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ABSTRACT 

This paper deals with the use of Multistate Homo- 

geneous Markov Models (MHMM) to represent failure-time distr~ 

butions in reliability analysis, with particular emphasis on 

MHMM's representable by acyclic transition graphs (Triangular 

MHMM's). It is shown that a generic TMHMM can be transformed 

into an equivalent minimum-parameter form (canonical form). 

This result is used to characterize the class of distributions 

representable by TMHMM's. It is shown that, although not all 

distributions which are linear combinations of exponential 

terms can be exactly represented by a TMHMM, such models can 

nevertheless be used to approximate as closely as desired any 

reasonable failure-tlme distribution. 

I. INTRODUCTION 

Although widely employed in the reliability analysis 

of complex systems, the theory of homogeneous Markov processes 

is somewhat limited in its application by the essential assum E 

tion that the life and repair times of each component be expo- 

nentially distributed (constant failure/repair rate). Many di~ 

tributions often used in reliability analysis do not follow 

this simple exponential model: for instance, components either 

exhibit degradation (increasing failure rate), or burn-in (de- 

creasing failure rate), or both. The most obvious way to take 

into account such behavlours is to pass to a nonhomogeneous m~ 

del, by letting the transition rates depend upon time; in this 

way, however, both the theoretical elegance and the computati~ 
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nal convenience of the homogeneous model are lost. 

A different ar~proach con~ist~ in representing each 

component by a Multistate Homogcneous Markov Model (MHMM) [I] 

[2], whose stochastic behaviour approximates, according to 

some given criterion, that of the original component. This ap- 

proach is a generalization of we]l-known techniques for appro- 

ximating non-exponential distributions by combinations of se- 

rle~: and/or para]le] cor,figuration~: with constant transitlon 

rates (also known as "staKe device", see e.g. [3] [4]). One of 

the major advantages of this approach is that the overall sy~ 

tem is thus still represented by a homogeneous Markov process, 

so allowing the use of standard techniques for the analysis of 

its behaviour. 

In this context, the following questions arise natu- 

rally: 

a) What kind of distributions can be represented by MHMM's? 

b) Can we use MHMM's to approximate an arbitrary distribution 

as close as we want? 

c) Can a generic MHMM be transformed into an equivalent canon! 

cal form, i.e. a form having the minimum number of free pa- 

rameters? 

The answer to question c) is of noticeable practical 

importance, for at least two reasons: first, a canonical form 

would simplify the computation of the best approximation for a 

given distribution, by not taking into account redundant para- 

meters; second, the use of a minimal structure for each compo- 

nent would also help to control the complexity of the overall 

system model. 

This paper presents some partial answers to the above 

questions, by considering mainly MHMM's representable by acy- 

clic transition graphs; they will be referred to as Triangular 

MHMM's (TMHMM) since in that case the transition matrix can be 

put in triangular form by a suitable reordering of the states. 

The paper is organized as follows. Section 2 reports 

some basic definitions and the major properties of MHMM's and 

TMHMM's. In section 3 we show that a generic TMHMM can always 

be transformed into amy one of three canonical forms, the choice 

among them being a matter of convenience. Section 4 deals with 

the computation of canonical forms and the related subject of 

their uniqueness. In section 5 the above results are used to 

characterize the class of distributions representable by 
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TMHMM's. In particular, we show that there are distributions 

which, although being linear combinations of exponentials, 

cannot be generated by a TM}{bIM (nor by a generic MHMM). This 

negative result is, however, of little practical significance 

since we also show that any reasonably well-behaved distribu- 

tion can be approximated as well as desired by a TMHMM of suf- 

ficiently high order. 

2. BASIC DEFINITIONS AND PROPERTIES OF ~IHMM'S 

Definition i. An n-state MHMM (shortly, n-MHMM) is a time-con- 

tinuous homogeneous Markov process with n discrete states re- 

presented by the triple: (A, ~, C), where 

- A is the transition rate matrix, i.e. a square matrix of or- 

der n satisfying: 
n 

Aik ~ 0 Vi ~ k ~ = 0 Vk ' i=l Aik 

We adhere to the convention of representing probability vec- 

tors by column vectors; so, Aik is the transition rate from 

state k to state i; 

- ~ is the initial probability vector, i.e. a column vector of 

dimension n satisfying: 

n 

~i ~ o Vi, ~ ~i = i 
i=l 

- C is the structure vector, i.e. a colum vector of dimension 

n with 0/I- valued entries which represents a partitioning 

of the set of n states into two mutually disjoint subsets U 

and D, such that i 6 U if C i = 0 and i ~ D if C i = i. U is 

the set of "up" states and D the set of "down" states. 

