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Abstruct-Petri nets in which random delays are associated with 
atomic transitions are defined in a comprehensive framework that con- 
tains most of the niodels recently proposed in the literature. The inclu- 
sion into the model of generally distributed firing times requires to 
specify the way in  which the next transition to fire i s  chosen, and how 
the model keeps track of its past history; this set of specifications i s  
called an execution policy. The paper discusses the impact that different 
execution policies have on the semantics of the model, as well as the 
characteristics of the stochastic process associated with each of these 
policies. When the execution policy i s  completely specified by the tran- 
sition with the minimum delay (race policy) and the firing distributions 
are of the phase type, an algorithm i s  provided that automatically con- 
verts the stochastic process into a continuous time homogeneous M a r -  
kov chain. Finally, an execution policy based on the choice of the next 
transition to fire independently of the associated delay (preselection 
policy) i s  introduced, and its semantics i s  discussed together with pos- 
sible implementation strategies. 

Index Terms-Markov and semi-Markov processes, performance 
evaluation, Petri nets, phase-type distributions, stochastic models, 
stochastic Petri nets. 

I .  INTRODUCTION 
ETRI nets ( P N )  [ I]-[4] are becoming increasingly P popular as a powerful tool for the description and the 

analysis of systems that exhibit concurrency, synchroniz- 
ation, and conflicts. Although the basic Petri net model 
includes no explicit notion of time, several researchers 
have recently devoted their attention to augmented models 
that include timing and that are therefore named timed 
Petri nets [SI, [6]. 

Interpreting Petri nets as state/event models, time is 
naturally associated with activities that induce state 
changes, hence with the delays incurred before firing tran- 
sitions. The choice of associating time with transitions is 
the most frequent in the literature on timed Petri nets, al- 
though other possibilities have been explored. Similarly, 
a common assumption is that the net sojourns in a given 
marking for a time that is related to the firing delay of the 
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transitions enabled in that marking. Transition firings are 
in this paper assumed to be atomic operations, and tokens 
are consumed from input places and put into output places 
at the same time instant. Alternative approaches are, how- 
ever, possible. In [7]-[9] the firing process is split in two 
phases: a start firing in which tokens are removed from 
the input places, and an end firing in which tokens are put 
into output places after some time has elapsed. When ran- 
dom variables are used to specify the firing delays of tran- 
sitions, timed Petri nets are called stochastic Petri nets 
( S I " ) .  Specifications concerning the policy used to select 
the enabled transition that fires, as well as the way in  
which memory is kept of the past history of the net, are 
required for a correct definition of the semantics of the 
dynamic behavior of these models. We call this set of 
specifications an executiori policy. 

Stochastic Petri nets were initially proposed [IO]-[ 121 
assuming exponentially distributed firing times and a race 
execution policy, i.e., selecting to fire the transition 
whose firing delay is statistically minimum among those 
of the enabled ones. Under these assumptions the authors 
proved that the dynamic behavior of the net could be rep- 
resented by a continuous-time homogeneous Markov 
chain with state space isomorphic to the reachability graph 
of the Petri net. 

In an attempt to extend the class of stochastic processes 
representable by stochastic Petri nets, Natkin [ 1 I], and 
Bertoni and Torelli [ 131 proposed a semi-Markov formu- 
lation which is, however, not suited to the modeling of 
parallel activities due to the total lack of memory after 
every transition firing. 

With the aim of extending the modeling power of sto- 
chastic Petri nets, generalized stochastic Petri nets 
( G S P N )  were proposed in [14], [15], where two classes 
of transitions are defined: exponentially timed transitions, 
which are used to model the random delays associated 
with the execution of activities, and immediate transi- 
tions, which are devoted to the representation of logical 
actions that do not consume time. Immediate transitions 
allow the introduction of branching probabilities, inde- 
pendently of the timing specifications. The possibility of 
specifying branching probabilities was also proposed in 
[ 161 using a simpler but less powerful formulation (prob- 
abilistic arcs). 

The first useful results concerning stochastic Petri nets 
with generally distributed transition delays are due to Du- 
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gan, Trivedi, Geist, and Nicola [16]. In their definition 
of extended stochastic Petri nets (ESPN) they partition 
transitions into three classes: exclusive, competitive. and 
concurrent. Provided that the firing delay of all concurrent 
transitions is exponentially distributed, and that compet- 
itive transitions resample a new firing delay whenever they 
are enabled, ESPN can be mapped onto semi-Markov pro- 
cesses. In [16] the authors also suggest a procedure for 
analyzing acyclic nets in which generally distributed fir- 
ing delays may be associated with concurrent transitions 
as well. The technique can however be used only for the 
transient analysis of models (which are not ergodic due to 
the acyclicity of the net). Moreover, as the authors rec- 
ognize, the analysis becomes too complex for even me- 
dium size nets. 

Using a similar approach, an embedded Markov chain 
technique was later proposed for the analysis of determin- 
istic and stochastic Petri nets (DSPN)  [17]. In this case 
the embedded Markov chain is used for the computation 
of the steady-state solution of nets in which at most one 
concurrent transition associated with a constant delay is 
enabled in any marking. 

Previous works however lack a precise discussion of 
the impact of execution policies on the semantics and 
analysis of stochastic Petri net models with generally dis- 
tributed transition firing delays. In this paper we attempt 
to give a comprehensive definition of stochastic Petri nets 
with generally distributed transition firing times, and dis- 
cuss some possible execution policies as well as the prob- 
lem of specifying such policies at the net level. Phase- 
type distributions [I81 are given special attention due to 
the possibility of accounting for their impact directly at 
the state-space level. 

Only methods for the analytical solution of the stochas- 
tic process underlying the stochastic Petri nets are dis- 
cussed in this paper, and the reader is referred to [ 191 for 
a comprehensive discussion of the tradeoffs between the 
simulative and the analytical solution of probabilistic 
models. The analysis of a stochastic Petri net for the com- 
putation of performance results requires the determination 
of the reachable markings, the construction of the sto- 
chastic process with a state space isomorphic to the Petri 
net reachability graph, and the numerical solution of the 
process. 

The paper is organized as follows. In Section I1 we in- 
troduce the basic notation and definitions. The discussion 
of the possible execution policies and of the related sto- 
chastic processes constitutes the rest of the paper. In Sec- 
tion I11 the race policy is defined, and its semantics is 
examined under different conditions. In Section IV the 
stochastic process derived from the race execution policy 
is investigated. As a further step toward the model solv- 
ability, in Section V the probability distributions associ- 
ated with stochastic Petri net transitions are restricted to 
be of phase type. Under this restriction, an algorithm is 
presented that converts the original non-Markov process 
into a homogeneous Markov chain defined over an ex- 
panded state space. The state expansion is driven by the 

definition of the execution policies and is performed at the 
state space level, rather than at the Petri net level, as pre- 
viously proposed in the literature [ 111, [ 121. Once the ex- 
panded transition graph has been obtained, either the time- 
dependent or the steady-state performance indexes related 
to the original SPN model [20] can be evaluated by solv- 
ing the state probability equations of a Markov chain. An 
illustrative example is presented in Section V-C. In Sec- 
tion VI an execution policy (called preselection) based on 
a time independent selection of the next transition to fire 
is introduced, and its semantics is discussed in several 
cases. Finally, possible ways of implementing the prese- 
lection policy at the process level or at the net level are 
discussed. 

11. NOTATION A N D  BASIC DEFINITIONS 
We begin by recalling some definitions relating to Petri 

net models in order to introduce the notation that will be 
used throughout the paper. It is assumed that the reader 
is familiar with the basic Petri net concepts. 

