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Abstract

We study Chevalley-Eilenberg cohomology of physically relevant Lie superalgebras

related to supersymmetric theories, providing explicit expressions for their cocycles

in terms of their Maurer-Cartan forms. We then include integral forms in the

picture by defining a notion of integral forms related to a Lie superalgebra. We

develop a suitable generalization of Chevalley-Eilenberg cohomology extended to

integral forms and we prove that it is isomorphic to the ordinary Chevalley-Eilenberg

cohomology of the Lie superalgebra. Next we study equivariant Chevalley-Eilenberg

cohomology for coset superspaces, which plays a crucial role in supergravity and

superstring models. Again, we treat explicitly several examples, providing cocycles’

expressions and revealing a characteristic infinite dimensional cohomology.

1roberto.catenacci@uniupo.it
2carlo.alberto.cremonini@gmail.com
3pietro.grassi@uniupo.it
4noja@mathi.uni-heidelberg.de



Contents

1 Introduction 1

2 Chevalley-Eilenberg Cohomology: Main Definitions 3

2.1 Lie Algebras and Lie Superalgebras . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Integral Forms and Chevalley-Eilenberg Cohomology . . . . . . . . . . . . 7

2.2.1 A Primer of Integral Forms on Supermanifolds . . . . . . . . . . . . 7

2.2.2 Defining Chevalley-Eilenberg Cohomology of Integral Forms . . . . 9

2.3 Isomorphism Between Superform and Integral Form Cohomologies. . . . . 13
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1 Introduction

The mathematical development of cohomology of Lie algebras [19] [29] has been prompted

and characterized by a twofold reason in relation to the theory of Lie groups.

On one hand, in a diverging direction with respect to Lie groups, Lie algebra cohomology

unties the representation theory of Lie algebras from the corresponding representation

theory of Lie groups, by allowing a completely algebraic proof of the Weyl theorem [43],

which was originally of analytic nature. On the other hand, in a converging direction

with respect to Lie groups, in many important instances Lie algebra cohomology makes

computations of the de Rham cohomology of the corresponding Lie groups easier. Nowa-

days, applications of Lie algebra cohomology range from representation theory in pure

mathematics to modern physics - let us just recall that Kac-Moody and Virasoro alge-

bras, which play central role in string theory, are central extensions of the polynomial

loop-algebra and the Witt algebra respectively, and, as such, they are related to Lie alge-

bra’s 2-cohomology group. While it is quite natural to generalize a cohomology theory

from Lie algebra to Lie superalgebra [30] [31] (more recent reviews and computations can

be found in [32, 33, 34, 35]).

both from a derived-functorial point of view and, more concretely, via cochain com-

plexes, it can be seen that the two directions sketched above are meant to breakdown as

one moves to the super setting. Indeed, in the representation theoretic direction, there is
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no Weyl theorem for Lie superalgebras, initially leading to the opinion that the cohomol-

ogy theory is rather empty and meaningless. Further, in the topological direction, when

working with Lie supergroups and their related Lie superalgebras, Cartan theorem resists

to a naive “super” generalization, as it only encodes topological informations. On the

other hand a different point of view is possible, namely one can look at the the failure of

Weyl theorem in the supersymmetric setting as an opportunity, rather than a pathologi-

cal feature of the theory, for it suggests that the cohomology groups of Lie superalgebras

might have a much richer structure than the one that can be guessed by analogy with the

ordinary theory. Remarkably, physics is paving this way: cocycles arising from cohomol-

ogy of Lie superalgebras - in particular, Poincaré superalgebras - are getting related to

higher Wess-Zumino-Witten (WZW ) terms in supersymmetric Lagrangians (the so-called

brane scan and its recent higher-version, the brane bouquet, which promotes Lie superal-

gebras to L∞-superalgebras and consider their cohomology) [1] [2] [20] [21]. It is fair to

observe, thought, that even the cohomology of a finite dimensional Lie superalgebra does

not vanish in general for degree greater than the dimension of the algebra - as it happens

in the ordinary case instead -: this makes the actual computation of the cohomology of

Lie superalgebras into a very difficult task in general. Accordingly, results can be found

in literature for specific choices of superalgebras - in particular in low-degree [41] -, but

only very few results encompassing the whole framework are available [23], even just for

the Betti numbers of Lie superalgebras. Even less is known regarding the cohomology

and the structure of cocycles of coset or homogeneous superspaces, which play a fun-

damental role in many superstring and supergravity models. If on one hand it is likely

that a detailed knowledge of this equivariant cohomologies would help understanding the

geometric nature and invariant structure of convoluted supergravity Langrangians [27]

[28], it is also fair to notice that - once again - computations are difficult even in the most

basic examples.

On a different note, getting back to the relations between algebras and groups, as

mentioned above, it is a well-known fact that the de Rham cohomology of a Lie group can

be formulated in terms of its underlying Lie algebra, thus making feasible computations

otherwise very difficult. Whereas one tries to generalize this to Lie supergroups, (s)he

would run into an issue, which is deeply ingrained in the theory of forms and the related

integration theory in supergeometry. Indeed, in order to formulate a coherent notion of

geometric integration on supermanifolds [36], besides differential forms, one also need to

take into account integral forms, a notion which is crucial, thought not widely known

and understood: for example, a supergeometric analogue of Stokes’ theorem [37] [44]

is proved using integral forms. On the other hand, it needs to be remarked that Lie
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superalgebra cohomology is nothing but a “Z2-graded generalization” of the ordinary Lie

algebra cohomology, and, as such, it is not capable to account for objects other than

differential forms on supermanifolds, such as in particular, integral forms, which simply

do not enter the picture [45]. It is natural to ask if it is possible to provide a formulation

of Lie superalgebra cohomology capable of capturing properties of integral forms as well,

and, in turn, what are the relations between the ordinary Lie superalgebra cohomology

and this newly defined cohomology.