With this definition, the state probability vector 

P(t) is obtained by solvin~ the standard Markov equation: 

dP 
- -  = AP (I) 

dt 

under the initial condition P(O) = ~. The formal solution of 

(i) is : 

P ( t )  = e A t  Q, t ~ o ( 2 )  

The time function F(t) defined by: 

F(t) = C T P(t) (3) 

is the probability of the system being in some state igD at 

time t. Since we are dealing only with the use of MHMM's for 

approximating failure-time distributions, we shall assume that 
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the D set is ergodic, so that the down states can be grouped 

together into a single absorbing state which shall be identlf~ 

ed with state n; so, the structure vector C will always be 

equal to 6 in'n)'" and wlll often be omitted for brevity ~ . We 

shall furthermore assume that cT~ = O, i.e. that the component 

is initially "good"; under these conditions, (3) represents 

the cumulative distribution function (cdf) of the transition 

time from the U set to the D set, i.e. of the failure time of 

the component modelled by (A, ~, C); it will be referred to as 

the cdf of the MHMM. We shall sometimes use the notation 

F(t; A,~) in order to make the dependence on A and ~ explicit. 

It will be useful to consider the relations correspon~ 

ing to (2) and (3) in the Laplace transform domain. Let P (s) 
s 

be the transform of P(t); then eq. (2) rewrites as: 

Ps(s) = (sl -A) -I~ (4) 

where I is the identity matrix of order n, and (3) rewrites as: 

F (s) = cT(sI - A)-I~- N(s) 
s (5) 

Q(s) 

where N and Q are polynomials in s and Q(s) = det (sI - A) = 
n 

= igl (s - ~i ), ~i being the eigenvalues of A. 

Remark 2.1: Notice that Q(s) is specified by n-i parameters 

since one of the eigenvalues of A, by its definition, must be 

zero. Furthermore, the condition cT~ = 0 implies F(O) = 0 and 

so deg (N) ~ n- 2. Taking also into account the condition 

F(+~) = lim sF (s) = 1 (nondegeneracy of the edf), it can be 
s~ 0 s 

easily checked that (5) is completely specified by no more 

than 2 n- 3 parameters, i.e. that the odf of sxln-MHMM has 2 n- 3 

degrees of freedom. 

In the particular case of an MHMM whose transition 

graph has no cycles, the A matrix can always be put in lower 

triangular form by a suitable reordering of the states. For 

this reason such a model is called Triangular MH~M (TM}IMM). 

The major properties of TMHMM's have been stated in [2]; in 

particular, from the properties of triangular matrices we get 

the following 

Property i. The A matrix of an n- TMHNN has n- 1 negative real 

eigenvalues and a single zero eigenvalue; they coincide with 

6(i,k) 
represents a column vector of dimension k with the 

i-th entry equal to 1 and all other entries equal to O. 
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the diagonal entries of A. From this property it follows that 

for;m n- TMHMM the denominator of (5) has the simple form: 

n 

Q(s) = s i~l(S + Ai ) , Ai = -Ai i 

Definition 2. In an MHMM: (A, ~, C) a path is a sequence of m 

states i I, i2, ..., i such that 
m 

A. ~ 0 k = I, 2, .... m-i 
ik+l,ik 

In other words, a path is a sequence of connected states in the 

transition graph correspondin~ to A. Notice that for a ~eneric 

N}IMM some states may appear more than once in a path, while this 

obviously does not happen for a TbIIIMM. 

Definition 3. In an bIHMM a state i is called essential if either 

~i ~ O or it belongs to some path starting from another state 

k with ~k ~ O. 

Definition 4. An MHMM is termed irreducible if all its states 

are essential; otherwise it is reducible. 

The proof of the following property is almost trivial: 

Property 2. A reducible MHMM is cdf-equlvalent to (i.e. has the 

same cdf of) an irreducible MHMM of lower order, obtained by 

deleting all non-essential states in the former. 

Notice that series and parallel configurations of n 

states are particular cases of n- TMHMM's. In particular, for 

a series the A matrix is bidiagonal, so that it is completely 

specified by its n- 1 nonzero diagonal entries. Such a matrix 

will be termed an s-matrlx. 