A Petri net with inhibitor arcs is a tuple N = ( P ,  T ,  I ,  
0, H )  where P = { p , ,  p 2 ,  * . . , pf lp  } is a set of places, 
T = { t l ,  t 2 ,  * * * , t,,,} is a set of transitions, and Z, 0, 
and H denote bags (or multisets) of input, output, and 
inhibition arcs. A marking M of the Petri net N is an np- 
component vector of nonnegative integers M = [ m , ,  m 2 ,  
. . .  , m,,,,] whose ith entry represents the number of to- 
kens contained in place p, .  A marked Petri net is defined 
by the tuple PN = ( N ,  M O )  where MO is the initial mark- 
ing. 

For each transition tk E T, it  is possible to represent the 
input, output, and inhibition bags as three vectors Ik = 

= [hki,  h,,, * ' , hkfl,,], where i, is the number of input 
arcs from place pJ to transition t k ,  and similarly for okI and 

A transition tk is said to be enabled in marking M if and 

and mJ < h, for all j such that h,  > 0. Let E ( M  ) C T 
be the set of transitions enabled in M.  A priority level can 
be associated with each transition ? A ,  so that a transition 
t!, in E ( M )  can fire only if no higher priority transition tI 
is enabled in the same marking. In this way, only transi- 
tions with the highest priority level, grouped in a subset 
E ' (M)ofE(M)area l lowed to f i r e .  Fo ra l l t ! , i nE ' (M)  
we define thejr ing as follows: 

( 4 1 ,  ik2, * . . 5 i!,nplr Ok = [ohl, ok29 * * ' 5 o k f i p l ,  and H k  

hkj . 

only if M L I, ( i .e . ,  iff mJ L i ,  vj = 1, 2 ,  . * 9 n p )  

M - M '  ( 1 )  
where 

M '  = M - t k  t 0,. ( 2 )  
A marking MI is said to be immediately (or one-step) 

reachable from MI if and only if there exists a transition 
th in E ' (M,)  such that M ,  

An execution sequence of a marked Petri net is a se- 
q u e n c e E S = ( M , O , ; ( r , I , , M , I , ) ;  . . *  ; ( t , / ) , M ( / ) ) ;  - . * )  

Notice that, in an execution sequence ES, the sequence of 

M I '  

such that M ( f - l )  -% M ( i )  for any i = 1 ,  2 ,  . . * 3 J .  
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transitions together with the first marking uniquely deter- 
mine the sequence of markings, so that the latter need not 
be explicitly given. The set of all the execution sequences 
starting from the initial marking ( M ( O ,  = M O )  will be de- 
noted by S ( M O ) .  

A marking M,, is said to be reachable from M ,  if and 
only if there exists an execution sequence ES E S (  M O )  in 
which, for some i < k,  M , ,  , = M,, and M ( k )  = M h .  

The reachability set R ( M O )  is the set of all markings 
reachable from MO including MO itself. Due to the finite- 
ness of the net, R ( M O )  is countable, so that it is possible 
towri teR(MO) = { M O , M 1 ,  * e - } .  

The reachability graph R G ( M O )  is defined as the la- 
beled directed graph whose vertices are the elements of 
R ( M O )  and such that for each possible transition firing 
M ,  M, there exists an arc ( i ,  j ) labeled k .  An exe- 
cution sequence ES of a marked Petri net can be viewed 
as an arc progression in R G ( M O ) .  

A timed execution TE of a marked Phl with initial mark- 
ing MO is an execution sequence ES of S (  M O )  augmented 
by a nondecreasing sequence of real values representing 
the epochs of firing of each transition such that consecu- 
tive transitions r ( , ) ,  t ( ,+  I )  in ES, correspond to ordered 
epochs 7, I 7, + I. Thus formally [ 2  11: 

TE = ((70. MO); ( t ( l ) ?  71, M(I))i 

( 3 )  
The time interval [ T,, 7, + I ) between consecutive epochs 
represents the period in which the net sojourns in marking 
M,,  ).  A timed execution TE truncated at the kth epoch rk  
is called the history of the PN up to the kth epoch 7-k and 
is denoted by Z ( k ) .  In the following we always assume 
(without loss of generality) T~ = 0 as initial epoch. 

Our main concern lies in the use of PN for the specifi- 
cation of stochastic models of the behavior of systems. 
We thus focus our attention on the introduction of sto- 
chastic timing in PN models. Since we are considering 
causal systems. we want to be able to describe (at least in 
a probabilistic sense) the future behavior of a system from 
the knowledge of the past history. We thus make the fol- 
lowing assumption. 

Assumprion 1 :  Let Z = Z (  i ) be a history of the PN up 
to the ith epoch, and M = M , , )  be the marking entered 
by firing transition t ( ,  ). We assume that for all i ,  2, and 
M ,  the firing distribution D (x  I M ,  Z ) can be uniquely 
determined in such a way that its kth component is defined 
(interpreted) in the following way: 

D~ (x 1 M ,  z ) = Pr { t,! fires, firing delay I x I M ,  z 1. 
(4  1 

The random variable “firing delay” represents the time 
that elapses from entering M up to the next firing epoch, 
i.e., the time interval 7, + 1-7,. The above distribution must 
be defined over all transitions tk in E ( M  ) so that 

C lim D , ( X ~ M ,  Z )  = I .  ( 5 )  
h n e L ’ ( M )  1 - m  

Note that M is known from 2, but we have explicitly in- 
dicated the dependence on M since in many cases M is 
the only element that actually influences this distribution 
function. 

The probability p k  ( M ,  Z ) of selecting tk to be the next 
transition to fire is obtained as: 

p k ( ~ ,  Z )  = lim D , ( ~ ( M ,  Z) = Pr{rkfires ( M ,  Z }  
.x - m 

and the distribution of the time spent in marking M before 
the next epoch is found as: 

F ( x ( M ,  Z )  = E, D k ( x ) M ,  2 )  
k : t i ~ E  ( M )  

= Pr{firing delay 5 x l M ,  Z } .  ( 7 )  
We can now give the following definition. 

Definition: A stochastic P N ( S P N )  is a marked PN in 
which: 

D1) With any transition th E Tis associated a random 
variable Ok modeling the time needed by the activity rep- 
resented by th to complete. 

D2) Each random variable Ok is characterized by the 
cumulative distribution functions Gk(x I M )  of the firing 
time of the transition in isolation. 

D3) An execution policy is defined for inferring the 
probability measures { Dk (x I M ,  Z ) } on the set of all the 
timed execution sequences TE. The execution policy con- 
sists of two parts: the way in which, for each marking M ,  
a transition that belongs to E ( M  ) is selected to fire, and 
the way in which trace is kept of the past history. 

D4) An initial probability distribution on R ( M O )  is 
defined. 

With the above definition, the set of possible executions 
of an SPN, together with the probability measure induced 
on it by assigning the firing distribution of Assumption 1, 
constitutes a continuous-time discrete-state stochastic 
point process. 

The state space of the stochastic process is not neces- 
sarily isomorphic to the underlying PN reachability graph, 
since the timing constraints superimposed to the firing 
rules may alter the set of possible execution sequences. 
In particular, some of the firing probabilities of (6) might 
reduce to zero, thus raising some subtle probabilistic 
problem. In order to avoid these problems we restrict the 
class of the allowed distribution functions by introducing 
the following assumption. 

Assumpfiofi 2: The probabilities p h ( M ,  Z )  of (6) sat- 
isfy the following condition: 

p k ( M ,  2 )  > 0 V k : r h  E E ’ ( M ) .  ( 8 )  

The definition of SPN together with Assumptions 1 and 
2 guarantee the isomorphism between the stochastic pro- 
cess state space and the reachability graph of the under- 
lying PN.  This isomorphism is a very desirable property, 
since it permits to study the structural properties of the 
model (boundedness, reproducibility, deadlock-freeness, 
invariants, etc.) using classical net theory techniques, in- 
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dependently of the time specification, that only affects the 
SPN performance measures. It should be observed that 
under the firing mechanism assumed in [7]-[9] the iso- 
morphism is not maintained. 