In the present work, after a brief review of Chevalley-Eilenberg cohomology of Lie

algebras and superalgebras and a basic introduction to integral forms - which aims at

making the paper as self-consistent as possible -, we extend the notion of integral forms

to a Lie superalgebraic context and we define a related notion of Chevalley-Eilenberg co-

homology. We establish an isomorphism between the Chevalley-Eilenberg cohomology of

integral forms of a superalgebra and the ordinary Chevalley-Eilenberg cohomology of the

superalgebra in question. We then proceed to explicit computations of these cohomolo-

gies in several cases of physical interest, by looking at the Lie superalgebra of symmetries

of relevant superspaces. However, it is fair to remark that, even if Lie supergroups - or

supergroup manifolds, as they are called in the physics community - and their associated

Lie superalgebras appear in several physical applications and have allowed to establish

important results, coset supermanifolds actually open up to the most interesting and rich

scenarios, offering several ways to take into account different amount of symmetries. For

this reason, the last part of the paper is dedicated to the computations of equivariant

Chevalley-Eilenberg cohomology for coset superspaces: several examples are discussed

and typical phenomenology is pointed out.

2 Chevalley-Eilenberg Cohomology: Main Definitions

2.1 Lie Algebras and Lie Superalgebras

We start providing the basic definitions, first in the usual setting, then in the super one.

Let g be an ordinary finite dimensional Lie algebra defined over the field k, and let V be a

g-module or a representation space for g. We define the (Chevalley-Eilenberg) p-cochains

of g valued in V to be alternating k-linear maps from g to V [19],

Cp
CE(g, V ) ..= Homk (∧pg, V ) , (2.1)
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where we note in particular that C0
CE(g, V ) = Homk(k, V ) ∼= V for p = 0 and where,

in taking the exterior power g is looked at as a vector space. Further, notice that if we

take trivial coefficient, i.e. V = k, as we will do in the rest of the paper, we simply

have Cp
CE(g, k) =

∧p g∗. The above (2.1) can be lifted into a complex by introducing the

(Chevalley-Eilenberg) differential dpg : Cp
CE(g, V )→ Cp+1

CE (g, V ), defined as

dpgf(x1 ∧ . . . ∧ xp+1) ..=
∑

1≤i<j≤p+1

(−1)i+jf([xi, xj] ∧ x1 ∧ . . . ∧ x̂i ∧ . . . ∧ x̂j ∧ . . . ∧ xp+1)+

+

p+1∑
i=1

(−1)i+1xi · f(x1 ∧ . . . ∧ x̂i ∧ . . . ∧ xp+1), (2.2)

for f ∈ Homk(∧pg, V ) and where the hatted entry is omitted. Once again notice that if

V is a trivial g-module, as in the case V = k, the second summand vanishes identically,

so that one has

dpgf(x1 ∧ . . . ∧ xp+1) ..=
∑

1≤i<j≤p+1

(−1)i+jf([xi, xj] ∧ x1 ∧ . . . ∧ x̂i ∧ . . . ∧ x̂j ∧ . . . ∧ xp+1)

(2.3)

It is not too hard to prove that dp+1 ◦ dp = 0, so that one can define the Chevalley-

Eilenberg complex of g valued in V as the pair (C•CE(g, V ), d•). Given this definition, the

cohomology is defined in the usual way: we call Chevalley-Eilenberg cocycles the elements

of the vector space

Zp
CE(g, V ) ..= {f ∈ Cp

CE(g, V ) : dpf = 0}, (2.4)

and Chevalley-Eilenberg coboundaries the elements in the vector space

Bp
CE(g, V ) ..= {f ∈ Cp

CE(g, V ) : ∃g ∈ Cp−1
CE (g, V ) : f = dp−1g}, (2.5)

and we define the Chevalley-Eilenberg p-cohomology group of g valued in V as the quotient

vector space

Hp
CE(g, V ) ..= Zp

CE(g, V )
/
Bp
CE(g, V ) . (2.6)

Denoting now g a Lie superalgebra with g = g0 ⊕ g1 its even and odd components in

the Z2-grading, one can easily generalize the above construction just by taking care of

the signs related to the Z2-grading (parity). In particular, the definition of cochains and

cohomology groups is unchanged and the previous differential in (2.7) modifies to [31]

dpf(x1 ∧ . . . ∧ xp+1) ..=
∑

1≤i<j≤p+1

(−1)i+j+δi,j+δi−1,jf([xi, xj] ∧ x1 ∧ . . . ∧ x̂i ∧ . . . x̂j ∧ . . . ∧ xp+1)+

+

p+1∑
i=1

(−1)i+1+δr−1,rxi · f(x1 ∧ . . . ∧ x̂i ∧ . . . ∧ xp+1), (2.7)
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where δi,j ..= |xi|(|f | +
∑i

k=0 |xk|) for any f ∈
∧p g∗ ⊗ V , xi ∈ g, in order to take into

account the parity, i.e. the Z2-grading of the elements. Also, notice that as soon as the odd

dimension of the Lie superalgebra is greater than zero, i.e. if g is a true Lie superalgebra

and not just a Lie algebra, the Chevalley-Eilenberg cochain complex is not bounded from

above, in pretty much the same fashion of the de Rham complex of a supermanifold, i.e.