Definition 5. For a given n- TMHMM: (A, ~) an elementary 

series (ES) of order m ~ n is an m- TMHMM: ~, ~(l,m)) where 

is an s-matrix of order m with 

AR, k = -AiR = Aik,i k 

where il, i2, ..., i m form a path of A and im ~ n. Fig. 1 shows 

a 4-TMHMM together with its ES's. A simple calculus shows that 

the number of ES's for given n is at most 2 n-I - i. An ES may 

be represented by the notation: 

E = <Ill Ai2 ... lim_l > 

(recall that Aim ~ 0)~' It is immediate that the cdf of an ES 

has Laplace transform: 
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Fig. 1 - A 4-TMHMM and its 7 elementary series. 

F (s) = All ... Alm_l = 1 m-l~ %ik 

s k=l 
s(s+lil)...(s+lim_l) s s+lik 

(6) 

3. CANONICAL FORMS OF TMHMM'S 

In the previous section we have seen that the cdf of 

a n- MHMM has at most 2 n- 3 free parameters; this figure should 

be compared with the number of parameters needed to specify an 

n- MIIMM, which is easily computed as JIG (n- 1) 2 = + n- 2 for 

a generic model and N T = n(n- 1)/2 + n- 2 for the triangular 

case. Since the representation of a cdf by s/IMHMM is so hig~ 

ly redundant, we suspect the existence of some cdf-preserving 

transformation able to reduce a given model to a form of mini 

mal complexity (canonical form). The existence of such forms 

will be stated in the following for the triangular case. 

Theorem i. The cdf of am n- TMHMM: (A, ~) is a mixture of the 

cdf's of its elementary series, where each ES has a weight 

proportional to the product of the transition rates along the 
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corresponding path and to the initial probability of the first 

state in the path. 

The proof of Th. 1 is given in the Appendix. This 

result is useful also because it allows, at least for moderate 

values of n, to write out F (s) of eq. (5) by simple inspec- 
s 

tion of the transition graph. 

To proceed further, we need the following definition 

and lemma. 

Definition 6. Given n positive real numbers A 1 ~ i 2 ~ ... ~An> O, 

their basic series (BS) are the n series of 2, 3, .... n+ 1 

states 

BS 1 = < A 1 > 

BS 2 = < A 1 A 2 > 

. . . , . o . o o .  

BS = < A 1A 2 ... A > n n 

For a given n- TMHMM: (A, ~) its n- 1 basic series are simi]a~ 

ly defined using as Ai's the ordered set of the eigenvalues of 

-A. 

Lemma i. Given an n- TMHMM: (A, ~), the cdf of each of its ele- 

mentary series is a mixture of the cdf's of its basic series. 

The proof of this lemma is rather involved and is 

reported in the Appendix. 

It basically relies on the following identity: given 

two positive real numbers a and b, with a ~ b, 

a b ab 
= w +(I - w) (V) 

(s + a)(s + b) s+a s+b 

a 
where w = ~(O,I]. This identity shows that an elementary 

b 
series containing a stage with transition rate a can be subst~ 

tuted (as long as the cdf is concerned) with a mixture of two 

series, one containing a sta£e with transition rate b and the 

other containing both a and b, provided that b ~ a. It is 

therefore intuitive that by repeated use of (7) one can tran~ 

form an ES into a mixture of BS's. 

We now state the following 

Theorem 2. The cdf ofan n- TMHMM: (A, ~) is a mixture of the 

edf's of its basic series. 

Proof: from Theorem 1 and Lemma i. 

From Th. 2 stems the followin~ important 

Corollary 2.1 (series canonical form). Any n- TMHMM: (A, ~) is 



590 ALDO CUMANI 

cdf-equivalent to a series configuration (A, ~) with transition 
A 

rates Ak+l, k = An_ k equal to the eigenvalues of - A, so ordered 

that ~I ~ A2 ~ "'" ~ ~n-I (see Fig. 2). IN other words, the 

schema of Fig. 2 is a canonical form for TMHMM's. 

QI Q2 Q3 Qn-1 

Fig. 2 - The series canonical form. 

The proof is immediate since from Th. 2 it follows 

that for any (A, ~) there must exist nonnegativc real numbers 

~i' i = I, 2, ..., n-i such that 

n-I 

F(t; A, ~) = ~ ~i Fi(t' A) (8) 
i=l 

where ~i = i and Fi(t; A) is the cdf of the i-th basic series 

of A. But it is easy to see that the r.h.s, of (8) is the cdf 

of the series configuration in Fig. 2, provided that ~i = ~n-i 

q.e.d. 

Remark 3.1: It can be easily checked that (8) has the right 

number of degrees of freedom to be a minimal representation of 

(A, ~); indeed, (8) is specified by 2 n - 3 parameters, namely 

n - 1 transition rates and n - 2 independent initial probabi- 

lities. 

