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Abstract

This paper provides a detailed study on discrete phase type (DPH) distributions and its acyclic subclass referred to as
acyclic-DPH (ADPH). Previously not considered similarities and differences between DPH and continuous phase type (CPH)
distributions are investigated and minimal representations, called canonical forms, for the subclass of ADPH distributions are
provided. We investigate the consequences of the recent result about the minimal coefficient of variation of the DPH class [The
minimal coefficient of variation of discrete phase type distributions, in: Proceedings of the Third International Conference
on Matrix-analytic Methods in Stochastic Models, July 2000] and show that below a given order (that is a function of the
expected value) the minimal coefficient of variation of the DPH class is always less than the minimal coefficient of variation
of the CPH class. Since all the previously introduced Phase Type fitting methods were designed for fitting over the CPH class
we provide a DPH fitting method for the first time. The implementation of the DPH fitting algorithm is found to be simple
and stable. The algorithm is tested over a benchmark consisting of 10 different continuous distributions. The error resulted
when a continuous distribution sampled in discrete points is fitted by a DPH is also considered.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Discrete phase type (DPH) distributions have been introduced and formalized in[10], but they have
received little attention in applied stochastic modeling since then, because the main research activity and
application oriented work was addressed towards continuous phase type (CPH) distributions[11].
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However, in recent years a new attention has been devoted to discrete models since it has been observed
that they can be utilized in the numerical solution of non-Markovian processes, or they are more closely
related to physical observations[15,16]. Moreover, new emphasis has been put on discrete stochastic Petri
Nets[5,6,17]. Finally, DPHs may have a wide range of applicability in stochastic models in which random
times must be combined with constant durations. In fact, one of the most interesting property of the DPH
distributions is that they can represent in an exact way a number of distributions with finite support, like the
deterministic and the (discrete) uniform, and hence one can mix inside the same formalism distributions
with finite and infinite support.

In particular, while it is known that the minimal coefficient of variation for the CPH family depends
only on the ordern and is attained by the Erlang distribution[1] (cv = 1/n), it is trivial to show, for the
DPH family, that for any ordern the deterministic distribution withcv = 0 is a member of the family.
Since, the range of applicability of the PH distributions may depend on the range of variability of the
coefficient of variation given the ordern, it is interesting to investigate, for the DPH family, how the
coefficient of variation depends on the model parameters.

The convenience of using the DPH family in applied stochastic modeling has motivated the present
paper whose aim is to investigate more closely the properties of the DPH family and to provide results
that can be profitably exploited for the implementation of an algorithm to estimate the model parameters
given an assigned distribution or a set of experimental points[4].

The DPH representation of a given distribution function is, in general, non-unique[13]and non-minimal.
Hence, we first explore a subclass of the DPH class for which the representation is an acyclic graph
(acyclic-DPH–ADPH) and we show that, similarly to the continuous case[8], the ADPH class admits a
unique minimal representation, called canonical form.

We recall the theorem about the minimal coefficient of variation of the DPH class as a function of
the order and of the mean[18]. This theorem shows that below a given order (that is a function of the
mean) the minimal coefficient of variation of the DPH class is always less than the minimal coefficient
of variation of the CPH class. This result, combined with the well known result of[1] (the minimalcv
for ann-phase CPH distribution is 1/n independent of its mean), offers the possibility of comparing the
applicability of the CPH and DPH families to fit distributions with lowcv.

An algorithm is presented for the estimation of the ADPH model parameters to fit distributions or a set
of experimental data. The algorithm is based on the maximum likelihood (ML) principle. Az-transform
version of the algorithm is derived from the continuous case[3], while a novel time domain version is
provided. It is shown that the time domain algorithm is easier to implement and more stable. The algorithm
is then tested on a benchmark of 10 different continuous distributions that have been already utilized for a
similar study in the continuous case[4]. However, since a continuous distribution needs to be discretized
in order to feed the fitting algorithm, the role of the discretization interval on the performance of the
algorithm and on the goodness of the fit is extensively discussed.

The structure of the paper is as follows.Section 2introduces the basic definitions and notation, and
provides a simple example to emphasize some differences between the CPH and DPH class, differences
that are not evident from a comparative analysis reported for instance in[9]. Section 3derives the
canonical form (and their main properties) for the class of acyclic-DPH (ADPH).Section 4gives the
theorem to describe the minimal coefficient of variation for the DPH class as a function of the order
and of the mean and shows the shape of the structures that realize minimal coefficient of variation.
Section 5presents the ML estimation algorithm, both inz-transform domain and in time domain.Section
6 discusses the role of the discretization interval on the accuracy of the obtainable approximation, while
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Section 7is devoted to present the results of the benchmark analysis. Finally,Section 8concludes the
paper.

2. Definition and notation

A DPH distribution[10,11]is the distribution of the time until absorption in a discrete-state discrete-time
Markov chain (DTMC) withn transient states, and one absorbing state. (The case whenn = ∞ is
not considered in this paper.) If the transient states are numbered 1,2, . . . , n and the absorbing state
is numbered(n + 1), the one-step transition probability matrix of the corresponding DTMC can be
partitioned as

B̂ =
[

B b

0 1

]
,

whereB = [bij ] is the (n × n) matrix grouping the transition probabilities among the transient states,
b = [bi,n+1]T is then-dimensional column vector grouping the probabilities from any state to the absorbing
one, and0 = [0] is the zero vector. SincêB is the transition probability matrix of a DTMC, the following
relation holds:

∑n
j=1 bij = 1 − bi,n+1.

The initial probability vector of the DTMC is an(n + 1)-dimensional vector̂� = [�, αn+1], with∑n
j=1 αj = 1 − αn+1. In the present paper, we only consider the class of DPH distributions for which

αn+1 = 0, but the extension to the case whenαn+1 > 0 is straightforward.
Let τ be the time till absorption into state(n+ 1) in the DTMC. We say thatτ is a DPH r.v. of ordern

and representation(�,B) [11]. Let f(k), F(k) andF(z) be the probability mass, cumulative probability
and probability generating function ofτ, respectively. It follows:

f(k) = Pr{τ = k} = �Bk−1b for k > 0, (1)

F(k) = Pr{τ ≤ k} = �

k−1∑
i=0

Bib = 1 − �Bke, (2)

F(z) = E{zτ} = z�(I − zB)−1b = U(z)

V(z)
= zn + un−1z

n−1 + · · · + u1z+ u0

vnzn + vn−1zn−1 + · · · + v1z+ v0
, (3)

wheree is ann-dimensional column vector with all the entries equal to 1 andI is the(n × n) identity
matrix. A DPH distribution is a non-negative, discrete distribution over{1,2, . . . }.

Since the degree of the denominatorV(z) in (3)equals the ordern, and the degree of the numeratorU(z)

is at mostn. Due to the constraintsu0 = 0 (becausez is a factor of the numerator) and
∑

i ui/
∑

i vi = 1
(becauseF(1) = 1), it turns out that a DPH has at mostNG = 2n− 1 degrees of freedom. However, its
representation hasNF = n2 − n + (n − 1) = n2 − 1 free parameters (n2 − n in matrix B andn − 1 in
vector�). Therefore, the matrix representation is very redundant with respect to the degrees of freedom,
and it is reasonable to look for minimal representations.

2.1. Properties of DPHs different from CPHs

A number of properties of the DPH family have been derived in[10]. Moreover, the DPH family inherits
many properties from the CPH family[9], for which a more extensive literature exists[2,7,12,14].
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However, when DPHs and CPHs are used to approximate general distributions to transform a non-
Markovian process into a DTMC or a CTMC over an expanded state space, a very crucial feature is to
keep the order of the DPH or CPH distributions as low as possible, since the order affects multiplicatively
the size of the expanded state space. Hence, it is very important to establish to what extent the properties
of the family are dependent upon the order.