For what concerns the initial probability distribution, 
we assume throughout the paper that the system is in state 
MO at 7 = 0 with probability one. 

111. RACE EXECUTION POLICY 
Recalling the definition of an Sf", the most natural way 

for choosing the next transition to fire, is to select the 
enabled transition whose associated delay is statistically 
the minimum. We call this model race (or concurrent [22]) 
model. In Section VI we shall also introduce a second 
execution policy called preselection. Under this latter 
policy, the choice of the next transition to fire does not 
depend on the time delay of the associated activity, but is 
independently assigned by a probability mass function. A 
combination of race and preselection policies will also be 
considered as a useful generalization for the practical ap- 
plication domain. 

A .  Race SPN Dejinition 

extracted from the joint distribution: 

= Pr{e, I xI, e2 I x2, 

When the net enters marking M ,  a random sample is 

+ ( X I ,  x2, * * ' IM, z) 
- I M ,  Z }  (9)  

where the Ok are random variables representing, for each 
transition tk E E '( M ) ,  the time till firing measured from 
the epoch at which M was entered. The 6k for which the 
sampled value is minimum determines which transition 
will actually fire, and the sojourn time in M equals this 
minimum sampled value. We only consider the case in 
which all random variables e k  are independent, so that (9) 
is uniquely determined by the marginal distributions: 

@ k ( x ( M ,  Z) = Pr{ek I X ~ M ,  z}. ( lo)  
In order to satisfy conditions ( 5 )  and (8), it is sufficient to 
assume that these distribution functions are differentiable 
(at least in the sense of generalized functions), honest dis- 
tributions whose derivative with respect to x is a proba- 
bility density function with infinite support [0,  0 0 ) .  

The kth component of the firing distribution (4) is then 
computed as: 

D k ( x I M ,  2 )  = 

In this case, 

P k ( M ,  z >  = 

and 

F ( x  

835 

M ,  Z )  = 1 - I;: r h E E  II ' ( M )  [ I  - + k ( x I M ,  Z ) ] .  (13) 

For the solution of the model it is necessary to obtain 
the distributions ipk(x  I M ,  Z ) for each transition of the 
SPN, given the G k ( x ,  M ) .  

B. Conditioning on Past History Z 
Different ways for keeping track of the past behavior of 

the net are possible. We consider the following three al- 
ternatives: 

Resampling: The firing distribution { Dk (x 1 M, Z ) } is 
independent of Z ,  but it may depend upon the current 
marking M .  

Age Memory: The firing distribution depends on the 
past history Z through the concept of a work age variable 
associated with each transition t k .  The age variable asso- 
ciated with transition t k  accounts for the work performed 
by the corresponding activity since the time of the last 
firing of the same transition; the kth component Dk (x  I M ,  
Z )  of the firing distribution depends on the distribution 
of the residual time needed for this activity to complete. 

Enabling Memory: The firing distribution depends on 
the past history Z through the concept of an enabling age 
variable associated with each transition t k .  The age vari- 
able associated with transition t k  accounts for the work 
performed by the corresponding activity since the begin- 
ning of the last period during which it has been enabled; 
the kth component Dk (x  1 M ,  Z ) of the firing distribution 
depends on the distribution of the residual time needed 
for this activity to complete. 

The race model with resampling (we shall refer to this 
case as R-R)  can be used to describe the behavior of a set 
of parallel competing activities (modeled by conflicting 
transitions) such that the first one to terminate determines 
a change in the system state. The work performed by those 
activities that do not complete is lost; the only work that 
is relevant for the model is that performed by the activity 
corresponding to the transition that fired leading to a 
change of state of the system. An example might be the 
parallel execution of hypotheses tests. The process that 
terminates first is the one that has verified a hypothesis. 
Those hypotheses whose verification was not completed 
need not be remembered; furthermore, it is not important 
to keep track of the point at which these other tests were 
interrupted since they are not going to be resumed. This 
model appears to be interesting only in the case of con- 
flicting transitions. When we use this model in the case 
of concurrent transitions we easily obtain paradoxical sys- 
tem behaviors [23]. Even if the R-R policy is clearly of 
little interest in practical applications, we considered it  
because this policy was implicitly assumed in previous 
attempts to extend the class of SPN to general time dis- 
tributions in the framework of semi-Markov processes 

The race model with age memory ( R - A )  may be used 
to describe the behavior of a set of simultaneous activities 

[ w ,  1131. 
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such that the first activity to terminate determines a change 
in the system state. In this case, however, the work per- 
formed by those activities that do not complete is not lost. 
This implies that simultaneous activities are such that, 
after the firing of the first transition that completes, they 
will resume from the point at which they were interrupted, 
in the first marking that enables them; they may continue 
in the new state if they are still enabled. An example in 
this case can be provided by a set of tasks in a multipro- 
cessor system that operates in a message passing fashion. 
Once a process completes, it issues a message, and thus 
the system state is changed. The other processes continue 
to execute after the change of state if the corresponding 
transitions are still enabled. Otherwise they will resume, 
in the first marking that enables them, from the point at 
which they were interrupted. This model appears to be 
well suited to represent both cases of conflicting and con- 
current activities. 

The race model with enabling memory (R-E  ) is again 
used to describe the behavior of a set of simultaneous ac- 
tivities such that the first activity that terminates deter- 
mines a change in the system state. In this case the work 
performed by those activities that do not complete is lost, 
unless the transitions to which the activities correspond 
remain enabled in the new marking generated by the 
change of state. An example in this case can be provided 
by the behavior of an alternating bit protocol. Consider 
the activity related to the measure of the timeout between 
the transmission of a packet and its retransmission if no 
acknowledgment arrives. This activity starts when a 
packet is transmitted, and it must continue in all markings 
that enable it, regardless of any change in system state, 
unless it is preempted by the arrival of an acknowledg- 
ment packet. In this case the activity is stopped, and when 
restarted (for a new packet) it must be reinitialized. For 
conflicting transitions R-R and R-E behave identically, 
however R-E allows the modeling of parallel activities 
with preemption disciplines. 

The conditioning on 2 is a property of each single tran- 
sition of the net and an SPN model may contain transitions 
belonging to all the three types of conditioning. 

IV. THE STOCHASTIC PROCESS ASSOCIATED WITH A 

RACE SPN 
The marginal distributions + h ( x l , M ,  2)  of (10) must 

be computed from the individual distributions Gh ( x  I M )  
and from the knowledge of the memory policy associated 
with tk. For this purpose, we attach an age variable aA to 
each transition t h .  The way in which aA accounts for the 
work done by the activity corresponding to transition tA is 
a function of the memory policy: 

Resampling: ah is reset to zero at any change of state. 
Age Memory: ah accounts for the activity performed 

by tk since its last firing. 
Enabling Memory: uh accounts for the activity per- 

formed by tA since the last epoch at which i t  has become 
enabled; it is reset to zero at any change of state that dis- 
ables transition th. 

A. Marking Dependence 
The derivation of the marginal distributions ak(x 1 M ,  

2 ) from the individual firing time distributions Gk ( x  I M ) 
associated with each transition of the net, must account 
for the way in which these last distributions depend on the 
marking of the net. In general the specification of these 
distributions requires an a priori knowledge of the reach- 
ability set of the net. Special cases exist in which the de- 
scription of this marking dependence can be provided at 
the net level. 

In the following we discuss three different cases of 
marking dependence that we consider useful for the spec- 
ification of our models. 