C•CE(g, V ) ..=
⊕
p∈Z

Cp
CE(g, V ) with Cp

CE(g, V ) 6= 0 ∀p ≥ 0. (2.8)

As previously mentioned, Chevalley-Eilenberg cohomology has made its entrance years

ago in physics, in particular in the context of supergravity and more specifically in the

“FDA” (Free Differential Algebra) approach to supergravity due to D’Auria and Fre [4].

Construction of (semi) Free Differential Algebras, or n/∞-Lie (super)algebras were indeed

given iteratively in terms of Chevalley-Eilenberg cocycles of a given Lie (super)algebra. In

some sense, because of its supergravity origin, this approach is closer to Cartan geometry

than the previous one, which has more algebraic taste.

One starts with a Lie group G - or group manifold in the supergravity literature - and

a G-module V , i.e. a k-vector space endowed with an action ρ : G× V → V of G on V ,

such that ρg ..= ρ(g, ·) ∈ Autk(V ) for any g ∈ G. Now, an n-form on the Lie group G

valued in V , i.e. an element of the vector space Ωn(G, V ) ..= Ωn(G) ⊗k V , is said to be

G-equivariant if `∗gω = ρgω for any g ∈ G and where `g : G→ G is the left translation by

g. We call Ωn(G, V )eq the space of equivariant n-form valued in the G-module V . It is

clear that a G-equivariant form is determined by its value at the origin on G, and in par-

ticular it can be proved that Ωp(G, V )eq ∼= Cp
CE(g, V ). Further, (dωeq)e = dgω, where dg

is the Chevalley-Eilenberg differential (2.7) and d is the de Rham differential. This shows

that the Lie algebra cohomology can be described in terms of the de Rham cohomology

of (equivariant) differential forms on the Lie group whose the Lie algebra is associated,

i.e. Hp(g, V ) ∼= Hp(Ωp(G, V )eq, d), thus making contact between two seemingly different

cohomologies and making possible to compute Lie algebra cohomology via forms, see for

example [?].

The above remarks are completely general. In order to make contact with the notation

employed and results in the following sections, we will now look at the description of the

Chevalley-Eilenberg cohomology in terms of forms in some more details in the case we

will be concerned with, that of the trivial g-module V = k, where k is the ground field. In

this case we will simply write Cp
CE(g) ..= Cp

CE(g, k) for the Chevalley-Eilenberg cochains
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defined above, and we recall that Cp
CE(g) =

∧p g∗, see the definition (2.1). Likewise,

equivariance of forms becomes simply left-invariance, i.e. the requirement `∗gω = ω. This

means that denoting Ωp
L(G) the vector space of left-invariant forms one has that the above

isomorphism becomes Cp
CE(g) ∼= Ωp

L(G). Let us consider a k-basis of left-invariant forms

ωi ∈ Ω1
L(G) together with its dual basis of left-invariant vector field Xi ∈ (Ω1

L(G))∗, with

ωig(Xj,g) = δij for any g ∈ G. Then, the ωi ∈ Ω1
L(G) satisfy the Maurer-Cartan structure

equation

dωi = −1

2
Ci

jk ω
j ∧ ωk, (2.9)

where the Ci
jk are the structure constants relative to the basis ωi. The sums over repeated

indices are understood. These equations are equivalent to the Lie braket relations for the

basis X i of the algebra of left-invariant vector fields, [Xj, Xk] = Ci
jkXi. Also it can be

easily checked that d ◦ d = 0 is equivalent to Jacobi identity, as

d(dωk) = −1

2
Ck

ij dω
i ∧ ωj +

1

2
Ck

ij ω
i ∧ dωj =

1

2
Ck

i[jC
i
lm] ω

l ∧ ωm ∧ ωj = 0, (2.10)

where ωi ∈ ΩL(G) and where Ck
i[jC

i
lm] = 0 is indeed the Jacobi identity. These will be

the fundamental ingredients to actually compute cohomologies (notice that the differen-

tial is a derivation, so that it extends to higher forms).

In the present paper we will deal only with matrix Lie groups, i.e. Lie groups which admit

an embedding into some GL-group: in this case, the above is equivalent to take a basis of

forms V = dgg−1, where g ..= (gij) is matrix-valued, which we call Maurer-Cartan forms,

as they satisfy Maurer-Cartan equations (2.9) by construction. In turns, we will take the

cochains to be generated starting from the basis of Maurer-Cartan forms {V i}, i.e. the

vielbeins in the physics literature, so that

Cp(g) = Ωp
L(G) =

{
ci1,...,ipV i1 ∧ . . . ∧ V ip

}
for ci1,...,ip ∈ k. (2.11)