Although the above series form is probably the most 

compact representation of a TMHMM, there are at least two 

other forms which have the advantage that the initial probabi- 

lity is concentrated in the first state (i.e. ~ = ~(l,n)). 

This property is particularly useful when using the TMHMM as a 

failure model for a component imbedded in a larger system 

since it allows, e.g., to represent a repair action (with the 

repaired component "as good as new") by a simple transition 

from state n to state i. 

Canonical form A. Given the ordered set of n- 1 positive real 

numbers 11 ~ 12 ~ ... ~ In_l , the form (A*, 6 (l'n)) is canon ! 

cal for n- TMHMM's with eigenvalues - A., where 
1 
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A. 

-X I 

Xn_ I -In_ I 

Xn-2 '%n-I -An-2 

x I 0 0 

• " " -~2 

0 X 2 0 

xi6 [0, Xl] i = I, 2 ..... n-i 

n-i 

x i = i 1 i=l 

corresponding to the schema of Fig. 3. The proof is almost 

trivial since it is easy to see that th'e cdf of this form 

coincides with (8) when x i = . --Bi;[ I. 

x ,_l kr,-1 kn_2 k 2 

X 1 

Fig. 3 - Canonical form A. 

Canonical form B. Given the ordered set l 1 ~ 12 ~ "''~An-l' 

the form ( A, 6 (l'n)) is canonical for n-TMHMM's with the 

prescribed eigenvalues, where 

A= 

-A I 

x I -X 2 

0 x 2 

, m l  , , e  

, J e  , , ,  

-~3 
i l l  

e l *  e l e  

o o o  e e e  

-An_ I 

An_1 0 Al-X 1 X2-x2 

e [0, A~ , i=1,2,...,n-2 x i 

corresponding to the schema of Fig. 4. The proof of eanoniclty 

can be obtained by comparing the cdf of this form with that of 

series form. Let Fi = xi/li; then the cdf of (A, 6 (l'n)) the 

is given by (8) provided that 
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~ 1  = 1 - Yl 

~2 = Yl (1 - YP) 
. . . .  ° . .  . . . .  . . . .  

~k : Yl Y2 " ' "  Yk-1 ( 1 -  Yk ) 

(9) 

- .-  xl x2 

x I 

Flg. 4 - Canonical form B. 

After some algebraic manipulation, one gets the so- 

lution of (9) with respect to the Yi's as 

i 

1- 7 ~k 
k=l 

(10)  
Yi = i-1 

1- ~ ~k 
k=l 

i - 1  
provided that ~ ~k 

k=l 
dition is satisfied for all i = i, 2, ..., n-2; then it is 

easy to see that for any choice of ~i such that ~i ~ O, ~fli= i, 

the condition 0 ~ yi ~ 1 is satisfied for all i, so that A is 

a legitimate transition rate matrix. Sincc there is a one-to- 

one correspondence between the series canonical form and 

(A, 6(l'n)), then the latter is canonical too, q.e.d. 

Remark 3.2: It is interesting to notice what happens if, for 
i i-i 

some i < n-i k~l ~k = 1 while ~ flk ~ I. In this case Yi -- 0 
' k:l 

and Yk for k > i as given by (I0) is undefined; however, this 

is only possible if ~k = 0 Vk > i, so that (9) is satisfied 

by any eholce of Yk'S for k > i. Indeed, in this case the ca- 

nonical form becomes a reducible TNHNN since the states i+l, 

i+2, ..., n-I are no more reachable from state i. We should 

notice, however, that under such conditions also the other two 

forms are reducible: in the series form, if flk = 0 for k= i+i, 

..., n-l, the states l, 2, ..., n-i-i are not essential, and 

in form A the same happens for states 2, 3, ..., n-i. 

Remark 3.3: Notice that if a~ MHNM is reducible, then there 

1 .  L e t  u s  s u p p o s e  t h a t  t h i s  l a s t  c o n -  
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must be some pole-zero cancellation in the corresponding F (s) 
S 

(i.e., P(s) and O(s) must have some common factors) while the 

converse is not true, in general. For example, the 3-TblHHM of 

Fig. 5 a (which is in canonical form) has 

2 1 s + 3  1 

F ( s )  = + - - 
s 

( s  + 3 ) ( s  + 1)  s + 3 ( s  + 3 ) ( s  + 1)  s + 1 

a n d  i s  t h e r e f o r e  c d f - e q u i v a l e n t  t o  t h e  2 -  TMHMM o f  F i g .  5 b .  