I )  The Individual Distributions Do not Depend on 
Marking: 

G , ( x l M )  = G,(x). (14) 

The marginal distributions in ( I O )  are the residual life 
distributions of tk conditioned on the transition age ah: 

2)  Marking Dependence Through a Scaling Factor: In 
this case ak depends both on the time interval spent in 
each marking in which t k  was enabled without firing and 
on the distribution CA ( x  1 M ) of tk in that particular mark- 
ing. We consider only the possibility that the dependence 
is reflected on the distribution by means of a scaling factor 
P ( M )  > 0, so that 

GA(Xl M )  = P(M 1.). (16) 

As a possible instance of the process, let us suppose that 
transition t k  is first enabled in marking Mil, in which it 
spends x,  time units; then, without firing, it enters mark- 
ing M12.  The age aA of tA in M12 given it has worked xI  
time units in M I I  is computed from the following equa- 
tion: 

where x , P ( M , , )  can be interpreted as a measure of the 
quantity of work performed before the change of state in 
marking M , ,  . 

The marginal distributions in (10) are thus formally ex- 
pressed by an equation similar to (15) where the residual 
life distributions of each transition th at time x is obtained 
by introducing the transition age ak calculated using (17): 

+.,(xIM, 2) 

= * L ( X J X I ,  Mil, x2, MI,, * * e )  = G;(.xJuh). (18)  

3) More General Kind of Marking Dependence: The 
marking dependence discussed above is well suited to 
represent the case of a change of speed in the execution 
of an activity consequent to a change of the net marking. 
More general cases are not difficult to conceive, but are 
difficult to include in a single general framework. This 
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does not mean that they are intractable when the under- 
lying behavior of the net is well understood. For example, 
consider a transition tk with a single input place p I  which 
models the execution of some activity. The net is such 
that if several tokens reside in p I  each one of them rep- 
resents an activity that can proceed in parallel with the 
others ( t r  is an “infinite server” transition that models 
random delays without congestion); the execution policy 
be R-A, and the distribution associated with the activity 
be an Erlang of order 2. Assume now that one token is in 
p I  for some time while the net is in marking M I ,  and that 
some other transition fires changing the marking to MJ 
such that another token enters p I .  The firing distribution 
of th in the newly entered marking must be calculated as 
the distribution of the minimum between the residual fir- 
ing time associated with the activity that was already in 
progress, and the whole activity duration. Thus, while in 
MI the firing distribution is Erlang of order 2, in MJ it has 
a different form, that can be calculated from the knowl- 
edge of the model semantics. 

B. Characterization of the Stochastic Process 
The age variables ah defined above coincide with the 

supplementary variables [24] which make the stochastic 
process Markovian with partly discrete [states in R (  MO)] 
and partly continuous (the Cartesian product of the age 
variables domains) state space. 

In case all transitions of the net are of the R-R type, 
since at any state change all ak are reset to zero, the as- 
sociated process becomes semi-Markov, with one-step 
transition probability matrix Q ( x ) ,  whose entries are 
given by: 

(19)  
Q ( x ~ M ~ )  i fMl - M, L otherwise 

qlJ(x)  = 

with D I ( x I M , )  given by (11). 
It should however be emphasized that the numerical 

calculation of the measures pertinent to the process is quite 
intractable as long as the individual distributions are of 
generic form, even in the semi-Markov process of (19) 
for which closed form expressions exist in the Laplace 
transform domain [25]. 

V. RACE SPN WITH FIRING DISTRIBUTIONS OF PHASE 
TYPE 

When the transition firing distributions are of phase type 
( P H  ) [ 181, the reachability graph RG ( M O )  of the PN can 
be expanded into a discrete-state transition graph over 
which a continuous-time homogeneous Markov chain, 
equivalent to the original non-Markov process, can be de- 
fined. The measures pertinent to the original process can 
then be evaluated by solving the expanded Markov chain. 

PH distributions are the distributions of the time till ab- 
sorption of continuous-time homogeneous Markov chains 
with at least one absorbing state. Their most interesting 
feature, from our point of view, is the representation as 
finite-state Markov chains, that allows a natural discreti- 
zation of the age variable introduced in Section 111. 

The simplest subclasses of PH distributions, like Er- 
lang, hyperexponential (and trivially exponential), are 
commonly encountered in various areas of applied sto- 
chastic modeling. The discussion in this section thus also 
covers the simplest case in which all the Gk(x  I M ) are 
exponential. In this case the stochastic process obtained 
with policies R-R, R-A, and R-E is the same due to the 
memoryless property of the exponential distribution, and 
reduces to a continuous time Markov chain [ 1 I], [ 121 iso- 
morphic to the SPN reachability graph R G (  M O ) .  

PH distributions have been already mentioned, in con- 
nection with SPN models, by Natkin [ 1 I] and Molloy 
[ 121. The suggestion of these authors was to incorporate 
the PH model into the original SPN, by replacing a timed, 
PH distributed, transition with a proper SPN subnetwork 
whose reachability graph yields the Markov graph of the 
given PH distribution. 

This approach suffers from at least two drawbacks. 
First, the complexity of the SPN is artificially increased 
by fictitious nodes (both places and transitions) which do 
not refer to the operation of the system, but only to the 
distributions of the firing times. In the resulting reach- 
ability set the markings representing physical conditions 
of the system are dispersed among markings representing 
the passage of a transition through the succession of ex- 
ponential stages. 

The second drawback is that the proper subnetwork can 
be easily drawn only in the following cases: 

when the transition to be expanded is never enabled 
simultaneously to other transitions; 

when the R-A and R-E policies are used, and the 
transitions to be expanded never happen to be in conflict 
with other transitions. 

In all other cases the subnetwork expansion would re- 
quire the introduction of additional interconnections as we 
shall demonstrate with the following examples. 

A .  Examples of Expansion of PH Distributions at  the 
Net Level 

Consider the SPN of Fig. 1 ,  comprising five places and 
three timed transitions. An Erlang distribution of order 2 
is associated with the two conflicting transitions t l  and t 2 ,  
whereas an exponential distribution is associated with 
transition tj. 

The fact that the SPN graph is not connected should not 
surprise the reader: we wish to provide the simplest pos- 
sible example in which both conflicts and concurrency are 
represented. On the other hand, the SPN of Fig. 1 can be 
viewed as a portion of a larger SPN model. 

The direct expansion at the SPN level of the two non- 
exponential distributions yields the SPN of Figs. 2,  3 ,  and 
4 ,  for the three policies R-A, R-E, and R-R, respectively. 

The SPN of Fig. 2 (R-A policy) comprises nine places 
and five transitions. Four places and two transitions were 
added to the original SPN to represent the two Erlang dis- 
tributions. Transitions t k l  and t12 represent the two expo- 
nential stages of the Erlang distribution associated with 
transition t k .  Places p(,  and p</ are used to guarantee that 
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Fig. 2. Expansion of the S P N  in Fig. 1 in the case of R-A policy. 

Fig. 1 .  Simple example of a stochastic Petri net. Delays associated with 
transitions f ,  and f2 have Erlang distributions, whereas an exponentially 
distributed delay is associated with f,. 

Fig. 3. Expansion of the SPN in Fig. I in the case of R-E policy. 

Fig. 4. Expansion of the SE" in Fig. I in the case of R-R policy 

one token at a time enters the subnet that represents the 
expansion of the Erlang distribution into exponential 
stages. Note that no connection is in this case necessary 
with transition t3 .  

