least,
that the resulting approximation is itself a distribution,
while this is not guaranteed if the nonnegativity condition
is dropped.
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APPENDIX

A. Proof of Theorem 1.

We notice first that the thesis is trivially true
for n = 2, since a 2- TMHMM coincides with its unique elemen
tary series, so we proceed by induction. Let (A, Q) be an
n—- TMHMM and let the thesis be true for arbitrary
(n-1) - TMHMM: (A', Q'). Partition 4 and Q as

=2
£

N
1l
i
]
i
i
]

N e
>
Le)
I
~ 1
o
i
v
i
£ |
—
L <J]
A
i

where one easily checks that X and Q' are (n- 1)-dimensional
probability vectors, so that (A', X) and (A', Q') are (n-1)-
TMHMM's. Now,

0

(sI —11)_1 T . —
1At -1
LS+ 11 (s1'=A') °X

where I' is the identity of order n- 1. Hence

(sT' =g

——————t e e

Wik s(n-1,n=1)T

F (s; A,Q) = MM - Mg -
S S + 2'1

(sI'—A'le+

1 A1

+(1-w,) a("‘l'“’l)T(sll-A')' Q' = wo—— F_(s;4",X)+(1-w )F _(s: 4", Q)=

wl S+ )-1

= wlA(s)+(1-w1)B(s)
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Now, by the induction hypothesis B(s) 1s a mixture
of ES's of A' (which by definition are also ES's of A); but
one easily sees that A(s) is itself a mixture of ES's of A (with
state 1 as the first state), since Fs(s; A, X) is a mixture of
those ES's of /' which are connected to state 1 (i.e., those

which start from a state i such that‘Ail = 11Xi_1 # 0). Hence

if the thesis is true for n-1, it is truec for n too, qg.e.d.
The second part of the thesis (weight of each ES)

can be easily proved by recursively applying the above formu

lae.

B. Proof of Lemma 1.

Let 11 > 12 P An 1 be the ordered set of the
elgenvalues of -/A and let E be an elementary serics of A .
Ve introduce a representation of E as the row vector E =
- e LI

(e, &, €

] where e, = 1 if A, € E and e_ = 0 other-
n-1 i i i

wise. For example, let N = 9 and E = < 14. Ao A

1 5 >; then

E=[10011000]
MNotice that the ordering of the Ai's in the path
corresponding to E is immaterial, since the cdf of an elemen
tary series is invariant under permutation of the transition

rates. Given this representation, define the following quan-

tities:
R(E) = index of the rightmost non-zero entry of E
Z2(E) = number of zero entries between e, (inclusive) and e

1
(obviously Z(E) = 0 iff E is a basic series)

R

I(E} = index of the rightmost zero entry between e1 and ep
(if Z(E) = 0, we define I(E) = 0O)
A(E) = R(E) - I(E) 2 1

Now, let E be a non- basic series, hence Z(E) # O.
If I(E) = k, we apply identity (7) with a = lk+1 and b = Zk
to represent E as the mixture of two series, say Sl(E) and
SZ(E) where S1 contains both Ak and lk+1 while 82 contains
only Ak'

It is easy to see that for any E the following two
cases apply:
I) if A(E) = 1, then Zz [S (E)] = 2 [s,(E)] = 2(E) -1
II) if A(E) > 1, then Z [Sl(E)]= Z(E) - 1 and Z[SZ(E)] = Z(E)

but A[sz(E)] = A(E) -1
We can now prove that the following procedure

yields a representation of E as a finite mixture of basic



Markov processes modelling 601

series.
Start: V) — 15 k e 1 Zk «— Z(E}; Ei «— E;
Loop: J e~ 1;

For 1 = 1 to vk do
Split: if A(E1i<) =1

k+1 k+1

k k
then begin E S s E — s end
egin P — ul(Ei), Ej+l Sz(Ei)’

k+1

else begin E — Sl(EE); Je— J+1;

.

k
«Q - 1 .
E1 — °2(Ei)’ ro to split; end

end;
Comment: at this point, the ¥ series Ei have been transformed
v
X : k k k
into mixtures of w» = 3 [A(Ei)+ 1] series Ej+1, which sa-

ke1, - b=

1
tisfy z(lzj ) =2,-1 Vi; so

let Zk+ — Zk— 1; if 7 1 # 0 then let k<«—k+1; go to loop;

1 k+

else stop
end.

It should be clear that each loop: step of this
procedure involves a finite number of applications of (7) and
therefore produces a finite number of terms in the expansion
of E as a mixture of series; also, at each step Zk is reduced
by one, so that the process will ultimately stop after k= Z(E)
steps with 2k+1 = Z(E§+1) = 0 Vj, i.e. with a representation
of E as a mixturc of basic series, q.e.d.

C. Proof of Property 6.

The proof is given by the following two lemmas.
Lemma C1. For an n- MHMM, Pj(t) 20 Vi=1, 2, ..., n, Vt>d.

The proof can be found in any textbook on Markov
Processes, e.g. [4].

Lemma €2. For an irreducible n- MHMM, Pi(t) 40 Vi=1, 2,...,n,
vt > 8.

Let by contradiction be some 1 and some to>»O such

that
P (t ) =0
Then
P (t) = v, ik Pelto)
where V, is the set of states: {k: ‘4ik>'o}' Now either:
a) Vi is empty. Then either

a.l) Qi = 0 but this contradicts irreducibility, or
a.2) Qi > 0 but then
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Pj(t) = ‘Qi exp (Aut) > 0 Vt
which contradicts Pi(to) = 0.

b) Vi is nonempty. Then either
b.1) Pk(to) z20 Vk e vy and there is some k:eV1 such
that P, (t5) >0;
hence
A
Pi(t°)>0
but in that case there must be a left-neighborhood of t, in
which
Pi(t) <0
which contradicts Lemma C1.

b.2) Pk(to) =0 Vk e V,. In this case we repeat the above
arguments for each k € Vi; since the number of states is
finite, we must ultimately reach a contradiction. Hence
Pi(t) #0 V¥Vt >0, q.e.d.

Now, foran n- MHMM the density of the cdf is given by

d d
£(t) = — F(t) = -9 p_(t) = MTP(t)
dt dt T
where MT is the last row of.A. But M~ cannot be identically

zero, since otherwise the final state would not be connected
to the rest of the system. Since all components of P(t) by
lemma C2 are non-zero for t > 0, we conclude that f(t) # O
Vt >0, q.e.d.