H o w e v e r ,  t h e  s c h e m a  o f  F i g .  5 a i s  n o t  r e d u c i b l e  i n  t h e  s e n s e  

of Definition 4 .  

I 

2 1 1 

Q1 =I QI=1 

(a) (b) 

Fig. 5 - a) an irreducible 3-TMHMM; 
b) a 2-TMHMM cdf-equivalent to the former. 

4. COMPUTATIOH OF CANONICAL FORNS 

We now consider the problem of computing the parame- 

ters of a canonical representation of a given n-TMH~iM: (A, ~). 

We shall focus on the series form, since the other two are 

easily obtained from the former by simple relations. 

The computation of the fli's appearing in (8) is 

best done in the Laplace transform domain. To this purpose, 

rewrite (8) as: 

n-I 

Fs(S', A,~) : ~ ~i Fsi (s; A) (ii) 
i=l 

where 

Fsi(S; A) = 
A1 12"''Ai ~i 12"°'~i(s+Ai+l)"'(S+An-2 ) 

s(s+ll)...(s+/i) 
Ni(s) 

Q(s) 

s(s+l I). . .(S+ln_l) 

(z2) 

where Ni(s ) is a polynomial of degree n-i-I in s. By equating 

(II) and (5) one gets: n-i 

N(s) = ~ ~iNi(s) 
i=l 

M.m 22/3~R 
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k 
which, after equatin~ separately the coefficients of s , 

k = n-2, n-3, ..., I, O, becomes a system of n-i linear equ~ 

tionz in the ~i's which turns out to be in trianEular form 

with nonzero diagonal coefficients, hence nonsin£ular and 

easily solvable by Gaussian elimination. 

It should be remarked that nonsingularity of the 

above defined system implies the uniqueness of the solution 

vector ~ = [fln-i fin-2 ""El O]T for siven N(s) and O(s); but, 

since O(s) is fixed by the eigenvalues of A, N(s) is itself 

unique so that we conclude that the series canonical form of 

(A, ~) is unique. This uniqueness property may be transferred 

immediately to canonical form A, and also to form B provided 

that there is no pole-zero cancellation as mentioned in 

Remarks 3.1 and 3.2 (in that case we ne~ some convention for uni 

quely defining the undefined ~i's, e.~.' ~i = 0). 

5. EXACT AND APPROXIMATE REPRESENTATION OF CDF'S BY TMHMM'S 

We now consider the problem of characterizing the 

class of cdf's generated by TMHMM's. 

Definition 7. A real-valued function F(t) over [0,+ oo) is of 

class R (n) (Rational Laplace Transform cdf of order n) iff 
c 

it is a cdf and its Laplace transform is a rational function, 

i.e. a ratio of two polynomials in s: 

F s ( S )  = L { F ( t )  } - 

where d e g  (Q) = n. 

N(s) 

Q(s) 

The n zeros of the denominator Q(s) are the poles 

of Fs(S). Notice that for F(t) to beanhonest cdf, F (s) must 
S 

have a sln~le pole at s = 0 with unit residue, and the other 

poles must have negative real part. We sha]l also assume that 

deg (N) ~ deg (0)-2 in order to have F(O) = O, i.e. no mass 

at the origin. 

Definition 8. A function F(t) is of class N (n) iff it is of 
C 

class Rc(n) and its n-i non-zero poles are real (negative, by 

the above remark). 

By eq. (5) and Prop. 1 one immediately gets 

Property 3. The cdf of~ n- MHMM is of class R (n) 
c 

Property 4. The cdf ofan n- TMHMM is of class N (n) 
c 

We notice that the so defined classes contain many 

distributions often used in reliability analysis, e.g. the 
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simple exponential which is N (I) and the gamma distributions 
e 

with integral parameter ~ which are TI (8). 
c 

It should be noticed that any F(t) E R (n) is also 
c 

Re(k) Vk > n, since one can always multiply both numerator 

and denominator of Fs(S) by a common factor of degree k- n>O 

without affecting the cdf. The same holds for N (n). 
c 

Definition 9. T (n) is the class of edf's realizable by 
c 

n- TMHMM's. Obviously, Tc(n)C N (n). 
c 

We are now able to answer the question: what cdf's 

are representable by ann- TMHMM (i.e., what cdf's belong to 

T (n))? By the results of sections 3 and 4, we have the 
c 

Property 5. Tc(n) is the subset of Nc(n) whose elements admit 

a series canonical representation with #i ~ O. 