The SPN of Fig. 3 (R-E  policy) still comprises nine 
places, but the number of transitions is increased to seven, 
and many more arcs appear in the net. Transitions tk2 and 
rk3 represent the second exponential stage associated with 
transition t k .  In this case it is necessary to use two differ- 
ent transitions for each second stage since we must reset 
the age variable associated with the conflicting transition 
that did not fire. Also in this case no connection is nec- 
essary with transition r3 .  

The SPN of Fig. 4 (R-R policy ) again comprises nine 
places, but ten transitions must be used in this case. This 

is due to the fact that it is now necessary to connect the 
two separate subnetworks to represent the resampling of 
transitions tl and r2 whenever transition r3 fires. For this 
reason transition r3 splits into four parallel transitions 
whose inputs correspond to the four possible conditions 
of the two Erlang distributions. The firing of any one of 
these four transitions resets the age variables associated 
with the two transitions t ,  and r 2 .  

Obviously, when the individual PH distributions of the 
firing times have order greater than 2 the corresponding 
SPN grows in complexity. When the R-R policy is used 
in the model, the subnetwork expansion is made practi- 
cally impossible by the necessity of properly intercon- 
necting all the subnetworks referring to concurrent tran- 
sitions. In a real system concurrency may arise in any 
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marking in very different locations of the SPN. A priori 
we do not know where concurrency arises before having 
investigated the whole reachability set; thus we are not 
able to expand the SPN, that is to establish the correct 
connections between the subnetworks in any reachable 
marking. 

B. Expansion of PH Distributions at the State Space 
Level 

When needed, the stage expansion is conveniently per- 
formed on the SPN reachability graph R G (  M O ) ,  knowing 
for each transition its PH model which is itself a labeled 
directed graph. 

The only limitation on the PH distributions G k ( x  I M )  
is that they should be given in a canonical form (always 
existing, as shown in [26]) in which there is a single ini- 
tial state (a single state with initial probability equal to 
one) numbered state 1, and a single final absorbing state 
numbered vk + 1, where vk is the order of the PH distri- 

cording to Section IV-A, we have three subcases for each 
tJ E E ’ ( M ) ,  j # k: 

2.1) resampling: w,” = 1 ,  i.e., tJ is reset to its initial 
state; 

2.2) age memory: w,” = w J I ,  i.e., tJ keeps track of 
the stage of firing reached in the former marking; 

2.3) enabling memory: wy = 1 if tJ is no longer en- 
abled in M ’ ,  w,” = wJI if on the contrary, r, is still enabled 
in M ’ .  

We also add an arc with rate X from the original state 
to the new one. 

By repeating the above procedure for each state, we fi- 
nally obtain the expanded transition graph. 

The exact number of states in the expanded process de- 
pends both on the structure of the PN and on the execution 
policy. For the R-R policy this number is given by: 

N 

N,(R-R) = c vk. (20) 
r =  1 k r k e E ‘ ( M , )  

bution associated with fk. A transition t k  is said to fire 
when it reaches the absorbing state uk + 1 in its PH model. 

Each marking of the original reachability graph 
R G ( M o )  is expanded into a group of submarkings to ac- 
count for the possible stage of firing reached by all the 
transitions of the net. Each submarking of M is defined as 

the R-E and RPA the number of states is not easy 
to compute without actually building the expanded graph; 
an upper bound is, however, given by: 

N,(R-E)  I N,(R-A) I N vk. (21) 
k:rk€T  

a pair ( M ;  W ) where W is a vector of n, integers whose 
kth component 1 5 wI I vk represents the stage of firing 
of transition t k .  The pairs ( M ;  W )  are the states of an 
expanded Markov chain equivalent to the original pro- 
cess. With this new notation, the initial state of the pro- 

The connections among the states resulting from the ex- 
pansion are made according to the firing policies used in 
the net. The expansion of the reachability graph can be 
performed automatically by an enumeration algorithm in 
which the various firing policies can be accommodated 
[27]. The equivalence between the Markov chain result- 
ing from the expansion algorithm and the original process 
defined over the reachability graph R G (  M O )  was shown 
in [28]. 

An informal description of the expansion algorithm is 
the following. Assume that a general state ( M ;  W )  cor- 
responding to marking M is such that transition tl  ( E  = 1, 
2, * . *  , n t )  is in stage wl of its PH model. Consider a 
transition t k  enabled in M ,  for each CY such that there exists 
an arc wk + CY (with rate A )  in the PH model of t k ,  we 
generate a new pair ( M ;  W ’ )  with w; = CY and wJI = w, 
f o r j  # k. 

cess is assumed to be ( M O ;  1, . . . , 1 ). 

Two cases may arise: 
1) w; < vk + 1; in this case the pair ( M ;  W ’ )  is a state 

of the process representing the net still being in M ,  but 
with t h  in a different stage of firing. 

2) w[ = uI + 1; this condition represents, by defini- 
tion, the firing of f I .  Therefore, ( M ;  W r )  is renamed as 
( M  ’; W r r )  with M M ’ and W “  dependent upon the 
assumed memory policy of each transition. If t, E ’( M ) 
we have w,” = U;; w;‘ = 1, since, by definition, an ac- 
tivity that ends, restarts from its initial state. Finally, ac- 

This number can be quite large even for small nets; in 
practical cases the actual number of states can be expected 
to be much lower than the bound expressed by (21), how- 
ever, it is not hard to build simple examples in which this 
upper bound is attained. Note that for both R-E and R-A 
cases, the value represented by (20) is a lower bound on 
the number of states after the expansion. 

Once the expanded transition graph has been obtained, 
either the time-dependent or the steady state performance 
indices related to the original SPN model [20] can be eval- 
uated by solving the state probability equations of a Mar- 
kov chain. 

We finally stress that the use of the procedure outlined 
in this section requires only the specification of the SPN, 
and of the PH models for each transition. The subsequent 
steps, which consist of 

the search for the reachability graph; 
the reachability graph expansion; 
the solution of the resulting Markov chain; 
the evaluation of the relevant process measures; 

can be completely automated, thus making transparent to 
the analyst the associated mathematics [27]. 

C .  Example of Construction of the Expanded Markov 
Graph 

As an example, we consider the problem of building 
the expanded Markov graph for a quite simple net, which 
however presents both situations of parallelism and con- 
flict (Fig. 5 ) .  

This net is obtained from that in Fig. 1 ,  by adding tran- 
sitions t4 and f 5 ;  they make the net live, strictly conser- 
vative, and ergodic, so that the steady-state analysis can 
be performed. As before, the firing times of conflicting 
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P. P. 

Fig. 5 .  Simple example of a live, strictly conservative, and ergodic sto- 
chastic Petri net. Delays associated with transitions f ,  and f2 have Erlang 
distributions, whereas exponentially distributed delays are associated with 
all other transitions. 

transitions t ,  and t2 are assumed to have Erlang distribu- 
tions of order 2; the firing times of all other transitions 
have exponential distributions. 

The reachability set of this SPN comprises the 6 mark- 
ings of Table I; Fig. 6 shows the corresponding reach- 
ability graph. 

Applying the expansion algorithm outlined in Section 
V-B, under the assumptions of resampling ( R - R ) ,  en- 
abling memory ( R - E ) ,  and age memory ( R - A ) ,  we ob- 
tain the Markov chains depicted in Figs. 7,  8, 9, respec- 
tively. The nodes of these graphs correspond to states of 
the expanded process, and are labeled ( m ;  wl, w2) where 
m is the number of the marking and wI, w2 represent the 
stage of firing of t ,  and t2,  respectively (note that the stage 
of firing of the other transitions need not be reported, since 
their firing delays have memory-less distributions). 
Dashed lines encase the groups of Markov states corre- 
sponding to the same marking of the net, thus represent- 
ing the same observable state of the system. 