A well known and general result for CPH distributions[1] is that the squared coefficient of variation
(cv2) of a CPH of ordern is not less than 1/n, and this limit is reached by the continuous Erlang, CE(λ, n),
(or Gamma(λ, n)) distribution of ordern (independently of the parameterλ, and hence independently of
the mean of the distribution).

The simple relation, established in[9], to compare the CPH and DPH classes, preserves the mean but
not the coefficient of variation. Hence, in the case of the DPH family the consideration about the minimal
coefficient of variation requires a more extensive analysis, and it is deferred toSection 4.

However, it is trivial to show that the mentioned property for CPHs does not hold for DPHs. In fact, it
is clear that for any ordern, the DPH with representation(�,B) given by

� = [1,0, . . . ,0], B =




0 1 0 0 . . . 0

0 0 1 0 . . . 0
...

...
...

...
...

0 0 0 0 . . . 0


 , (4)

represents a deterministic time to absorptionτ = n, with cv = 0. Hence for any ordern there exists at
least one DPH withcv = 0. In order to emphasize other differences, we carry on a simple comparative
example on a 2-CPH versus a 2-DPH.

Example 1. Let τC andτD be the CPH and DPH r.v. shown inFig. 1, with representations(�,�) and
(�,B), respectively

� = [1,0], � =
[−λ1 λ1

0 −λ2

]
, � = [1,0], B =

[
1 − β1 β1

0 1− β2

]
.

The meanm, the varianceσ2 and the squared coefficient of variationcv2 of τC andτD are given below:

mC = 1

λ1
+ 1

λ2
, mD = 1

β1
+ 1

β2
, σ2

C = 1

λ2
1

+ 1

λ2
2

, σ2
D = 1

β2
1

− 1

β1
+ 1

β2
2

− 1

β2
,

cv2
C = σ2

C

m2
C

= λ2
1 + λ2

2

(λ1 + λ2)2
, cv2

D = σ2
D

m2
D

= β2
1 − β2

1β2 + β2
2 − β1β

2
2

(β1 + β2)2
. (5)

Fig. 1. Two-state CPH and DPH structures.
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Both distributions are characterized by two free parameters: the CPH by (λ1, λ2), the DPH by (β1, β2).
First, we suppose to fix the value ofλ1 andβ1, and to find the valueλmin

2 andβmin
2 that minimize the

squared coefficient of variation in(5). The valuesλmin
2 andβmin

2 are obtained by equating to 0 the derivative
of cv2 with respect toλ2 andβ2, and are given by

λmin
2 = λ1, βmin

2 = β1(2 + β1)

2 − β1
,

where 0≤ β2, β1 ≤ 1. The minimal coefficient of variation of the CPH structure is obtained when the
parametersλ1 andλ2 are equal, while the DPH structure exhibits the minimal coefficient of variation
when, in general,β1 differs fromβ2.

In order to investigate the dependence of the minimal coefficient of variation with respect to the
mean, let us assume that the two free parameters of the considered structures are(λ2,mC) and(β2,mD).
RearrangingEq. (5), we have

λ1 = λ2

mCλ2 − 1
, β1 = β2

mDβ2 − 1
, cv2

C = 2 − 2mCλ2 +m2
Cλ

2
2

m2
Cλ

2
2

,

cv2
D = 2 − 2mDβ2 −mDβ

2
2 +m2

Dβ
2
2

m2
Dβ

2
2

. (6)

For a given mean (mC andmD), the minimal coefficient of variation is obtained by equating to 0 the
derivative ofcv2 with respect toλ2 andβ2, respectively. It is obtained

λmin
2 = 2

mC
, βmin

2 = 2

mD
,

where as a result of the given initial probability vector [1,0] the meanmD ≥ 2 andβmin
2 ≤ 1. Substituting

this value into(6), we obtain

λ1 = 2

mC
, cv2

C = 1
2, β1 = 2

mD
, cv2

D = 1
2 − 1

mD
.

In the CPH case, the minimal coefficient of variation is obtained (as in the previous case) whenλ1 = λ2

and it is independent of the meanmC. In the DPH case, differently from the previous case, the minimum is
attained whenβ1 = β2 (discrete Erlang distribution DE(2/m,2)), but the value of the minimum depends
on the meanmD.

3. Acyclic-DPHs

Definition 1. A DPH is called acyclic-DPH (ADPH) if its states can be ordered in such a way that matrix
B is an upper triangular matrix.

By Definition 1, a generic ADPH of ordern is characterized byNF = (n2 +3n−2)/2 free parameters
(n(n+ 1)/2 in the upper triangular matrixB andn− 1 in the initial probability vector�).

Definition 1implies that a statei can be directly connected to a statej only if j ≥ i. In an ADPH, each
state is visited only once before absorption. We define anabsorbing path, or simply apath, the sequence
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of states visited from an initial state to the absorbing one. In an ADPH of ordern, the number of paths
is finite and is at most 2n − 1. The length of a path is the (integer) number of states visited via the path
before absorption.

Thekth path,rk, of length� ≤ n, is characterized by a set of indices, representing the states visited
before absorption

rk = (x1, x2, . . . , x�) such that




1 ≤ xj ≤ n ∀j : 1 ≤ j ≤ �,

xj < xj+1 ∀j : 1 ≤ j < �,

bxj,xj+1 > 0 ∀j : 1 ≤ j < �,

bx�,n+1 > 0,

(7)

where the last two conditions mean that in a path any two subsequent indices represent states that are
connected by a direct arc (non-zero entry in theB matrix), and the last index represents a state that
is connected by a direct arc to the absorbing state(n + 1). Note that the path description,rk, defines
explicitly the initial state of the underlying DTMC. The below defined quantities(P(rk),F(z, rk)) are all
conditional to the initial state(x1).

Assuming that the underlying DTMC starts in state with indexx1, the pathrk in (7), occurs with
probability

P(rk) =
�∏

j=1

bxj,xj+1

1 − bxj,xj
, (8)

and the generating function of the time to arrive to the absorbing state through pathrk is

F(z, rk) =
�∏

j=1

(1 − bxj,xj )z

1 − bxj,xj z
. (9)

P(rk) is the product of the probabilities of choosing the consecutive states of the path andF(z, rk)
is the product of the generating functions of the sojourn times spent in the consecutive states of the
path.

Let Li be the set of all the paths starting from statei (i.e., for whichx1 = i). The generating function
of the time to absorption assuming the DTMC starts from statei is

Fi(z) =
∑
rk∈Li

P(rk)F(z, rk),

where it is clear from(8) that
∑

rk∈Li P(rk) = 1.

Corollary 1. The generating function of an ADPH is the mixture of the generating functions of its paths
(see also[8]):

FADPH(z) =
n∑
i=1

αi
∑
rk∈Li

P(rk)F(z, rk). (10)
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Fig. 2. An example of ADPH.

Example 2. Let us consider the ADPH inFig. 2, with representation

� = [ α1 α2 ], B =
[

0.3 0.5

0 0.6

]
. (11)

Three different paths can be identified to reach the absorbing state. The paths are depicted inFig. 3and
have the following structure:

• r1 is a path of length 1 starting from state 1.Eqs. (8) and (9)applied tor1 provide

P(r1) = b13

1 − b11
= 2

7
, F(z, r1) = (1 − b11)z

1 − b11z
= 0.7z

1 − 0.3z
.

• r2 is a path of length 2 starting from state 1.Eqs. (8) and (9)provide

P(r2) = b12

1 − b11

b23

1 − b22
= 5

7
, F(z, r2) = (1 − b11)z

1 − b11z

(1 − b22)z

1 − b22z
= 0.7z

1 − 0.3z

0.4z

1 − 0.6z
.