This proposition is less trivial than it appears, 

since we can give examples of edf's which are N (n) but not 
c 

T (n) .  
e 

Example i. Let 

then 

- t (  I 
F ( t )  = I - e I + .- t 2 )  

2 

s2 + s + 1 
(s) : (13) 

s 
S(S + 1)  3 

hence F(t) E N (4). Now, if there is a canonical 4- TNHMM 
c 

yielding F(t), it must have 11 = 12 = 13 = 1 and 

#i : 1 #2 =- i #3 = 1 

We see that [#3' #2' #i' O]T is not a probability 

vector. But we have proved that the series canonical form of 

ann-TMHMM is unique, so we conclude that there is no 4-TMHMM 

yleldinE F(t), since any such TMHMM should yield nonnegative 

#i's when reduced to canonical form. Hence F(t)6 Ne(4) but 

F ( t )  # T o ( 4 ) .  

For this particular case, the problem may be circum 
N 

vented by raising the order of the model, i.e. by introducing 

"dummy" poles in F (s). For example, if both numerator and de 
s 

nominator of (13) are multiplied by s+ 2, we may show that 

F(t) E T (5) by constructing the 5- TMHMM of Fig. 6 with 
c 

A 1 = 2 A 2 = A 3 = 14 = 1 

# I  : z12 #2 = #3 = o #4 : i 1 2  

which yields F(t) as its cdf. 
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Q1 = I / 2  Q4=I /2  

1 1 2 1 3 1 4 2 5 

Fig. 6 - The 5-TMHMM which realizes the cdf of Example i. 

Example 2. Let 

- t (  
F ( t )  = 1 - e 1 + t 2) (14) 

then 
2 

F (s) = s + I 
s s(s  + I) 3 

hence again F(t) ~ N (4). But we can show that F(t) ~ Tc(n) 
c 

for any finite order n. Indeed, we have the following 

Property 6. Given the cdf of an n-M}IMtl, the corresponding de~ 

sity is nonzero for any finite t > O. 

The proof is given in the Appendix. Now, the densi- 

ty of (14) is 

f ( t )  = e - t ( 1  - t )  2 

and so f ( t )  = O f o r  t = i .  Hence, there can be no n -  TNHHN 

w i th  f i n i t e  n y i e l d i n g  F ( t )  as i t s  cd f ,  q . e . d .  

The above examples should not  induce, however, pes- 

s i m i s t i c  conc lus ions  about the usefu lness o f  the Markov appr£ 

ach. Indeed, we can show tha t  

P roper t y  7. Any reasonably  w e l l -  behaved cdf  can be approxim~ 

ted as c lose as des i red  by an n -  TMHMM f o r  s u f f i c i e n t l y  l a rge  n. 

Let F ( t )  be a cdf  such tha t  F(O) = O and R ( t ) =  I -  F(t) 

the corresponding survival function; define 

co -At (At) k 
RA(t) = ~ R(k/A) e (15) 

k=O k! 

then 

l im RA(t)  = R ( t )  

u n i f o r m l y  i n  every f i n i t e  t -  i n t e r v a l  [ 5 ] .  Now de f i ne  RnA(t)  

as 

n-1 -At ( At)k 
RnA(t) : ~ a k e (16) 

k=O k! 

where 

a k = R(k/A). 

then it is clear that FnA(t) = 1 - RnA(t) is the cdf of the 

series (n+l)- TMHMM of Fig. 7, provided that ~i = ai-l- ai' 
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I I 

an- I an_2-an_ I ao-a I 

Fig. 7 - Approximation of a cdf by an n-TMHMM. 

i=l, ... n-l, ~n=an_l ; furthermore, 

lim Fnl(t) = F(t) 
n --) ~o 

which implies that F(t) can be approximated as closely as 

desired by FnA(t) in any finite t- interval by choosing suf- 

ficiently large values of n and l. 

It should be noticed that for a cdf which is the 

output of some MHMM: (~, ~, C) the above resu]t can be some- 

what strengthened by using, instead of (15), 

oo -~t (~t)k 
R*(t) = ~ qk e (17) 

k=O k! 

with 

qk = ~T(I + A )k ~, ~ = i-c i i= 1 2, .. n 
l i ' ' " ' 

It can be shown that if ~ _> max]Ai,k ik I , then ql._> 0 and 

(17) is an exact representation of R(t) (not only in the 

limit ~-~ ~) [6]. 

It should be remarked that the above is not meant 

to be an efficient way to approximate a given edf byar. n-TMHMM. 