It may be noted that in this example, the graphs for 
cases ( R - R )  and ( R - E )  comprise the same number of 
nodes (12) and of arcs (25), but the connections between 
states are different. The graph for the age memory case 
( R - A )  has instead a larger number of both nodes (16) and 
arcs (30). This is due to the fact that in this case the mark- 
ings in which tl and t2 are not enabled (i.e.,  M 2 ,  M 3 ,  M,, 
and M 6 )  are split in order to keep memory of the stage of 
firing reached by either tl or t 2 .  The number of expanded 
states is however much less than the upper bound given 
by (21) that in this case would be 24. 

The comparison of the state-transition rate diagrams of 
these three cases outlines the qualitative difference among 
the corresponding stochastic processes. The importance 
of this difference can be stressed by assigning numerical 
values to the model parameters. Assume, for instance, that 
a relevant process measure be the sum of the average 
numbers of tokens in places pI and p 2  at steady state. Ta- 
ble I1 presents this measure computed under the three pol- 
icies considered when all firing times have the same aver- 
age value. For the sake of comparison the table also shows 
the value obtained under the simplifying assumption of 
exponential ( E X P )  distributions for tl and t2 for which 
different execution policies lead to the same results. 

Even in this extremely simple case, significant differ- 
ences in the result values can be observed for different 
policies. Note that the difference between the R-R and the 

TABLE 1 
REACHABILITY SET OF THE S f N  I N  F IG.  5 

State 

Fig. 6 .  Reachability graph of the SPN in Fig. 5 .  

-.. .-~---.  

Fig. 7. Markov chain underlying the SPN in Fig. 5 in  the case of the race 
with resampling ( R - R )  policy. 

-. 

Fig. 8 .  Markov chain underlying the SPN in  Fig. 5 in  the case of the race 
with enabling memory ( R - E )  policy. 

R-A cases is quite larger than that between R-A and the 
simplified exponential case. This fact is of particular in- 
terest since the resampling assumption leads to closed 
form results [23] that could suggest its use as an approx- 
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Fig. 9 .  Markov chain underlying the SPN in Fig. 5 in the case of the race 
with age memory ( R - A )  policy. 

TABLE I 1  
S U M  OF THE AVERAGE NUMBER OF TOKENS IN P L A C E S p ,  A N D p Z  IN FIG.  5 

0.6028 
EXP 0.5882 

imation for the other policies. Unfortunately, already from 
this very simple example we can conclude that this is not 
recommendable. Indeed, should the age memory policy 
( R - A )  be the correct representation of the system behav- 
ior, using the resampling policy in order to simplify the 
computations would yield a result much less accurate than 
the one provided by a crude all-exponential approxima- 
tion. 

VI.  PRESELECTION POLICIES 
As already pointed out in the definition of SPN, an ex- 

ecution policy is a set of specifications that allow the se- 
lection of the transition that will actually fire among those 
in E ' ( M ) .  The race policy defines a rule in which such 
a selection is based on transition timing. Other rules can 
be used for the same purpose. It is indeed possible to per- 
form the selection on the basis of additional specifications 
that do not depend on the duration of the activities asso- 
ciated with the transitions that are enabled. One possibil- 
ity is that of defining a probability mass function over the 
set of enabled transitions E ' ( M  ), and of using this func- 
tion to choose the transition that fires next. This policy 
models situations in which different alternatives exist, and 
only one of these is chosen on the basis of time-indepen- 
dent information. The semantics of the model is such that 
the activities with transitions that are enabled, but are not 
preselected, are not executed. This means that the age 
variables associated with these transitions do not in- 
crease. 

A .  Global Preselection Policy 
The idea of preselecting the enabled transition that is 

going to fire next, if applied to all the markings of the net, 
leads to what we call a global preselection policy. In this 

case all the activities represented in the net are serialized, 
allowing in any marking M only one of the enabled activ- 
ities to execute. 

Equation (4), which defines the probability of firing next 
for a certain transition (say transition t k ) ,  can be rewritten 
in the following form: 

Dk(xIM7 z) = p k ( M ,  z ) F h ( x I M ,  2 )  (22) 
where F k ( x  I M ,  Z ) are honest distributions for all tran- 
sitions t k  in E '( M ) and represent the distributions of the 
firing delays conditioned on M ,  Z, and on the fact that t k  
is the transition that will actually fire. In the global pre- 
selection policy, (22) is interpreted as follows: when the 
SPN enters marking M ,  a transition is selected among 
those in E '( M ) according to the probability mass func- 
tion { p k  ( M ,  Z ) } ; the selected transition, say t k ,  will then 
fire after a random delay with distribution Fk (x 1 M ,  Z ). 
Thus the selection of the transition that actually fires does 
not depend upon the associated delay; conversely, once a 
transition is selected, the sojourn time in M does not de- 
pend upon the delays associated with other transitions. 

For the solution of a model which uses this policy it is 
necessary to know for each transition t k  both the proba- 
bility pk ( M ,  Z ) and the distribution Fk (x 1 M ,  Z ). The 
way in which the conditioning on the past history Z is 
accounted for in the analytical formulation of the process 
assumes that in this context the probability measures 
pk ( M ,  Z ) and Fk ( x  I M ,  Z ) are independent of 2, but they 
may depend on the current marking M ;  thus in (13) 
F k ( x ( M ,  Z )  = F k ( x l M )  andpk(M,  Z )  = p k ( M ) .  Fol- 
lowing the classification introduced in Section 111, the 
conditioning upon the past history is in this case implicitly 
assumed of resampling type. 

By definition F k ( x  I M )  = G k ( x  I M ) ;  it thus follows 
that the transition probability matrix among markings can 
be expressed as: 

Pr { Mi + MJ occurs before x 1 Mi at 0 } 

(23) - Ph(Mi)Gk(xlMi)  $Mi Mj - i o  otherwise. 

The stochastic process associated with an SPN with global 
preselection policy is semi-Markov with one-step transi- 
tion probability matrix as in ( 2 3 ) .  

The association of memory with the distribution of the 
age variable (either of type A or E) seems not to extend 
the power of the model [23]. 

The global preselection policy can be used to model a 
set of conflicting activities that cannot be performed in 
parallel. When the system enters a new state, it must 
choose which one of the conflicting activities will be ex- 
ecuted next. Once the choice is made, the selected activ- 
ity is performed until completion, and then the system 
state changes. An example can be provided by a processor 
that must sequentially execute a set of jobs. Once a pro- 
cess is completed, it is necessary to choose which process 
will be executed next. This process is then run until com- 
pletion. 
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B. Local Preselection Policy 
The global preselection policy discussed before, im- 

plies a complete serialization of all the activities de- 
scribed by transitions. No parallelism is thus naturally 
representable in the model. Moreover, the specification 
of the policy requires that the probability mass function 
p k  ( M  ) be given for every possible reachable marking of 
the net. Except for special cases where the mass functions 
pk ( M )  are obtained by default assumptions with doubtful 
modeling power (e.g., assuming that all enabled transi- 
tions may be selected with equal probability), the speci- 
fication of the model is very cumbersome and requires the 
a priori knowledge of the whole reachability set R ( M o )  
of the net. 

A limited use of the preselection policy in conjunction 
with the race policy, may yield models that are easier to 
construct, and that allow a certain degree of parallelism 
to be explicitly represented in the net. For this purpose 
we can assume that the transitions of the net are grouped 
in not necessarily disjoint sets within which a preselection 
policy is applied. We call these sets local preselection 
sets. In a marking that enables transitions belonging to 
these sets, the next transition to fire is identified by se- 
lecting first, with time independent criteria, an enabled 
transition (if there exists one) from each of the sets, and 
then by choosing among the preselected transitions the 
one whose firing delay is minimal. The age variables as- 
sociated with the preselected transitions can be managed 
with any of the policies described for the race case. 