Notice that the above discussion is readily generalizable to the Z2-graded super-setting

of a Lie supergroup G and its Lie superalgebra g, but a remark about the parity is in

order: indeed, instead of considering the vector bundle of forms, we will consider its parity

reversed version Ω1(G) ..= ΠT ∗(G), as it is customary in supergeometry: notice that in

this convention the de Rham differential d is an odd derivation. This leads to consider

even and odd vielbeins {ψα|V i} generating the Z2-graded vector space Ω1
L(G), where the

even ψα’s arise from odd coordinates and the odd V i’s arise from even coordinates. What
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it is crucial to observe is that, accordingly, this should be related to the parity changed

dual of the Lie superalgebra Πg∗, that is at the level of the cochains one has

C•(Πg) ..= S•Πg∗ ∼= Ω•L(G), (2.12)

where S• is the supersymmetric product functor (symmetrization operation) [37]. Like-

wise, at the level of the differentials, the de Rham differential is extended to both even

and odd coordinates. The commutators characterizing the algebra or, dually, the Maurer-

Cartan equations, become supercommutators. In particular, on the parity reversed algebra

Πg, if πX and πY ∈ Πg we put [πX, πY } ..= [X, Y } for X and Y in g.

2.2 Integral Forms and Chevalley-Eilenberg Cohomology

2.2.1 A Primer of Integral Forms on Supermanifolds

Given a supermanifold M , say of dimension n|m, differential forms in Ω•(M ) are not

enough to define a coherent notion of integration on M . This leads to the introduction of

integral forms, which are geometrically as important as differential forms, see [37] and the

recent papers [8, 6, 7, 25, 39, 9, 10, 11, 15, 16, 17, 18, 12, 3]. Loosely speaking, whereas

differential forms lead to a consistent geometric integration on ordinary bosonic subman-

ifolds (i.e. sub-manifolds of codimension p|m) in M , integral forms plays the same role on

sub-supermanifolds of codimension p|0 in M , and in particular, they control integration

on M itself. Notice that, even if it is often left understood or not stated, integral forms

are ubiquitous in theoretical high energy physics: for example, the Lagrangian density of

a supersymmetric theory in superspace is indeed a top integral form. There are (at least)

two ways to introduce integral forms, which we now briefly recall.

The first approach is to define integral forms as generalized functions on Tot ΠT (M )

[44], that is elements ω(x1, . . . , xn, dθ1, . . . , dθm|θ1, . . . , θm, dx1, . . . dxn) ∈ ΠT (M ), where

xi|θα are local coordinate for M , which only allows a distributional dependence supported

in dθ1 = . . . = dθm = 0. Algebraically, integral forms can be (roughly) described as

Ω•(M )-modules generated over the set (of Dirac delta distributions and their derivatives)

{δ(r1)(dθ1) ∧ . . . ∧ δ(rm)(dθm)}, for ri ≥ 0, together with the defining relations

dθαδ(k)(dθα) = −kδ(k−1)(dθα) for k ≥ 0 (2.13)

for any α = 1, . . . ,m and any k ≥ 0, which are deduced analytically by integration by

parts. Notice that the case k = 0 tells that the expressions dθαδ(0)(dθα) vanishes, so
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that the presence of the delta’s can be seen as a localization in the locus dθα = 0 in

Tot ΠT (M ). Locally, an integral form ωint is written as a (generalized) tensor

ωint(x,dθ|θ, dx) =

=
n∑
i=1

m∑
j=1

∑
ai∈{0,1},rj≥0

ω[a1...amr1...rm](x|θ)(dx1)a1 . . . (dxn)amδ(r1)(dθ1) . . . δ(rm)(dθm),

(2.14)

where all indices are antisymmetric (recalling that two delta’s anticommute with each

other), and where we note that there cannot be dθ’s thanks to the above relations (2.13).

In what follows we will say that an integral forms has picture m, to mean that we are

considering expressions that admits only a distributional dependence on all of the m co-

ordinates dθ1, . . . , dθm on Tot ΠT (M ). Further, with reference to the previous expression

2.14, we assign a degree to an integral form according to the definition

deg(ωint) ..=
n∑
i=1

aj −
m∑
j=1

rj, (2.15)

so that we will say that an integral form has picture m and degree p ≤ n. In particular,

a top integral form is an integral form of degree n,

ωtopint = ω(x|θ)dx1 . . . dxnδ(dθ1) . . . δ(dθm), (2.16)

and it can be checked that this expression has the transformation properties of a section

of the Berezinian line bundle Ber(M ) ..= Ber∗(ΠT ∗(M )) of the supermanifold M . Notice

that all of the integral forms as in 2.14 can be generated from the above 2.16 by repeatedly

acting with contractions along (coordinate) vector fields, i.e.

ωn−`int = ιX1 . . . ιX` ω
top
int , (2.17)

where we recall that in particular, for the coordinate vector fields ∂xi |∂θα one has that

|ι∂xi | = 1 and |ι∂θα | = 0. The modules of integrals forms are then structured into a

complex letting d operate as the usual de Rham differential on Ω•(M ) and declaring that

its action on the delta’s, is trivial i.e. posing d(δ(dθα)) = 0 for any α.