• r3 is a path of length 1 starting from state 2.Eqs. (8) and (9)provide

P(r3) = b23

1 − b22
= 1, F(z, r3) = (1 − b22)z

1 − b22z
= 0.4z

1 − 0.6z
.

From(9) and fromCorollary 1, it follows that the generating function of the time to absorption does
not depend on the particular order of the geometrically distributed sojourn times. Hence, we can reorder
the eigenvalues (diagonal elements) of the matrixB into a decreasing sequenceq1 ≥ q2 ≥ · · · ≥ qn. For
the sake of convenience, we define the symbolspi = (1 − qi) which represent the exit rate from statei.
Since the sequence of theqi’s is in a decreasing order, the sequence of thepi’s is in an increasing order:
p1 ≤ p2 ≤ · · · ≤ pn.

Fig. 3. Possible paths of the ADPH ofFig. 2.
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Any pathrk can be described as a binary vectoruk = [ui] of lengthn defined over the ordered sequence
of theqi’s. Each entry of the vector is equal to 1 if the corresponding eigenvalueqi is present in the path,
otherwise the entry is equal to 0. Hence, any pathrk of length� has� ones in the vectoruk. With this
representation any path is characterized by a unique binary number 1≤ #uk ≤ 2n − 1.

Definition 2. A pathrk of length� of an ADPH is called abasic path(basic series[8]) if it contains the
� fastest phasesqn−�+1, . . . , qn−1, qn. The binary vector associated to a basic path is called a basic vector
and it contains(n − �) initial 0’s and� terminal 1’s, so that the unique binary number of a basic vector
is #uk = 2� − 1.

Theorem 1. The generating function of a path of an ADPH is a mixture of the generating functions of
its basic paths.

Proof. The following lemma gives the basic relationship to prove the theorem.

Lemma 1. The generating function of a phase with parameterqi can be represented as the mixture of
the generating functions of a phase with parameterqi+1 and a sequence of two phases with parameterqi
andqi+1.

The above lemma is a consequence of the relationship

(1 − qi)z

1 − qiz
= wi

(1 − qi+1)z

1 − qi+1z
+ (1 − wi)

(1 − qi)z

1 − qiz

(1 − qi+1)z

1 − qi+1z
, (12)

wherewi = (1 − qi)/(1 − qi+1), hence 0≤ wi ≤ 1.
A path rk is composed by geometric phases according to its associated binary vectoruk. Starting

from the rightmost component ofuk which is not ordered as a basic path (Definition 2), the application
of (12) splits the path into two paths which are enriched in components with higher indices. Repeated
application of(12) can transform any path in a mixture of basic paths. Cumani[8] has provided an
algorithm which performs the transformation of any path into a mixture of basic paths in a finite number of
steps.

Example 3. Let n = 5 and letrk be a path of length� = 2 characterized by the binary vectoruk =
[0,1,0,1,0] (corresponding to the phases with parametersq2 andq4). By applyingLemma 1to the
rightmost phase ofrk (phase 4), the associated binary vectoruk can be decomposed in a mixture of two
binary vectors one containing phase 5 and the second one containing the sequence of phases (4,5). Thus
the original path is split into the mixture of the following two paths:

uk = [0,1,0,1,0] ⇒
{

[0,1,0,0,1],

[0,1,0,1,1].

Now for each obtained binary vector, we take the rightmost phase which is not already ordered in
a basic path, and we decompose the corresponding path into two paths according toEq. (12). The
complete decomposition tree is shown next, where all the final binary vectors are basic vectors according
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Fig. 4. Canonical form CF1.

to Definition 2:

uk = [0,1,0,1,0] ⇒




[0,1,0,0,1]




[0,0,1,0,1]

{
[0,0,0,1,1]

[0,0,1,1,1]

[0,1,1,0,1]


 [0,1,0,1,1]

{
[0,0,1,1,1]

[0,1,1,1,1]
[0,1,1,1,1]

[0,1,0,1,1]

{
[0,0,1,1,1]

[0,1,1,1,1]

Corollary 2 (Canonical form CF1).Any ADPH has a unique representation as a mixture of basic paths
called canonical form1 (CF1). The DTMC associated to the CF1 is given inFig. 4, and its matrix
representation(a,P) takes the form:

a = [a1, a2, . . . , an], P =



q1 p1 0 0 . . . 0

0 q2 p2 0 . . . 0
...

...
...

...
...

0 0 0 0 . . . qn


 (13)

with
∑n

1 ai = 1 andp1 ≤ p2 ≤ · · · ≤ pn.

Proof. The corollary is a direct consequence ofTheorem 1. �

Due to the particular structure of the matrix in(13), the relevant elements can be stored into an
n-dimensional vectorp containing thepi’s, so that we will use the notation(a,p) as the representation
of a CF1, wherea andp aren-dimensional vectors (where 0≤ ai ≤ 1,0< pi ≤ 1).

Example 4. The transformation of the ADPH ofFig. 2 into the canonical form CF1 proceeds along
the following steps. We first order the eigenvalues of the matrixB into a decreasing sequence to obtain:
q1 = b22 = 0.6 andq2 = b11 = 0.3 with q1 ≥ q2. Then, any path is assigned its characteristic binary
vector. If the binary vector is not in basic form, each path is transformed into a mixture of basic paths by
repeated application of(12), along the line shown inExample 3. Since the ADPH ofFig. 2 is of order
n = 2, we have two basic pathsb1 = [0,1] andb2 = [1,1].

Pathr1. The associated binary vector isu1 = [0,1] and is coincident with the basic pathb1. Hence

F(z, r1) = F(z,b1).
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Fig. 5. Transformation of the pathr3.

Pathr2. The associated binary vector isu2 = [1,1] and is coincident with the basic pathb2. Hence

F(z, r2) = F(z,b2).

Pathr3. The associated binary vector isu3 = [1,0] and is not a basic path. Hence,r3 must be transformed
in a mixture of basic paths as shown inFig. 5. Application of(12)provides

F(z, r3) = w1F(z,b1)+ (1 − w1)F(z,b2)

with w1 = p1/p2 = 4/7.

The generating function of the ADPH can be finally written as

F(z)= α1[P(r1)F(z, r1)+ P(r2)F(z, r2)] + α2P(r3)F(z, r3)

= α1P(r1)F(z,b1)+ α1P(r2)F(z,b2)+ α2P(r3)w1F(z,b1)+ α2P(r3)(1 − w1)F(z,b2).

(14)

Eq. (14)can be rearranged in the following CF1 form, witha1 = (2
7α1 + 4

7α2), anda2 = (5
7α1 + 3

7α2):

F(z) = a1F(z,b1)+ a2F(z,b2). (15)

The DTMC associated to the obtained CF1 is depicted inFig. 6, and its representation is

a = [ a1 a2 ], p = [ 0.4 0.7 ]. (16)

3.1. Properties of canonical forms

Property 1. The CF1 is a minimal representation of an ADPH.

In fact, the number of free parameters of a CF1-ADPH of ordern isNF = 2n− 1 and is equal to the
number of degrees of freedomNG computed from(3).

Fig. 6. Canonical form of the ADPH ofFig. 2.
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Given a canonical form CF1 of ordern and representation(a,p) (Fig. 4), the mean, the second moment
and the probability generating function are expressed as

m =
n∑
i=1

ai

n∑
j=i

1

pj
, (17)

d =
n∑
i=1

ai


 n∑

j=i

(
1

p2
j

− 1

pj

)
+

 n∑

j=i

1

pj




2

 , (18)

F(z) =
n∑
i=1

ai

n∏
j=i

pjz

1 − (1 − pj)z
. (19)

Even if the canonical form CF1 is the simplest minimal form to use in computations, sometimes it can
be more convenient to have a minimal representation in which the initial probability is concentrated in
the first state. Borrowing terminology from the continuous case[8], we define the following.