In a practical case, we would use a canonical model of some 

given order n in an optimization procedure, such as the one re 
m 

ported in [2], in order to get "optima]" values of the 2D --3 

parameters A1 .o. In_l and ~I "'" ~n-2" In most cases of int~ 

rest such a procedure is likely to produce a good approxima- 

tion of F(t) even for small values of n, and we refer the 

reader to the cited work for examples justifying this asser- 

tion. 

6. CONCLUDING REMARKS 

From a practical point of view, the major result of 

this work is the existence, uniqueness and simple form of the 

canonical representation of TMHMM's. The use of triangular me 

dels in a special- purpose optimization program aimed at pro- 

ducing the best markovlan approximation of a given cdf has 

been proposed in [2] ; incorporation of a canonical structure 



598 ALDO CUMANI 

in this program is expected to yield a significant improvement 

of its efficiency. Indeed, as long as the number of parameters 

of the model exceeds the number of degrees of freedom of its 

output, we expect the existence of many different sets ofparamec~ 

values yielding the same output, and this is likely to cause 

problems such as slow convergence or even oscillations. For 

example, one may easily give examples of n- TMHMM's with the 

same cdf and the same eigenvalues, but differently ordered on 

the diagonal of the A matrix; so, it is well possible that the 

optimization procedure be trapped in an oscillation between 

two such configurations without ever reaching the optimal sol~ 

rinD. This problem, however, is easily avoided if the canoni- 

cal ordering of the Ai's is incorporated as a constraint in 

the program. 

Our results do not answer, however, the more general 

Question of the existence of canonical forms for non- triangular 

M}IMM's. The problem with these latter is that they may have com 

plex poles, so that we lose the possibility of imposing upon 

them a strict ordering as in the real case. We should mention 

that the use of complex probabilities and/or transition rates 

has already been suggested in the literature [3], but in this 

way the model does no more represent a real Markov process. 

It should be remarked that, although the use of non-real mo- 

dels is perfectly legitimate until their input- oufput beha- 

viour does represent a real process, in some cases it may be 

difficult to verify this last condition. For example, if an 

n- TMHMM in canonical form A is used to compute a best Mar- 

kovian approximation of a given distribution, the condition 

of nonnegatlvity of the transition rates ensures, at least, 

that the resulting approximation is itself a distribution, 

while this is not guaranteed if the nonnegativity condition 

is dropped. 
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APPENDIX 

A. Proof of Theorem i. 

We notice first that the thesis is trivially true 

for n = 2, since a 2-TMHMM coincides with its unique elemen 

tary series, so we proceed by induction. Let (A, ~) be an 

n-TMHMM and let the thesis be true for arbitrary 

(n- I) - TMHMM: (A' , ~'). Partition A and ~ as 

A : . . . . .  | - - - - - -  

~'1 x I A '  1 - w 1)~ '  

w h e r e  one e a s i l y  c h e c k s  t h a t  X and ~ '  a r e  ( n - 1 ) - d i m e n s i o n a l  

p r o b a b i l i t y  v e c t o r s ,  so  t h a t  ( A ' ,  X) and ( A ' ,  ~ ' )  a r e  ( n - 1 ) -  

TMHMM's. Now, 

(sI -A) -1 = 

1 

s+l 1 

1 
( s i , _ A , ) - l x  

s + II 

where I' is the identity of order n- I. Hence 

(si,_A,) -1 

F (s; 2~,~) = 6(n'n)T( sI -A)-I~- Wlll 

s s +ll 

6(n-l,n-I)T 
(sl,-A, F1x + 

+(l-w I) 6 (n-l,n-l)T(si,_A,) -I ~, = wls--/T1rs(S;A',x)+(l-wl)Fs(S;A',fl')= 

: WlA(S)+(I-Wl)B(S) 
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Now, by the induction hypothesis B(s) is a mixture 

of ES's of fi' (which by definition are also ES's of Yl); but 

one easily sees that A(s) is itself a mixture of ES's of ~ (with 

state 1 as the first state), since Fs(S; ~' , X) is a mixture of 

those ES's of ~' which are connected to state 1 (i.e., those 

which start from a state i such that ~il = %iXi-i ~ 0). Hence 

if the thesis is true for n- i, it is true for n too, q.e.d. 

The second part of the thesis (weight of each ES) 

can be easily proved by reeursively applying the above formu 

lae. 