In the second approach one defines integral forms of degree p as sections of the vector

bundle on M

Σp(M ) ..= Ber(M )⊗OM (Ωn−p(M ))∗ = Ber(M )⊗OM S
n−p(ΠT (M )). (2.18)
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where Ber(M ) is the Berezinian line bundle of M and ΠT (M ) the parity-reversed tangent

bundle. The correspondence between integral forms in the different representations reads

ω(n−`) = D ⊗ (πX1� . . .� πX`) ! ω(n−`) = ιX1 . . . ιX`ωtopint (2.19)

where D is a section of Ber(M ) and πX1� . . .�πX` is a section of S`ΠT (M ), together with

the correspondence of sections of Berezinian line bundle, or integral top forms, mentioned

above, i.e. ωtopint ! D. Clearly, given the above tensor product structure, defining a

nilpotent differential acting as δp : Σp(M ) → Σp+1(M ) is not at all trivial matter, as

originally discussed in [37] and recently realized in [3], but this can be done as getting a

complex which will in general be unbounded from below

. . . // Ber(M )⊗ Sn−p(ΠT (M )) // . . . // Ber(M )⊗ ΠT (M ) // Ber(M ) // 0.

(2.20)

Remarkably, these different approaches, which agree in terms of general results, comple-

ment each others. If on one hand this second approach is probably more suitable when it

comes to deal with mathematical and foundational issues where well-definiteness is cru-

cial, on the other hand the first approach proves quite more effective when it comes to

actual computations, and for this reason is favoured in applications to theoretical physics.

The different nature of these two approaches is mirrored, for example, in the proof of

which is probably the most important result in the theory, i.e. the (natural) isomorphism

between the cohomology of differential form Hp
d(Ω•(M )) and integral forms Hp

δ (Σ•(M ))

on supermanifolds, namely introducing in the first approach the crucial notion of Pic-

ture Changing Operators (see, e.g., [11]), which maps differential to integral forms and

vice-versa, and via a spectral sequence argument in the second approach [3].

2.2.2 Defining Chevalley-Eilenberg Cohomology of Integral Forms

In this section we investigate to what extent, in the case the supermanifold M is a Lie

supergroup G with Lie superalgebra g, it is possible to define a notion of “integral form”

and in particular a “Chevalley-Eilenberg cohomology” of integral forms related to g. No-

tice that, as explained above, the Chevalley-Eilenberg cohomology can be analogously

introduced as the cohomology of the vector (super)space of the left-invariant differential

forms for a certain Lie group: since over a supermanifold differential forms need to be

supplemented by integral forms, it can be expected that there must exist an analogous

notion of cohomology of left-invariant integral, better than differential, forms.
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The first of the two approaches presented above is probably more straightforward in

this respect. One takes a basis of Maurer-Cartan forms {ψα|V i}, or supervielbein, with

even ψ’s and odd V ’s and restrict to consider only integral forms written in terms of

them. More precisely, if Yi|α ..= {Pi|Qα} is the basis of generators of the Lie superalgebra

g which is dual (up to a parity shift) to the basis of the Maurer-Cartan forms above, so

that ψα(πQβ) = δαβ and V i(πPj) = δij, then the most general integral form on g of degree

n− `, see (2.17), will be written as

ωn−`g = ωi1...i`ιY i1 . . . ιY i`ω
top
g , (2.21)

for Y spanning both even and odd dimensions of g and the indices of the tensor ωi1...i`

symmetrized or anti-symmetrized according to the parity of the related contraction (the

sum over repeated indices is understood). In the above expression one fixes the integral

top form up to a multiplicative constant to be

ωtopg = V 1 . . .V nδ(ψ1) . . . δ(ψm), (2.22)

that is ωtopg is again expressed only in terms of of the Maurer-Cartan forms, which makes

it formally left-invariant. Having set this stage and in the light of the discussion in the

previous subsection, one can therefore generalize the Maurer-Cartan differential as to act

on integral forms in the following way

ωn−`g 7−→ d(ωn−`g ) ..=
1

2
CA

BC(πY ∗)B(πY ∗)CιY A

(
ωi1...i`ιY i1 . . . ιY i`ω

top
g

)
, (2.23)

where CA
BC are the structure constants of the Lie superalgebra g and A,B and C are the

cumulative indices for i|α. Notice that the right-hand ride of the (2.23) defines indeed an

integral form of degree n− `+ 1 and, once again, that the differential is indeed nilpotent

thanks to Jacobi identity for the Lie superalgebra g.

Defining integral forms for g in the second approach requires some further explana-

tions: the discussion is somewhat formal, therefore the reader can skip to the next section

at the first reading. One can proceed specializing the definition (2.18) to a Lie supergroup

G , but first the question of how to intrinsically define a left-invariant Berezinian needs to

be addressed. One might start with an analogy with the ordinary case, where the Haar

determinant - which, integrated, gives the volume of a compact Lie group -, is constructed

by taking the top exterior power of the left-invariant 1-forms SpanR{ω1, . . . , ωn} = Ω1
L(G)

over the n-dimensional ordinary Lie group G, i.e. det(G) = R ·ω1∧ . . .∧ωn. This construc-

tion cannot be generalized in a straighforward manner, mainly because the Berezinian of

11



a vector space is not a top-exterior form. On the other hand, there exists a less known

construction of the Berezinian of a vector superspace via the cohomology of a suitable

generalization of the Koszul complex (see the quite recent papers [40] and [3]): this

should not surprise, as also the determinant appears in the same way from the Koszul

complex. More precisely, given a vector R-superspace V of dimension n|m, one finds

that the cohomology of the (dual of the) Koszul complex is concentrated in degree n,

i.e. ExtnS•V ∗(R, S•V ∗) ∼= Πn+mR and an automorphism φ ∈ Aut(V ) induces an auto-

morphism on ExtnS•V ∗(R, S•V ∗) which is just the multiplication by the Berezinian of the

automorphism Ber(φ), so that one rightfully defines Ber(V ) ..= ExtnS•V ∗(R, S•V ∗) [40].