Definition 3 (Canonical form CF2). An ADPH is in canonical form CF2 (Fig. 7) if transitions are possible
from phase 1 to all the other phases (including the absorbing one), and from phasei (2 ≤ i ≤ n) to phase
i itself andi+ 1. The initial probability is 1 for phasei = 1 and 0 for any phasei �= 1.

The matrix representation of the canonical form CF2 is

� = [ 1 0 · · · 0 ], B =



qn c1 c2 c3 · · · cn−1

0 q1 p1 0 · · · 0
...

...
...

...
...

0 0 0 0 · · · qn−1


 . (20)

It is trivial to verify that CF2 is a minimal form and that the equivalence of distributions of the time to
absorption between CF1 and CF2 is established by the following relationship:

ck = akpn. (21)

Definition 4 (Canonical form CF3). An ADPH is in canonical form CF3 (Fig. 8) if from any phasei
(1 ≤ i ≤ n) transitions are possible to phasei itself, i+ 1 andn+ 1. The initial probability is 1 for phase
i = 1 and 0 for any phasei �= 1.

Fig. 7. Canonical form CF2.
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Fig. 8. Canonical form CF3.

The matrix representation of CF3 is

� = [ 1 0 · · · 0 ], B =




qn e′n 0 0 · · · 0 0

0 qn−1 e′n−1 0 · · · 0 0
...

...
...

...
...

0 0 0 0 · · · q2 e′2
0 0 0 0 · · · 0 q1



. (22)

It is also easy to verify that CF3 is a minimal form and that the equivalence of the distribution of the time
to absorption between CF1 and CF3 is established by

si =
i∑

j=1

aj, e′i = ai

si
pi, ei = si−1

si
pi.

In CF3 the phases are ordered according to decreasing sojourn time. A path through the lasti phases of
a CF1 is represented by a path through the firsti phases and a jump to the absorbing state in CF3.

4. Comparing the minimal coefficient of variation for CPH and DPH

It has been shown inSection 2.1, that a deterministic distribution withcv = 0 is a member of the
DPH as well as the ADPH class(4), and moreover that the minimalcv depends on the mean. Since the
flexibility in approximating a given distribution function may depend on the range of variability of the
coefficient of variation, in this section we compare the CPH and DPH families from the point of minimal
coefficient of variation. For this purpose we recall the theorem that describes the minimal coefficient of
variation for the DPH class[18].

To state the theorem, the following notation is introduced.τn(m) is a DPH of ordernwith meanm. Given
a real numberx, defineI(x) = �x� the integer part ofx andR(x) the fractional part ofx, respectively,
i.e.,x = I(x)+ R(x), 0 ≤ R(x) < 1.

Theorem 2. The minimal squared coefficient of variation, cv2
min, of a DPH r.v.τn(m) of order n with

mean m is

cv2
min(τn(m)) =



R(m)(1 − R(m))

m2
if m ≤ n,

1

n
− 1

m
if m > n.

(23)
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Fig. 9. MDPH withm ≤ n.

The DPH which exhibits this minimal cv2 is referred to as MDPH, and has the following structure(in
CF1 form):

• if m ≤ n: pi = 1, ∀i and the non-zero initial probabilities arean−I(m) = R(m) and an−I(m)+1 =
1 − R(m) (Fig. 9);

• if m > n: pi = n/m, ∀i and the only non-zero initial probability isa1 = 1 (discrete Erlang distribution
DE(n/m, n)) (Fig. 10).

Comment. The MDPH structure is uniquely specified given the ordern and the meanm. The MDPH
structure withm ≤ n is the mixture of two deterministic CF1-ADPHs with lengthI(m) + 1 and initial
probabilityR(m) and with lengthI(m) and initial probability 1− R(m). This structure derives from the
following identity: if x is real,x = R(x)(I(x)+1)+(1−R(x))I(x). Hence, form ≤ n, the corresponding
MDPH structure has an effective orderI(m)+ 1, being the initial probabilities from state 1 ton− I(m)

equal to 0. Hence, in contrast with the continuous case, increasing the order beyondn > m does not have
any effect on the minimalcv. The casem > n is more similar to the CPH case, and tends to be equal to
the CPH case asm → ∞.

Theorem 2, combined with the well known result of[1] (the minimalcv2 for a CPH of ordern is equal
to 1/n independent of its mean), offers the possibility of comparing the variability of the CPH and DPH
families.

For fixedm, as the ordern increases beyondn > m the minimal cv2 of the DPH remains un-
changed, while the minimalcv2 of the CPH decreases as 1/n. Hence, givenm a valuen = nC can
be found, such that the minimalcv2 of the CPH of ordernC is less or equal then the minimalcv2 of
the DPH of the same order. RecallingEq. (23), the value ofnC is the smallest positive integer which
satisfies

1

nC
<
R(m)(1 − R(m))

m2
. (24)

It is clear from(24) that ifm is integer,R(m) = 0 andnC → ∞. Using the relationm = I(m)+ R(m),
in Eq. (24), we can find the value ofR(m) that minimizes(24), for any positive integerI(m), and the
corresponding minimal value ofnC.

Fig. 10. MDPH withm > n.
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Table 1
Values ofnCmin as a function of the integer part of the meanI(m)

I(m) nCmin

1 8
2 24
3 48
4 80
5 120

Setting the derivative ofnC with respect toR(m) to zero withI(m) = constant, we get

dnC

dR(m)
= 0 iff R(m) = I(m)

1 + 2I(m)
.

From which the minimal value ofnC, corresponding to any mean with integer part equal toI(m), is given
by

nCmin = 4I(m)(1 + I(m)) (25)

FromEq. (25)we can getTable 1which gives us the minimal ordernCmin as a function of the integer part
of the meanI(m) for which the CPH class provides a minimalcv2 less than the DPH of the same order.

Example 5. Fig. 11shows the minimalcv2 as a function of the number of phases for the DPH family
versus the CPH family, when the mean ism = 4.5. (Note that inFig. 11,m < n whenn ≥ 5.) According
to Theorem 2the minimalcv2 for the DPH class remains unchanged (cv2

min = 1/81) forn ≥ 5, while the
the minimalcv2 for the CPH class (cv2

min = 1/n) decreases to 0 asn → ∞.
Application ofEq. (25)tells us that ifI(m) = 4 (i.e., the mean is any value 4≤ m < 5), the minimal

number of phases for which the CPH has acv2 less than the DPH isnCmin = 80, corresponding to a mean
m = 4.444· · · .

Fig. 11. Minimal squared coefficient of variation form = 4.5.
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Fig. 12. Minimal squared coefficient of variation forn = 5.

Let us now consider the dual case, in which we fix the ordern. We already know fromTable 1that ifn <
nCmin no CPH can have a minimalcv2 less than the DPH. However, ifm increases with fixedn, we arrive
in a situation in whichm > n, and applying the second part of(23)we see thatcv2

min → 1/n asm → ∞.
Hence, asm increases, the behavior of the DPH class tends to be similar to the one of the CPH class.

Example 6. Fig. 12shows the minimalcv2 as a function of the mean for a DPH of ordern = 5. Note
that form ≤ n(= 5), cv2

min equals zero for anym integer, andcv2
min tends to the value of the CPH class

(1/n) asm → ∞.

5. A fitting algorithm for parameter estimation

We describe a fitting algorithm for estimating the parameters of an ADPH in CF1 form, based on
the ML principle[3,4]. We first derive the closed form expression for the pmf both in thez-transform
domain and in the time domain, and for its derivatives with respect to the model parameters, then the
implemented ML estimation algorithm is briefly sketched. The range of applicability of both techniques
is finally discussed.