B. Proof of Lemma i. 

Let %1 ~ %2 ~ "'" ~ %n-I be the ordered set of the 

eigenvalues of -A and let E be an elementary series of 

We introduce a representation of E as the row vector E = 

= . [e I e 2 ... en_l], where e. = 1 if %. ~ E and eo = 0 other- 
l 1 I 

wise. For example, let n = 9 and E = < %4' %1' %5 >; then 

E= [I O0 i i 000] 

Notice that the ordering of the %l'S in the path 

corresponding to E is immaterial, since the edf of an elcmen 

tary series is invariant under permutation of the transition 

rates. Given this representation, define the following quan- 

tities: 

R(E) = index of the rightmost non-zero entry of 

Z(E) = number of zero entries between e I (inclusive) and e R 

(obviously Z(E) = 0 iff E is a basic series) 

I(E) = index of the rightmost zero entry between e I and e R 

(if Z(E) = O, we define I(E) = O) 

A(E) = R(E) - I(E) ~ 1 

Now, let E be a non- basic series, hence Z(E) ~ O. 

If I(E) = k, we apply identity (7) with a = %k+l and b = %k 

to represent E as the mixture of two series, say SI(E) and 

S2(E) where S 1 contains both %k and %k+l while S 2 contains 

only %k" 

It is easy to see that for any E the following two 

cases apply: 

I) if ~(m) = i, then Z [SI(E)] = Z [S2(E)] = Z(E) - 1 

II) if ~(E) > i, then Z [ SI(E)]= Z(E) - 1 and Z[S2(E)] = Z(E) 

but ~ [S2(E)] = ~ (E) - 1 

We can now prove that the following procedure 

yields a representation of E as a finite mixture of basic 
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series. 

Start: 

Loop: 

1 
91 ~-- I; k +-- I; Zk ~-- Z(E); E 1 *-- E; 

j ~ I; 

For i = 1 to ~k do 

Split: if A(Ek) = 1 
l 

then begin E k+l c k Ek+l S2(E~) ; j +-- °l(Ei); 'j+l ~-- end 

else begin E~ +I e--- SI(E ) ;  j ~ J+  1; 

E i ~-- S2(E ); go to split; end 

end; 

Comment: at this point, the Wk series k ~k E i have been transformed 

into mixtures of ~k+l = i~l [~(E~)+ I] series E k+l,J, which sa- 
. k+l 

tisfy Z(Ej ) = Zk- 1 Vj; so 

- Zk - let Zk+ 1 ¢ - I; if Zk+ 1 ~ O then let k< k+ I; go to loop; 

else stop 

end. 

It should be clear that each loop: step of this 

procedure involves a finite number of applications of (7) and 

therefore produces a finite number of terms in the expansion 

of E as a mixture of series; also, at each step Zk is reduced 

by one, so that the process will ultimately stop after k= Z(E) 

with Zk+l = Z(E~ +I)- = 0 Vj, i.e. with a representation s t e p s  

of E as a mixture of basic series, q . e . d .  

C. Proof of Property 6. 

The proof is given by the foilowing two lemmas. 

Lemma CI. For an n- MHMM, Pj(t) ~ O Vi= I, 2, ..., n, Vt ~4. 

The proof can be found in any textbook on Markov 

Processes, e.g. [4]. 

Lemma C2. For an irreducible n- MIIMM, Pi(t) ~ O ~i= i, 2 .... ,n, 

vt> . 
Let by contradiction be some i and some t o> 0 such 

that 

Pi(to) = 0 

Then 

= Aik P k ( t o  ) Pi(to ) k~Vi 

where V i is the set of states: { k: Ai k>O}. Now either: 

a) V i is empty. Then either 

a.l) ~i = O but this contradicts irreducibility, or 

a.2) ~i > 0 but then 
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Pj(t) : ~i exp (~i i  t) > 0 Vt 

which contradicts Pi(to) = O. 

b) V. is nonempty. Then either 
• l 

b.1) Pk(to) ~ 0 

that Pk(to) >0; 
hence 

Vk G V i and there is some k eV i such 

~i(to) > o 
but in that case there must be a left-neighborhood of t o in 

which 

Pi(t) < O 

which contradicts Lemma Cl. 

b.2) Pk(to) = O Vk e V i. In this case we repeat the above 

arguments for each k ~ Vi; since the number of states is 

finite, we must ultimately reach a contradiction. Hence 

Pi(t) ~ O Vt > O, Q.e.d. 

Now, forum n- MHMM the density of the cdf is Eiven by 

d d 
f(t) - F(t) =. P (t) = MTp(t) 

n 
dt dt 

where M T is the last row of A. But M T cannot be identically 

zero, since otherwise the final state would not be connected 

to the rest of the system. Since all components of P(t) by 

lemma C2 are non-zero for t > O, we conclude that f(t) ~ 0 

~t > O, q.e.d. 