The computation of this cohomology is particularly useful also because it gives the gener-

ator of the Berezinian of V in terms of the generators of the vector space V . Shifting from

algebra to geometry, one defines the Berezinian of the supermanifold to be the Berezinian

of the tangent bundle T (M ), or analogously the dual of the Berezinian of the parity-

reversed cotangent bundle Ω1(M ) as above. One finds that the Berezinian line bundle is

(locally) generated by the class

Ber(M ) ∼= OM · [dx1 ∧ . . . ∧ dxn ⊗ ∂θ1 ∧ . . . ∧ ∂θm ] (2.24)

in the corresponding Ext-sheaf, where xi|θα for i = 1, . . . , n and α = 1, . . . ,m are local

coordinates for the supermanifold M .

This is what is needed in order to write a corresponding left-invariant Berezinian, or

Haar Berezinian for a Lie supergroup: it is enough to consider the left-invariant odd

vector fields, call them {Ψ(`)
1 , . . . ,Ψ

(`)
m }, generating g1 and the left-invariant odd 1-forms,

call them {ω(`)1, . . . , ω(`)n}, generating Πg∗1: then the Haar Berezinian is generated over

R by the expression

BerH (g) ∼= R · [ω(`)1 ∧ . . . ∧ ω(`)n ⊗Ψ
(`)
1 ∧ . . . ∧Ψ(`)

m ]. (2.25)

Notice that this corresponds to the vector superspace of densities of the vector space

underlying the Lie superalgebra g. “Dually” to ordinary Chevally-Eilenberg cochains for

a Lie superalgebra, integral forms cochains can then be introduced into this Lie-algebraic

framework by looking at the definition (2.18) as

Cp
CE,int (g) ..= BerH (g)⊗ Sn−pΠg, (2.26)

where we are exploiting the usual isomorphism between left invariant vector fields on a

Lie supergroup G and elements of its Lie algebra g. In order to distinguish between them

we henceforth call differential Chevalley-Eilenberg p-cochains the elements in the vector

12



superspace Cp
CE,dif (g) ..= SpΠg∗ and integral Chevalley-Eilenberg p-cochains the elements

in the vector superspace Cp
CE,int (g) ..= BerH (g)⊗ Sn−pΠg, as above.

In order to structure this into a true cochain complex, one has to introduce a nilpotent

differential acting as δp : Cp
CE,int (g) → Cp+1

CE,int (g). We first extend the notion of Lie

derivative, or supercommutator, to the whole supersymmetric product SnΠg, this can be

done recursively as follows. Given X ∈ g, having already defined LX : ShΠg → ShΠg for

h < p we uniquely define the action of LX on SpΠg via the relation

LX (〈ω, τ〉) = 〈LX (ω), τ〉+ (−1)|ω||X |〈ω,LX (τ)〉 (2.27)

for any ω ∈ Si>0Πg∗ and τ ∈ SpΠg, and where 〈·, ·〉 is the duality pairing between Πg∗

and Πg, extended to higher tensor powers. Notice that from (2.27) it follows that

LX(Y ) = π[X, πY ] (2.28)

for any Y ∈ Πg, i.e. the Lie derivative of a parity-reversed field is a commutator, as it

should. We now use this to introduce a differential, namely we define the following odd

operator

δp : Cp
CE,int (g) // Cp+1

CE,int

D ⊗ τ � // δp(D ⊗ τ) = D ⊗
∑

A ιπX∗ALXA(τ)

(2.29)

where the index A runs over both even and odd coordinates and where D is a Haar

Berezinian tensor density in BerH (g) and {XA} are left-invariant vector fields generating

g, so that hence {πX ∗A} are generators for Πg∗. Here ιπX∗A is the contraction with the form

πX ∗A, so that the above can be re-written as

δp(D ⊗ τ) = D ⊗
∑
A

〈πX ∗A,LXA(τ)〉. (2.30)

Nilpotency can be checked formally as

1

2
{δ, δ} =

∑
A,B

(ιπX∗ALXAιπX∗BLXB + ιπX∗BLXB ιπX∗ALXA)

=
∑
A,B

(
(−1)|XA||XB |+|XA| + (−1)|XA||XB |+|XA|+1

)
ιπX∗AιπX∗BLXALXB = 0. (2.31)

We thus introduce the cochain complex (Cp
CE,int (g), δp) and we define the corresponding

integral Chevalley-Eilenberg cohomology of the Lie superalgebra g in the usual way

Hp
CE,int (g) ..=

ker
(
δp : Cp

CE,int (g)→ Cp+1
CE,int (g)

)
im
(
δp−1 : Cp−1

CE,int (g)→ Cp
CE,int (g)

) . (2.32)
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Notice that the differential only acts on S•Πg, as can be seen in (2.30). One can therefore

alternatively define the above cohomology (2.32) starting from the cochains Ĉp
S(g) ..=

SpΠg on which δ. The related cohomology is then defined as

Hp
S(g) ..=

ker
(
δp : Ĉp

S(g)→ Ĉp+1
S (g)

)
im
(
δp−1 : Ĉp−1

S (g)→ Ĉp
S(g)

) , (2.33)

and in turn the integral Chevalley-Eilenberg cohomology Hp
CE,int (g) becomes a twist of

Hp
S(g) by BerH (g), namely

H•CE,int (g) ∼= BerH (g)⊗H•S(g). (2.34)

Observe that the Haar Berezinian can be seen as a shift by degree n in cohomology and

that the cochains are really dual one another, as Cp
CE,dif = SpΠg∗ and Cp

CE,int(g) = SpΠg.