5.1. The probability mass function

The generating function of a CF1-ADPH withn phases and representation(a,p) is provided in(19)
and may be written as

F(z) =
n∑
i=1

aiF
(i)(z), (26)
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whereF(i) is the generating function of a path of length(n− i+1) from phasei to (n+1), and is given by

F(i)(z) =
n∏
k=i

1 − qk

z−1 − qk
. (27)

Let σi (σi ≤ n − i + 1) denote the number of distinct eigenvalues out of the set{qi, qi+1, . . . , qn} and
let us further denote by(q̂(i)1 , q̂

(i)

2 , . . . , q̂
(i)
σi
) theσi-dimensional vector of the distinct eigenvalues and by

(m̂
(i)

1 , m̂
(i)

2 , . . . , m̂
(i)
σi
) the vector of their multiplicities. With this notations,m̂(i)

j is the multiplicity of q̂(i)j
and

∑σi
j=1 m̂

(i)
j = n− 1 + i. Eq. (27)can be rewritten as

F(i)(z) =
σi∏
j=1

(1 − q̂
(i)
j )

m̂
(i)
j

(z−1 − q̂
(i)
j )

m̂
(i)
j

.

After a partial fraction decomposition, we have

F(i)(z) =
σi∑
j=1

m̂
(i)
j∑

l=1

c
(i)

jl

(z−1 − q̂
(i)
j )

l
=

σi∑
j=1

m̂
(i)
j∑

l=1

c
(i)

jl z
l

(1 − q̂
(i)
j z)

l
, (28)

wherec(i)jl (j ∈ {1,2, . . . , σi} andl ∈ {1,2, . . . , m̂(i)
j }) are coefficients determined by the partial fraction

decomposition. In[3], a recursive algorithm is proposed for the computation of the coefficientsc
(i)

jl .
Using the fact that thez-transform of a series like

h(k) =



0 if 0 ≤ k < l,

c
(k − 1)(k − 2) · · · (k − (l− 1))

(l− 1)!
qk−l if k ≥ l ≥ 2,

is

H(z) = czl

(1 − qz)l

(h(k) is the geometric series forl = 1), the inverse of(28) is

f (i)(k) =
σi∑
j=1


c(i)j1(q̂(i)j )k−1 +

m̂
(i)
j∑

l=2

c
(i)

jl

(k − 1)(k − 2) · · · (k − (l− 1))

(l− 1)!
(q̂
(i)
j )

k−l


 , k ≥ 1, (29)

which is the conditional pmf of absorption ink steps in state(n+ 1) assuming that the chain started from
phasei. Applying (26), the unconditional pmf of absorption ink steps becomes

f(k) =
n∑
i=1

aif
(i)(k). (30)

In the time domain, the pmf of the time to absorption is obtained from(1)

f(k) = aPk−1pn, (31)

wherea andP are given in(13), andpn is an-dimensional column vector whose firstn− 1 elements are
equal to 0, and thenth element is equal topn.
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5.2. The derivatives of the probability mass function

In order to solve the non-linear constrained optimization problem that arises from the application of the
ML principle (seeSection 5.3), the derivatives of the pmf with respect to the parameters(a,p) are needed.
Because the pmf depends linearly on the entries ofa, the derivatives with respect to these parameters are
immediate. In order to express the derivative of the pmf with respect topj, we rearrange(19):

F(z) = 0
pj

z−1 − 1 + pj

j∑
i=1

ai

n∏
k=i,k �=j

pk

z−1 − qk
+

n∑
i=j+1

ai

n∏
k=i

pk

z−1 − qk
, (32)

where the second term of the r.h.s. does not depend onpj. The derivative of(32)with respect topj is

∂F(z)

∂pj
=
[

1

z−1 − qj
− pj

(z−1 − qj)2

] j∑
i=1

ai

n∏
k=i,k �=j

pk

z−1 − qk

= 1

pj

[
j∑
i=1

aiF
(i)(z)− pj

z−1 − qj

j∑
i=1

aiF
(i)(z)

]
, (33)

whereF(i)(z) is given in(27). The second term in the r.h.s. may be interpreted as the generating function
of a CF1-like model that is obtained by adding one further phase, with exit probabilitypj, and null initial
probability (Fig. 13) to the original CF1 model. Hence, any algorithm that can be used to evaluate the CF1
structure ofFig. 4, can be utilized to evaluate the derivatives with respect to thep factors as inFig. 13.

Using the partial fraction decomposition method, the coefficients of the augmented model ofFig. 13,
may be calculated by iterating the same recursive algorithm described earlier[3], just one step more.

Using the matrix formulation(31), the time domain equivalent of(33)becomes

∂f(k)

∂pj
= 1

pj
[âPk−1pn − â∗(P∗

j )
k−1p∗

n+1], (34)

whereâ (â∗) is a row vector of lengthn (n+1) with elementŝai = â∗
i = ai if 1 ≤ i ≤ j, andâi = â∗

i = 0
otherwise,p∗

n+1 is a column vector of lengthn+ 1 with elementsp∗
i = 0 if 1 ≤ i ≤ n, p∗

n+1 = pj, and

P∗
j =




1 − p1 p1 · · · 0

0 1− p2 p2 · · · 0

· · · · · · 0

0 · · · · · · 1 − pn pn

0 · · · · · · 0 1− pj




Fig. 13. Structure used to determine the derivative with respect topj.
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is the transition probability matrix that is obtained by adding one more transient phase to the original
CF1 structure as inFig. 13.

SinceP andP∗
j (j = 1, . . . , n) are upper triangular matrices whose only non-zero elements are located

in the main diagonal or in the first (upper) subdiagonal the numerical solution ofEqs. (31) and (34)does
not require the complexity of a general vector matrix multiplication algorithm.

5.3. ML estimation

Let � = φ1, . . . , φν be a set ofν integer data samples. Values in� may derive from experimental
observations or from the discretization of a continuous cdf. Let us denoteā andp̄ the ML estimators of
a andp, respectively. The likelihood function has the form

L(�, a,p) =
ν∏
i=1

f(φi, a,p).

The estimation problem consists of finding the parameters(ā, p̄) such that the likelihood function
L(�, ā, p̄) is maximal, under the constraints of the CF1 form

• 0 ≤ p1 ≤ p2 ≤ · · · ≤ pn ≤ 1,
• ai ≥ 0,

∑n
i=1 ai = 1.

The estimation problem is then formulated in terms of a non-linear constrained optimization problem,
that is solved by resorting to an iterative application of a linear programming algorithm. The logarithm of
the likelihood function is linearized around the current point by means of a first order series expansion:

logL(�, a +2,p +2) = logL(�, a,p)+ ∂ logL(�, a,p)
∂a

2aT + ∂ logL(�, a,p)
∂p

2pT. (35)

Given an initial guessa0,p0,L(�, a,p) is linearized according to(35)and linear programming is used to
find the maximum of the linearized function inside a small box arounda0,p0 according to the constraints.
The solution of this step is used as the initial guess in the subsequent step of the iterative procedure,
and the procedure is iterated until a preassigned tolerance level is reached or the maximum number of
iterations is exceeded.

5.4. Comparison of the algorithms

The z-transform algorithm is based on a partial fraction decomposition method applied toEqs. (27)
and (28)for the computation of the pmf, and toEq. (33)for the computation of the derivatives. The most
time consuming and unstable part of the algorithm is the evaluation of the coefficientsc

(i)

jl in (28). The
instability comes from the fact that when two eigenvalues tend to be equal, the associated coefficients grow
unboundedly, and when the eigenvalues are coincident the expression of the partial fraction expansion
changes.