As a possible example of application of such a policy, 
we may consider a multiprocessor system where several 
processing units execute tasks submitted from the outside 
world. Submitted tasks that may belong to classes are al- 
located to the processing units, so that each one of them 
has as many input queues as there are classes of tasks. 
Each processing unit selects the task to be executed next 
from one of its input queues according to a predefined 
rule. Arrivals of new tasks as well as selections of the task 
to be executed and completions of old tasks, modify the 
processing units input queues and hence the system state. 

Such a system may be represented by several submod- 
els, one for each processing unit, comprising one transi- 
tion for each class of tasks. As an example, in the simple 
case of only two different classes of tasks, each process- 
ing unit can be described by a subnet as in Fig. 10, where 
a preselection policy is applied between transitions t l  and 
t2. It is conceivable to assume that a modification of the 
state of a subnet has no influence on the behavior of a 
different subnet. The mutual behavior of the transitions 
preselected in each subnet is that specified by the race 
policy. 

Formally, the local preselection policy can be described 
using the following notation. Let A I ,  ( I  = 1, 2, , R )  
be the Ith local preselection set of transitions such that 

R 

U AI  = T. (24) 
I =  I 

arrivals 

Fig. 10. Representation of a processing unit used by two classes of tasks. 

When the SPN enters marking M we can identify certain 
subsets a l ( M ) ,  ( I  = 1 ,  2, * , R )  such that 

a l ( M )  G A I ,  I = 1, 2, * , R and 
R 

U a , ( M )  = E ‘ ( M ) .  ( 2 5 )  
I =  1 

We can assume that for each set a local preselection prob- 
ability distribution has been defined, so that q; J (  M ,  2 ) 
represents the probability of selecting transition j within 
set a J ( M )  (the j t h  component of the probability distri- 
bution associated with the J th  set of transitions). Then, 
assuming that transition ti belongs to set I ,  (4) can be re- 
written in the following way: 

Di(xJM, 2 )  
n x  r 

* qi / (M,  2 )  &+;(uIM, 2). ( 2 6 )  
For the solution of the model under this policy it is nec- 
essary to know the distributions ak (x I M ,  2 ) for each 
transition of the SPN, and the probability mass functions 
q j J ( M ,  2)  for each set of transitions. 

The dependence of the distributions ak ( x  I M ,  2 ) on 
the past history of the SPN is similar to that described in 
the case of the race policy. The difference is that only the 
history of the local preselection sets to which a given tran- 
sition belongs is relevant to the behavior of the transition 
itself. 

The dependence of the probability mass functions 
qjJ ( M ,  2 ) on the past history of the SPN may be related 
to the states of the local preselection sets through boolean 
choice variables associated with all transitions of the net. 
The modification of these variables can be accomplished 
following different rules. As an example we discuss two 
possible policies named variable and persistent. 

Vuriable: The choice variable associated with transi- 
tion tk accounts for the selection performed when the set 
to which this transition belongs was enabled for the last 
time. Usually all the transitions belonging to a given set 
have their choice variable set to “false.” When the en- 
abling conditions of the transitions belonging to the local 
preselection sets change, the choice variables are reset 
and, if some of the transitions are still enabled, one of 
these transitions is selected as a candidate to fire. Its 
choice variable is turned to “true,” and remains such un- 
til either it succeeds in firing or the enabling conditions 
change again. 
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Persistent: The choice variables are reset, and the se- 
lection is repeated only when the selected transition is dis- 
abled. If the changes in the local state do not disable the 
transition that is currently selected, the selection is re- 
tained. 

Referring to the multiprocessor system example, the 
variable policy corresponds to performing a new choice 
every time a new task joins the input queue of a process- 
ing unit or a task is completed. The activity performed 
while executing a task that is interrupted may be lost or 
not, depending on the work memory policy associated 
with the corresponding transition. The persistent policy, 
instead, implies that a selected task is executed until com- 
pletion independently of possible modifications of the 
processing units input queues. Note that the age variable 
and the choice variable are independent of each other, 
since they refer to two distinct aspects of the execution 
policy. Several combinations are thus possible and mean- 
ingful. 

1) Special Cases: The local preselection policy is ob- 
tained by using the concepts of preselection and race in 
conjunction. By properly defining the local preselection 
sets it is possible to let the local preselection policy de- 
generate into either global preselection or pure race. 

If all the transitions in the SPN are grouped into a single 
local preselection set, the preselection obviously becomes 
global. Note that the choice variables in this case become 
useless since nothing can happen in the net before a pre- 
selected transition actually fires. The behavior is thus im- 
plicitly that specified by the persistent policy. For what 
concerns the work age variable, it was already noticed in 
Section VI-A that global preselection implies the resam- 
pling policy. 

If instead there is a one to one correspondence between 
transitions and local preselection sets, the SPN executes 
as specified by the race policy. Indeed, all enabled tran- 
sitions are selected since any one of them is the only 
member of the corresponding local preselection set, and 
then race with each other. Also in this case the choice 
variables become useless, and the behavior is implicitly 
the one specified by the persistent policy. For what con- 
cerns the modification of the work age variables when 
each local preselection set comprises only one transition, 
the age memory and enabling memory policies corre- 
spond exactly to those specified in the case of pure race. 
The resampling policy is instead not equivalent to the cor- 
responding policy specified in the case of pure race. In- 
deed, when the R-R policy is defined, any change in the 
SPN marking induces a resampling of the distributions of 
the delays associated with all the enabled transitions. In- 
stead, when the resampling policy is defined over an SPN 
with local preselection, a change in the marking induces 
a resampling only for those transitions whose enabling 
conditions have changed (i.e., the markings of their input 
places have either increased or decreased), but not for 
those transitions whose input places were left untouched 
by the marking change. This new type of behavior may 
actually turn out to be more useful from a modeling point 

of view, since it allows interactions only among activities 
that modify each other’s state. 

2) Dejinition of the Local Preselection Sets: General 
rules for the definition of local preselection sets appear 
difficult to establish. The parallelism of the system can 
however serve as a guideline for the specification of such 
sets. Indeed, transitions representing activities that are 
performed in parallel should never belong to the same lo- 
cal preselection set, whereas transitions corresponding to 
activities that are either in conflict or that must be exe- 
cuted in sequence can belong to the same local preselec- 
tion set. 

Moreover, if the SPN model is constructed using a hi- 
erarchical approach, local preselection sets should natu- 
rally be confined to subnets representing refinements of 
objects (places and/or transitions) described in nets of 
higher levels. Indeed, the local preselection policy ap- 
pears to be a very appropriate execution rule for models 
comprising several subnets. Using this policy it is possi- 
ble to guarantee that the changes of state that do not in- 
volve a given subnet, should not influence its behavior. 

C.  Description of the Preselection at the Net Level 

The idea of representing the preselection at the net level 
by separating the selection process from the activity ex- 
ecution has been proposed in the definition of ESPN [ 161. 
In these models the construct of the probabilistic arc al- 
lows the implementation of local preselection among con- 
flicting transitions. The probability distribution, that is 
defined on the set of the output arcs of a transition, can 
be obtained from the SPN structure. 

A different approach for the specification of global and 
local preselection policies at the SPN level is the repre- 
sentation of the probability mass functions according to 
which the preselection is made (the probabilities 
{ Pk ( M  ) } in the case of global preselection and the prob- 
abilities { q , J ( M )  } in the case of local preselection) as a 
branching process that occurs in zero time, separated from 
the activity execution part that consumes time. 

The behavior of an SPN of this type is thus character- 
ized by intermediate states where the preselection takes 
place and that are traversed in zero time. The explicit rep- 
resentation of this branching process at the net level was 
already proposed in the literature in the definition of gen- 
eralized SPN (GSPN) [14], [15] models. 