So, the question is: if ω ∈ Cp
dif (g) is closed, then is ω∗ ∈ Cp

int(g) closed? And viceversa.

This is proved in the following.

Let us first consider some calculations in the two formalisms, showing that they are

equivalent: consider the case of a (n− 1)-integral form

ω(n−1) = D ⊗
m+n∑
A=1

TA (πYA) ≡ TAιYAω
top . (2.35)

We can apply the operator δ(1) ≡ d to ω(n−1) thus obtaining

δ(1)ω(n−1) = D ⊗
∑
B

∑
A

ι(πY ∗B)T
ALYB (πYA) =

= D ⊗
∑
B

∑
A,C

ι(πY ∗B)T
AfCBA (πYC) = D ⊗

∑
B

∑
A,C

TAfCBAδBC = 0 , (2.36)

where we have used the (2.28) for the Lie derivative, ι(πY ∗A) (πYB) = δAB and the properties

of the structure constants. On the other hand we have

dω(n−1) =
1

2
fABC (πY ∗)B (πY ∗)C ιYAT

DιYDω
top = fABCδ

B
A δ C

D TDωtop = 0 . (2.37)

Notice that actually we can use the isomorphism H•CE (g,R) ∼= H•dR (G)G (i.e. that the

Chevalley-Eilenberg cohomology of the superalgebra g is isomorphic to the de Rham

cohomology of the supergroup G restricted to the left-invariant forms) to obtain (2.37) in

a different way:

dω(n−1) = dTDιYDω
top = TDLYDω

top + (−1)|πYD| TDιYDdω
top = 0 , (2.38)
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where we have used the fact that ωtop is the Haar Berezinian tensor density in BerH (g),

hence the (left) invariant top form. The previous example is two-folded: first it is an

example of calculation in both realisations with a check of equivalence, second it shows

that the Haar Berezinian D ≡ ωtop, which is obviously closed with respect to δ(•) ≡ d, is

not exact, thus showing that it is always a cohomology representative.

2.3 Isomorphism Between Superform and Integral Form Coho-

mologies.

In this section we show that the cohomology of superforms is isomorphic to the cohomology

of integral forms. In order to do so, we will use the formalism where the Haar Berezinian

is treated as a differential form as in (2.22) and the nilpotent operator is actually the

Cartan differential. The proof for integral forms written as in (2.26) with respect to the

differential (2.29) follows from the “dictionary” between the two established formalisms.

Let us start by considering a superform ω(1), such that dω(1) = 0. We define its “Berezinian

complement” ?ω(1) as

? : Ω1
CE,dif (g) // Ωn−1

CE,int (g)

ω(1) � // ?ω(1) = (?ω)(n−1) ..= ιY ω
top
g ,

(2.39)

where ω(1)(Y ) = 1, i.e. πY is the vector field dual to ω(1). Then we have d ? ω(1) =

dιY ω
top
g = 0, as we have shown in (2.38). For a generic p-superform the generalization

follows by extending (2.39) as

? : Ωp
CE,dif (g) // Ωn−p

CE,int (g)

ω(p) � // ?ω(p) = (?ω)(n−p) ..= ιY1 . . . ιYpω
top
g ,

(2.40)

where ω(p)(Y1, . . . ,Yp) = 1. Given ω(p) ∈ Hp
CE,dif (g), we have

d
(
ωA1...Ap (πY ∗)A1 ∧ . . . ∧ (πY ∗)Ap

)
= pωA1...Apf

A1
RS (πY ∗)R (πY ∗)S (πY ∗)A2∧. . .∧(πY ∗)Ap = 0

⇐⇒ ωA1...Apf
A1
RS = 0 . (2.41)

We now show that this condition implies d ? ω(p) = 0. First of all, we observe that the

integral form dual to ω(p) reads

?ω(p) = TA1...ApιY A1 . . . ιY Apω
top
g , such that TA1...ApωA1...Ap = 1 . (2.42)
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It is easy to see that

d ? ω(p) = 0 ⇐⇒ TA1A2...ApfRA1A2
= 0 . (2.43)

Recalling that every basic classical Lie superalgebra admits a non-degenerate bilinear

form, see e.g. [22], we can use the (non-degenerate) bilinear form gAB in order to write

the coefficients T of the integral form in terms of the coefficients ω of the superform as

TA1A2...Ap =
1

||ω||2
gA1B1 . . . gApBpωB1...Bp , where ||ω||2 = ωA1...Apg

A1B1 . . . gApBpωB1...Bp .

(2.44)

By substituting (2.44) in the left hand side of (2.43), we obtain

1

||ω||2
gA1B1 . . . gApBpωB1...Bpf

R
A1A2

=
1

||ω||2
gA3B3 . . . gApBpωB1...Bpf

RB1B2 = 0 , (2.45)

as a consequence of (2.41). Hence the result dω(p) = 0 =⇒ d ? ω(p) = 0. The converse

can be shown in a similar way.