During the iterative estimation procedure thep parameters may become closer, and a criterion should be
set to decide whether two close eigenvalues are “coincident” and to modify the partial fraction expansion
accordingly. Practically, a small quantityε is assigned, and when the difference between two eigenvalues
becomes less thanε, they are considered to be coincident. However, this procedure introduces numerical
instabilities and inaccuracies.
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Once the coefficientsc(i)jl are determined, the evaluation of the pmf and of its derivatives even for a
largek can be done recursively at a very low computational cost.

On the other hand, using the time domain analysis, the pmf is evaluated throughEq. (31)while the
derivatives are evaluated throughEq. (34). The solution of both equations requires a vector matrix mul-
tiplication that must be replicatedk times. Due, however, to the very special and sparse structure of the
involved matrices and vectors a very specialized algorithm can be used. Moreover, since all the entries in
the vectors and matrices are non-negative numbers less than 1, the vector matrix multiplication remains
very stable for any value ofk. Of course, in this case, the complexity of the algorithm increases with
k. Hence, the time domain algorithm is much simpler to be implemented, more stable and faster. Only
when the time spank over which the solution is required becomes very high, the use of thez-transform
algorithm may be justified.

We have implemented and experimented both algorithms, but, since the time domain computation
proved to be more applicable for high number of phases, the results we show in the next section are all
obtained by means of the time domain algorithm.

6. Approximating continuous distributions

When using ADPH distributions to approximate random variables arising in practical problems, there
are cases in which a discrete sample of data points is directly derived from the application. But there are
also cases in which the distributions to be approximated are not discrete. For example, ADPH distributions
can be utilized to approximate continuous distributions.

The ADPH approximation of a continuous distribution requires two steps:

(1) The distribution is discretized according to a given discretization step. Indeed, discrete samples and
associated mass probability values are generated.

(2) The ADPH estimation algorithm is run over the discrete sample provided in the previous step.

The discretization of a continuous distribution is a delicate step that introduces errors, and the amplitude
of the introduced errors is mainly related to the size of the discretization interval. Therefore, the role of the
discretization interval and its impact on the goodness of fit of DPH estimation algorithms is investigated
in the following sections.

6.1. The role of the discretization interval

There are several ways to “discretize” a general distribution, i.e., to assign a probability mass to the
elements of a discrete, finite (ordered) setS = {x1, x2, x3, . . . } (wherex1 < x2 < x3 < · · · ). The
most common case of discretization is when the elements of the discrete set are integer multiples of a
discretization interval (δ), i.e.,xi = iδ.

Given a r.v.X whose cdf isFX(x), a simple rule for discretizingFX(x) over the discrete setS =
{x1, x2, x3, . . . } is to use the following:

pi = FX

(
xi + xi+1

2

)
− FX

(
xi−1 + xi

2

)
, i > 1, and p1 = FX

(
x1 + x2

2

)
, (36)

wherepi is the probability associated withxi. This discretization does not preserve the moments of the
distribution.
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Since there are various potential ways to discretize a given distribution function, here we try to provide
some general guidelines.

In general, the smaller is the discretization interval the closer is the discretized distribution to the
original one. Hence, on the one hand, the discretization error decreases by decreasing the discretization
interval: this remark suggests the use of a smallδ. On the other hand, the discretization interval changes
the scale of the representation. Indeed, letX be the original (non-negative) random variable expressed in
a natural time unit (e.g., seconds); its discretized counterpartXd is expressed inδ unit. For any reasonable
discretization procedure, we must have

E(Xi) ∼ δiE(Xi
d), i ≥ 1, (37)

beingE(Xi) andE(Xi
d) theith moment ofX andXi

d, respectively.
Eq. (37)shows that a discretization procedure modifies the mean of the distribution(E(X) ∼ δE(Xd))

(since the mean of the discretized distribution isδ times lower than the mean of the original distribution),
but leaves (almost) unchanged its coefficient of variation (cv(X) ∼ cv(Xd)). Since the minimalcv of a
DPH distribution is a function of its mean the chosen discretization interval may play a significant role
in the variability of the DPH and, hence, in the goodness of the fit.

6.1.1. Bounds of the discretization interval
The following considerations provide practical upper and lower bounds to guide in the choice of a

suitable discretization intervalδ, and are mainly based on the dependence of the minimal coefficient of
variation of an ADPH on the ordern and on the meanm.

Since we only consider DPH distributions with no mass at zero, the mean of any DPH distribution is
greater than 1, which means that,δ should be less thanE(X). However, given the number of phasesn, in
order to completely exploit the flexibility associated with then phases, a better upper bound is

δ ≤ E(X)

n− 1
. (38)

If the squared coefficient of variation of the distribution to be approximated (cv2(Xd)) is greater than 1/n
(i.e.,cv2(X) ∼ cv2(Xd) > 1/n), any small value ofδ provides a suitable discretization interval. Instead,
if cv2(X) ∼ cv2(Xd) ≤ 1/n, in order to allow the ADPH to reach this low coefficient of variation (lower
than the bound of any CPH as established in[1]), δ should satisfy the following relation:

δ >

(
1

n
− cv2(X)

)
E(X), (39)

based on the theorem about the minimalcv of ADPH distributions (Section 4).
The effect on the goodness of the attainable approximation of different discretization intervals (δ) is

illustrated utilizing a Lognormal distribution with parameters (1, 0.2), whose mean is 1 andcv2 is 0.0408
(this Lognormal distribution is the test case L3 of the benchmark considered inSection 7).

Fig. 14reports the discretized Lognormal distribution together with the best fit ADPHs of ordern = 2,
4, 8, 12 and 16 (only forδ = 0.025) obtained applying the ML algorithm, for two different values of
the discretization intervalδ = 0.05 andδ = 0.025. The discretized mass of the continuous Lognormal
distribution atkδ is (F(kδ) − F((k − 1)δ))/δ, whereF(t) is the cdf of the Lognormal distribution. Note
that the discretized distribution is a function of the discretization interval. The lower and upper bounds
of δ, computed fromEqs. (38) and (39), are reported inTable 2as a function of the order of the ADPH
(the same ordersn = 2, 4, 8, 12 as inFig. 14are used).
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Fig. 14. Effect of changing the discretization step.

Table 2
Upper and lower bound forδ as a function of the order

n Lower bound ofδ Eq. (39) Upper bound ofδ Eq. (38)

4 0.2092 0.333
8 0.0842 0.1429

12 0.0425 0.0909
16 0.0217 0.0667
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Fig. 15. DPHs with different discretization steps vs. CPH.

In Fig. 14, it can be seen that whenδ is less than its lower bound the required lowcv cannot be attained;
while whenδ is in the proper range (e.g.,n = 12; δ = 0.05 andn = 16; δ = 0.025) a reasonably good
fit is obtained.

Fig. 15depicts the cdf and the pmf of three PH distributions approximating distribution L3 using differ-
ent discretization steps (0.1,0.05,0.025). The figure shows the cdf and the pdf of the original distribution
and the approximating CPH as well. (When plotting the pmf the probabilities of the approximating PH
distributions are multiplied by 1/δ in order to have the values in the same range. This is done to illus-
trate in a single figure how the mass functions with different discretization steps follow the shape of the
original continuous curve and where the CPH approximation is located compared to them.) All the PH
distributions have eight phases. Having 0.1 as discretization step eight phases are enough to capture the
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Table 3
Minimal number of phases as a function ofδ

δ E(Xd) cv2(Xd) Minimal number of phases needed

0.1 9.9649 0.04164 8
0.05 19.9136 0.04101 12
0.025 39.8079 0.04086 16

low cv of the distribution L3 (Table 3), this DPH approximation follows the steep changes of the pdf and
the cdf as well. As the discretization step is decreased the discrete approximation is getting worse and is
approaching the continuous approximation.