Even if these models can be used to describe systems 
with preselection, an explicit definition of the local pre- 
selection sets might be preferable because it provides a 
powerful construct that is completely defined at the net 
level. 

VII. CONCLUDING REMARKS 

A formal definition of stochastic Petri nets with gener- 
ally distributed firing times has been presented, and dif- 
ferent semantics of the model have been discussed in con- 
junction with different execution policies. The models 
presented in this paper are a generalization of the various 
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SPN models that were previously proposed in the litera- 
ture. 

Many interesting extensions to the work presented in 
this paper may further increase the SPN modeling capa- 
bilities. For example, one might consider the coloring of 
tokens [29], [30] and the association of timing with other 
network elements besides transitions. Once tokens are la- 
beled, it is also possible to define orderings of tokens in- 
side places [31], and study their impact on the SPN be- 
havior. 

The use of SPN for performance analysis relies heavily 
on the availability of tools automating the solution tech- 
niques described in this paper. In particular, these tools 
should give the user the possibility of describing the net 
graphically, and of defining both the model parameters 
and the interesting performance indices during the net 
specification. All details concerning the construction of 
the reachability graph, the solution of the Markov chain, 
and the computation of the performance results should be 
transparent to the user who only needs to construct the 
model, validate it, and then request its solution. 

Some concluding comments about the use of the models 
introduced in this paper, and about the implementation of 
the different execution policies in practical applications 
are in order. 

A .  Execution Policies and Model Construction 
The definitions of execution policies introduced in this 

paper are very general and the construction of an SPN 
model in this general context may require the specifica- 
tion of a large quantity of additional information besides 
the SPN topology. 

In particular, in the construction of a race SPN model 
the distributions + . k ( ~  I M ,  2 ) should be specified for each 
transition and each possible history, while in the construc- 
tion of a preselection SPN model both the probabilities 
p L ( M ,  2 )  and the distributions Fk(x1 M ,  2)  should be 
specified for each transition and each possible history. 
Even if we have already restricted the possible ways in 
which the process may be conditioned on its past history 
2, the conditioning on M might still be interpreted very 
extensively. In the case of a race SPN, for example, in 
principle it is possible to define a totally new distribution 
+ L  (x 1 M ,  2 ) for each marking M .  Similarly, in the case 
of a preselection policy, different choices may be per- 
formed within identical sets of transitions that are enabled 
by different markings so that both new probabilities p L  ( M ,  
2 ), and distributions F k ( x  I M ,  2 ), may be defined for 
each of these markings. In practice, exploiting the gen- 
erality of the definitions to this extent appears not to be 
desirable. Indeed, the main advantage of using SPN in- 
stead of more traditional Markovian models is the possi- 
bility of describing the behavior of a real system by 
choosing a proper topology and by introducing additional 
specifications without becoming directly involved with the 
details of the underlying stochastic process. 

This implies that the modeler should be able to specify 
all the stochastic parameters of the model before (and 

possibly without) knowing the reachability set. Moreover 
the stochastic behavior of the model should be consistent 
with the qualitative behavior of the underlying PN,  as it 
can be obtained by structural analysis, e.g., local prese- 
lection sets should be restricted to conflicting transitions. 

This observation leads to a somewhat restricted use of 
the execution policies defined before. In the case of the 
race policy, the dependence on the marking must be such 
that only a relatively small set of places may be recog- 
nized as relevant for the definition of each component of 
the firing distribution. The fact that the number of tokens 
in each of these places is not known a priori should not 
hamper the definition of the firing distribution. Indeed, 
these components should all be well defined for each pos- 
sible submarking pertaining to these places. The PN 
boundedness properties as well as a preliminary study of 
other PN structural properties can be of great help in this 
process. In the case of the preselection policy, the defi- 
nition of a valid set of probabilities p k  ( M ,  2 ) requires the 
knowledge of the transitions in E ’ ( M ) .  Whenever the 
SPN model is not trivially small, identifying the set of 
transitions that are simultaneously enabled in each mark- 
ing is a difficult task. For this reason, a local preselection 
policy is normally used. In this case, the user identifies a 
set of transitions that may be in conflict, and defines for 
this set some marking dependent firing probabilities 
q , , ( M ) .  The dependence on the marking should be re- 
stricted to the number of tokens in the places connected 
to the transitions in the local preselection set. 

For what concerns the definition of the distributions 
F k ( x I M ,  2 )  in the case of the preselection policy, we 
may observe that comments similar to those made with 
respect to the dependence of the firing distribution on the 
marking in the case of the race policy apply also in this 
case. 

Drawing on these considerations, a convenient use of 
SPN models should require the user to specify only the 
distributions associated with each activity of the system 
to be modeled, and for each transition some capacity 
function that allows the representation of the parallel ex- 
ecution of identical activities with either “multiple 
server” or ‘‘generalized processor sharing” transitions. 

B. The Use of General Distributions 
The use of general distributions requires a careful anal- 

ysis of the system behavior in order to correctly build the 
graphical model. The use of exponential distributions, in- 
stead, due to their memoryless property, may forgive the 
designer some imperfection in the model construction. In- 
deed, the memoryless property often renders slightly dif- 
ferent models equivalent, making the distinction among 
the various firing policies unessential. However, even if 
an approximate solution of the model is obtained first by 
using only exponential distributions, it is not easy to infer 
from the comparison between the results with exponential 
and general distributions any information on the correct- 
ness of the graphical model. In general it can be even 
difficult to predict whether the performance index to be 
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computed should either increase or decrease when general 

are possible depending on the nature of the distributions 
and of the chosen execution policies. 

The use of PH distributions requires the expansion of 
the SPN reachability set in the construction of the state 

son, WI. Washington, DC: IEEE Computer Society Press. Aug. 
1987, pp. 44-53. distributions are introduced in the model: both behaviors [161 J ,  B. Dugan, K ,  S .  Trivedi, R ,  M ,  Geist ,  and V ,  F, Nicola, .,Ex- 
tended stochastic Petri nets: Applications and analysis,” in Proc. 
Performance ’84, Paris, France, Dec. 1984. 

[I71 M. Ajmone Marsan and G. Chiola, “On Petri nets with deterministic 
and exponential transition firing times,” in Proc. 7th European Work- 
shop Application and Theory of Petri Nets, Oxford, England, June 

space of the stochastic process. The number of states gen- 
erated in this way may be very large; this can be a 

of the exponential growth of the state space of these 

1986. 

timore, MD: Johns Hopkins University Press, 1981. 

uation methodology,” IEEE Trans. Comput., vol. C-33, no. 12, pp. 
1195-1220, Dec. 1984. 

1201 M. Aimone Marsan, A. Bobbio, G. Conte, and A .  Cumani. “Perfor- 

[18] M. F. Neuts, Matrix Geometric Solutions in Stochastic Models. Bal- 

of nonnegligible difficulties, since it Worsens the problem 

models. 

[19] p. Heidelberger and s. S. Lavenberg, “Computer performance eval- 

.~ 
mance analysis of degradable multiprocessor systems using general- 
ized stochastic Petri nets.” IEEE ComDut. Soc. Distributed Process- C .  The Use of Execution Policies 

The race policy provides the means for defining the 
model by simply specifying the distribution function of 
the activity associated with each PN transition considered 
in isolation. The Markovian model can then be automat- 
ically constructed from this specification. 

The implementation of the preselection policy requires 
more caution. The preselection probability functions are 
meaningfully defined on the reachability set and no simple 
but general tool has yet been devised for introducing such 
functions at the net level. Further research in this direc- 
tion is needed and we hope that classical net theory can 
provide useful results for this purpose. 
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