6.1.2. The required number of phases with a given discretization step
In Fig. 14, it is also visible that the lowerδ we use (the higher the mean of the discretized distri-

bution with respect to the discretization interval) the more phases are needed in order to achieve the
same goodness of fit. In fact, according to the theorem given inSection 4about the minimalcv of the
ADPH family, more phases are needed to attain a given coefficient of variation. The minimal num-
ber of phases (n) that are needed to reach a givencv2 when the mean isE(Xd) is given by the next
expression

n ≥ E(Xd)

cv2(Xd)E(Xd)+ 1
if cv2 >

R(E(Xd))(1 − R(E(Xd)))

E(Xd)2
.

Table 3reports, for the Lognormal distribution ofFig. 14, the meanE(Xd) and the coefficient of variation
cv2(Xd) of the discretized distribution together with the minimal number of phases needed to reach the
coefficient of variation of the original distribution (cv2 = 0.0408), as a function of different discretization
steps.

Table 3also shows how the discretization modifies the mean and thecvas a function of the discretization
step.

7. Examples for the estimation process

This section reports the results of the numerical experiments that have been carried out to test the
goodness of fit of the proposed ML fitting algorithm. The experiments are based on a benchmark
(composed of continuous distributions only) already proposed in[4] to test the goodness of fit of al-
gorithms for CPH distributions (the origin and the motivations behind the proposed benchmark are
discussed in[4]). Hence, the present results allows us to compare the features of the discrete and the CPH
fitting.

Table 4summarizes the distributions that compose the benchmark. InTable 4, the continuous expo-
nential distribution has been added, which was not present in the original benchmark in[4], since the
continuous exponential is not a DPH distribution.

Since in our experiments we have to approximate continuous distributions, we have to discretize them
before approximation. In the present experiments, we have used the following discretization method. We
conventionally assume that the largest sample in the discretized distribution corresponds to the discrete
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Table 4
Test cases of the benchmark

Density Symbol Numerical cases

Weibull

f(t) = β

η

(
t

η

)β−1

e−(t/η)β W1 η = 1,β = 1.5

W2 η = 1,β = 0.5
Lognormal

f(t) = 1

σt
√

2π
exp

[
− (log(t/φ)+ σ2/2)2

2σ2

]
L1 φ = 1, σ = 1.8

L2 φ = 1, σ = 0.8
L3 φ = 1, σ = 0.2

Uniform on(a, b) U1 a = 0, b = 1
U2 a = 1, b = 2

Shifted exponential
f(t) = 1

2e−t + 1
2e−(t−1)I(t ≥ 1) SE

Matrix exponential

f(t) =
(

1 + 1

(2π)2

)
(1 − cos(2πt))e−t ME

Exponential
f(t) = λe−λt EX λ = 1

point closest tôx whereF(x̂) = 0.995, and we assign a probability mass to all points from 1 tox̂

based on the rule in(36). As mentioned in the previous section, this discretization rule does not preserve
the moments, so that the moments of the discretized distribution (including the expected value) are not
coincident with the ones of the original continuous distribution.

For further reference let us denoteF(·)f(·), Fd(·)fd(·),F̄ (·)f̄ (·) the cdf and pmf of the original distri-
bution, the discretized distribution, and the one resulting from the ML estimation algorithm, respectively.

According to[4], five different measures have been chosen to evaluate the goodness of the fit. The
five measures are defined inTable 5, wherec1(F ), c2(F ) andc3(F ) represent the first three centered
moments ofF(·).

While in [4], measures 4 and 5 were defined over continuous functions (as integrals over the support of
the distribution), inTable 5the discretized version has been reported. Hence, the first three measures in

Table 5
Measures for evaluating the goodness of fit

1. Relative error in the first moment ê1 = |c1(F)− c1(F̄ )|
c1(F)

2. Relative error in the second moment ê2 = |c2(F)− c2(F̄ )|
c2(F)

3. Relative error in the third moment ê3 = |c3(F)− c3(F̄ )|
c3(F)

4. pmf absolute area difference D̂ = ∑∞
i=1 |fd(i)−f̄ (i)|

5. Minus cross entropy −Ĥ = ∑∞
i=1 fd(i) log(f̄ (i))
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Table 5are computed between the original and the ML estimation, the last two measures are computed
between the discretized and the ML estimation.

7.1. Results

Fig. 16plots the results obtained for the 10 distributions of the benchmark in term of their pmf’s. For
each distribution ofTable 4, Fig. 16reports the discretized distributionfd(·) (in solid line) and the ML
estimations̄f(·), computed for CF1 with two, four and eight phases, respectively. The discretization step
is assumedδ = 0.1 in all the plots.

A detailed description of the measures obtained for all the distributions in the benchmark is reported
in Tables 6–10. In each table, the measures are reported for CF1 of order 2, 4 and 8, respectively, and for
two discretization intervals, namely:δ = 0.1 (as inFig. 16andδ = 0.05).

Table 6
Relative error in the first moment

Distribution c1(F) Relative error̂e1

Two phases Four phases Eight phases

δ = 0.1 δ = 0.05 δ = 0.1 δ = 0.05 δ = 0.1 δ = 0.05

W1 0.9027 0.0144 0.0352 0.0018 0.0142 0.0031 0.0043
W2 2.0000 0.5148 0.6417 0.5203 0.6705 0.5297 0.6711
L1 1.0000 0.2195 0.3703 0.3215 0.4721 0.3224 0.4945
L2 1.0000 0.0918 0.0339 0.0751 0.0794 0.0744 0.0758
L3 1.0000 0.0194 0.0226 0.0107 0.0337 0.0036 0.0072
U1 0.5000 0.0904 0.0667 0.0996 0.0375 0.1000 0.0492
U2 1.5000 0.0308 0.0024 0.0215 0.0387 0.0014 0.0147
SE 1.5000 0.0148 0.0503 0.0238 0.0200 0.0355 0.0623
ME 1.0494 0.0706 0.0831 0.0709 0.1334 0.0709 0.0755
EX 1.0000 0.0181 0.0560 0.0170 0.0467 0.0176 0.0353

Table 7
Relative error in the second moment

Distribution Original distribution Relative errorê2

c2(F) (cv)2 Two phases Four phases Eight phases

δ = 0.1 δ = 0.05 δ = 0.1 δ = 0.05 δ = 0.1 δ = 0.05

W1 0.3756 0.4610 0.1704 0.0402 0.0136 0.0497 0.0288 0.0262
W2 20.000 5.0000 0.9161 0.9600 0.9057 0.9618 0.9128 0.9629
L1 24.534 24.534 0.9282 0.9604 0.9347 0.9714 0.9350 0.9736
L2 0.8964 0.8964 0.4661 0.3977 0.4194 0.4510 0.4286 0.4392
L3 0.0408 0.0408 0.9922 10.405 0.9926 4.2794 0.9928 0.8861
U1 0.0833 0.3333 0.6109 0.7544 0.1611 0.1915 0.0070 0.0522
U2 0.0833 0.0370 11.479 10.308 4.2027 4.3402 0.5621 1.5680
SE 1.2500 0.5555 0.0890 0.1224 0.1732 0.2044 0.1873 0.2765
ME 0.9530 0.8653 0.3267 0.3765 0.1358 0.3561 0.3080 0.3190
EX 1.0000 1.0000 0.0396 0.1953 0.0773 0.2075 0.1246 0.1884
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Fig. 16. Probability mass functions of the discretized and the approximating ADPH distributions.



Fig. 16. (Continued).

Table 8
Relative error in the third moment

Distribution c3(F) Relative error̂e3

Two phases Four phases Eight phases

δ = 0.1 δ = 0.05 δ = 0.1 δ = 0.05 δ = 0.1 δ = 0.05

W1 0.2468 0.7011 0.3739 0.0263 0.1875 0.0899 0.0723
W2 592.00 0.9917 0.9977 0.9889 0.9976 0.9902 0.9977
L1 16573 0.9995 0.9998 0.9995 0.9999 0.9995 0.9999
L2 3.1315 0.8061 0.7974 0.7833 0.8149 0.8053 0.8152
L3 0.0050 74.82 83.019 11.362 18.847 0.1713 2.1075
U1 0.0000 0.3949 0.4090 0.2826 0.2987 0.2482 0.2625
U2 0.0000 8.5742 7.4103 4.8749 5.3990 3.3664 3.8605
SE 2.0000 0.1740 0.4032 0.4917 0.6468 0.4752 0.1260
ME 1.9929 0.4958 0.6240 0.1261 0.5418 0.5922 0.6278
EX 2.0000 0.0490 0.4366 0.1249 0.4579 0.3114 0.4689
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Table 9
Cross entropy

Distribution H Cross entropŷH

Two phases Four phases Eight phases

δ = 0.1 δ = 0.05 δ = 0.1 δ = 0.05 δ = 0.1 δ = 0.05

W1 0.7869 0.7740 0.7868 0.7688 0.7810 0.7686 0.7803
W2 1.1546 0.8707 0.5096 0.8478 0.5061 0.8577 0.5138
L1 0.3745 0.1620 0.0866 0.1315 0.0420 0.1314 0.0457
L2 0.8756 0.8940 0.8284 0.8910 0.8256 0.9034 0.8257
L3 −0.2104 0.5300 0.5845 0.0982 0.2141 −0.1978 −0.1252
U1 0.0000 0.1528 0.1822 0.0722 0.1016 0.0172 0.0562
U2 0.0000 1.0041 1.0071 0.5801 0.6525 0.2201 0.3280
SE 1.2950 1.3327 1.2820 1.2983 1.2382 1.2883 1.2287
ME 0.7277 0.9439 0.9049 0.9013 0.8712 0.8609 0.8201
EX 1.0000 0.9455 0.9317 0.9442 0.9312 0.9460 0.9286

For most of the cases the results of the discrete approximation are comparable with the results obtained
from the continuous approximation[4]. However, for the cases where the distribution has a low coefficient
of variation the DPH approximation shows a better fit, which is in line with the result on the minimal
cv of the ADPH class, discussed inSection 4. As the relation between the ordern and the discretization
intervalδ fits the bounds established inSection 6, the ADPH approximation can attain lower coefficients
of variations with respect to the CPHs of the same order. This can be seen for the test case L3, when
n = 8 andδ = 0.1.

In the benchmark, there are test cases whose discretized version is a DPH distribution. For example,
the two uniform distributions (U1 and U2), using a discretization intervalδ = 0.1, can be represented

Table 10
Pmf absolute area difference

Distributionm Area difference

Two phases Four phases Eight phases

δ = 0.1 δ = 0.05 δ = 0.1 δ = 0.05 δ = 0.1 δ = 0.05

W1 0.0710 0.0948 0.0248 0.0208 0.0088 0.0103
W2 0.1879 0.2095 0.1445 0.1976 0.1512 0.1972
L1 0.2259 0.2782 0.0099 0.0191 0.0063 0.0054
L2 0.0613 0.0951 0.0396 0.0358 0.0371 0.0306
L3 1.0233 1.0733 0.6274 0.7574 0.0248 0.3099
U1 0.4270 0.4162 0.2773 0.2886 0.1227 0.1892
U2 1.2994 1.2107 0.7871 0.8975 0.3091 0.4832
SE 0.2788 0.2770 0.1592 0.1824 0.0913 0.1260
ME 0.4698 0.5006 0.3845 0.4184 0.2668 0.3151
EX 0.0458 0.0275 0.0284 0.0341 0.0147 0.0254
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as, respectively

a1 = [ 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 ],

p1 = [ 1 1 1 1 1 1 1 1 1 1],

and

a2 = [ 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0 0 0 0 0 0 0 0 0 0],

p2 = [ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1].

The proposed estimation algorithm is able the find exactly these forms. For example, withδ = 0.1,n = 10
phases are needed to represent exactly the discretized version of U1; however, it is interesting to observe
by a visual inspection ofFig. 16how the approximating ADPH improves the fit passing fromn = 2 to
n = 8.

7.2. Empirical guidelines of ADPH fitting

In this section, we try to draw a general conclusion about the applicability of ADPH distribution fitting
based on our fitting experience.

The following specific properties of the class of ADPH distributions limit their applicability in distri-
bution fitting:

• bounded moments;
• limited number of waves of the pmf;
• sharp changes of the pmf is not possible at high (� n) time instances (wheren is the order of the

ADPH distribution);
• exponentially decaying tail distribution.

The bounds of the first two moments of ADPH distributions are already mentioned above (m ≥ 1, and
Theorem 2). These bounds already indicate that the ADPH class cannot exhibit all the possible sets of
moments that can be obtained by positive distributions. Similar bounds hold for higher moments as well.
This means that the moments of the distribution to be fitted should be realizable by ADPH distributions
of the given order.

The number of waves exhibited by the pmf of an ADPH distribution of ordern is not greater thann/2.
The sharpest possible change of the pmf of an ADPH of ordern at timek (k > n) is obtained by the

discrete Erlang(n) distribution. Hence distributions with sharp changes at timek � n is not possible to
approximate closely. For example, the jumps of the discrete uniform distribution betweena andb, with
a < n andb � n, cannot be equally well captured. It is possible to capture the sharp jump at timea, but
the best ADPH fitting of the jump atb is distributed in a wide range.

With respect to the tail behavior, it is possible to approximate both heavier or lighter tail behavior than
exponential decay to some upper limit, but after a limit all ADPH distributions have an exponentially
decaying tail behavior.

As a conclusion, based on our experiences and the above considerations, we would predict a “close”
ADPH fit when the distribution to be fitted has moments achievable with ADPH of ordern, has less than
n/2 waves, has a smoothly changing pmf especially after timen, and has an approximately exponentially
decaying tail behavior.
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8. Conclusion

Some previously not considered properties of the DPH distributions, which are essential for DPH
fitting, are investigated and compared with the known properties of the CPH distributions. Similarly
to the continuous family, acyclic-DPH distributions admit a minimal representation called canonical
form. Resorting to the canonical form, we have investigated the dependence of the minimal squared
coefficient of variation on the mean and on the order, and we have established the conditions for which
the minimal coefficient of variation for the DPH family is less than the one for the CPH family of the same
order.

The results about the wider variability of the DPH class can be very relevant in stochastic modeling.
When PH distributions are used in modeling, the number of states in the model depends multiplicatively
on the number of phases. Keeping the order as low as possible increases the capability of the approach.

Furthermore, since the deterministic distribution is a member of the ADPH class, the use of DPH
distributions offers a viable technique to handle random execution times and constant durations inside
the same formalism.

A DPH fitting method is presented for the first time. Similar to the continuous case we used an
ML estimation procedure for the evaluation of the parameters of an ADPH distribution in canoni-
cal form CF1. While previous estimation algorithms for the CPH family were based on a transform
domain analysis, we have shown that the time domain analysis is also possible, and the estimation
algorithm based on time domain expressions is easier to implement, numerically simpler and more
stable.

The goodness of fit of this new algorithm has been tested with respect to a benchmark composed
of 10 different continuous distributions. However, in order to apply the proposed procedure to a con-
tinuous distribution, the continuous function must be discretized according to a given discretization
interval. The role of the discretization interval has been discussed, and the way to chose a suitable
discretization interval as a function of the mean and of the coefficient of variation has been
indicated.

As it could have been expected from the properties of the ADPH family, the fitting algorithm performs
better than the CPH one in the cases in which the coefficient of variation is low, and in the cases of
distributions with finite support (like the uniform).
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