From the previous argument we can now infer the isomorphism between the cohomolo-

gies of super and integral forms. In particular, if ω(p) ∈ Hp
CE,dif (g), we have

ω(p) ∧ ?ω(p) = ωtopg ∈ BerH (g) . (2.46)

By contradiction, let us assume (?ω)(n−p) = dΛ(n−p−1), we get

ωtopg = d
(
ω(p) ∧ Λ(n−p−1)) , (2.47)

contradicting that ωtopg is a cohomology representative as shown in the previous section.

This argument shows that the operator ? is indeed an isomorphism:

? : H•CE,dif (g)
∼=−→ Hn−•

CE,int (g) . (2.48)

3 Poincaré Polynomials and Betti Numbers

Before we move to compute examples of Chevalley-Eilenberg cohomologies, we review the

definition of Poincaré series and Poincaré polynomials. For X a graded k-vector space

with direct decomposition into p-degree homogeneous subspaces given by X =
⊕

p∈ZXp

we call the formal series

PX(t) =
∑
p

(dimkXp)(−t)p (3.49)
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the Poincaré series of X. Notice that we have implicitly assumed that X is a of finite type,

i.e. its homogeneous subspaces Xp are finite dimensional for every p. The unconventional

sign in (−t)p takes into account the parity of Xp, which takes values in Z2 and it is

given by pmod 2: this will be particularly useful in the super setting. If also dimkX is

finite, then PX(t) becomes a polynomial PX [t], called Poincaré polynomial of X. The

evaluation of the Poincaré polynomial at t = 1 yields the so-called Euler characteristics

χ
X

= PX [t = 1] =
∑

p(−1)p dimkXp ofX. If we assume that the pair (X, δ) is a differential

complex for X a graded vector space and δ : Xp → Xp+1 for any p, then the cohomology

H•δ (X) =
⊕

p∈ZH
p
δ (X) is a graded space. Here we are interested into the case of the de

Rham cohomology, where X =
∧• T ∗M , i.e. the exterior bundle of a certain differentiable

manifold M and the differential δ = d :
∧p T ∗M →

∧p+1 TM is the de Rham differential:

then H•dR(M) is a graded vector space and we call bp(M) ..= dimkH
p
dR(M) the p-th Betti

number of M . The Poincaré polynomial of M , defined as (Euler-Poincaré formula)

PM [t] ..= PHdR(M)[t] =
∑
p

bp(M)(−t)p (3.50)

is the generating function of the Betti numbers of M . This property is known as telescopic

nesting which implies that from the easy computation of PX(t), one deduces PH(X)(t).

From the latter one can read the cohomology classes by their gradings and the parity.

Even if the notion of Betti numbers is originally related to the topology of a certain

manifold or topological space, by extension, in this paper we will call Betti numbers the

dimensions of any cohomology space valued in a field, in particular, we will call p-th

Betti numbers of a certain Lie (super)algebra the dimension of its Chevalley-Eilenberg

p-cohomology group bp(g) = dimkH
p
CE(g), so that the Poincaré series of the Lie (su-

per)algebra g is the generating function of its Betti number

Pg(t) =
∑
p

bp(g)(−t)p. (3.51)

Notice that we used the notation P (t) on purpose: indeed, as we shall see, H•CE(g) is not

in general finite dimensional for a generic Lie superalgebra g. In this context, we can

retrieve some useful results using the Poincaré series. For example, Künneth theorem,

which computes the cohomology of products of spaces, can simply be written as

PX⊗Y (t) = PX(t) · PY (t). (3.52)

Sometimes, it is useful to introduce a second grading. In that case the space is said

to be bigraded vector space X =
∑

p,q∈ZX
p,q, then the gradation X =

∑
rX

r given by

Xr =
∑
p+q=r

Xp,q (3.53)
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is called the induced total gradation. One can write a double Poincaré series

PX(t, s) =
∑
p,q

(−t)psqdimXp,q (3.54)

which, in any case, allows an easier identification of cohomological classes (see, e.g., [24]

where double Poincaré series have been used to select different type cohomologies).

4 Chevalley-Eilenberg Cohomology: Computations

4.1 Dimension 1: Example of Infinite Cohomology

In order to get familiar with cohomology computations of Lie superalgebras we start from

a “simple model”, that is the Lie superalgebra of the supertranslations of the superspace

R1|2, which we will denote susy(R1|2), and we spell out all the details. Starting from

the supermanifold structure, here - and in the following examples - the superspace R1|2

is actually not to be looked at as just the “bare” flat superspace R1|2, characterized by

the pair (R,OR ⊗ ∧•[θ1, θ2]) as a ringed space, where the first entry is just the ordinary

manifold R and the second entry is a sheaf of exterior algebras generated over two anti-

commuting variables θ1 and θ2, i.e. the structure sheaf OR1|2 of the supermanifold R1|2.

Instead, R1|2 carries some additional data, namely an odd distribution of the tangent

bundle of R1|2, we denote it as Susy ⊂ T (R1|2), which is generated by the fields

Q1
..=

∂

∂θ1
− θ2

∂

∂x
, Q2

..=
∂

∂θ2
− θ1

∂

∂x
, (4.55)

and which satisfies the commutation relations

{Qα,Qβ} = 2δαβP , (4.56)

for α, β = 1, 2, where we have defined P ..= − ∂
∂x

. This means that the distribution Susy
generated by {Q1,Q2} is non-integrable and the triple {Q1,Q2,P} generates the tangent

bundle at any point. Adding to the previous relations (4.56) also the obvious commu-

tation relations [P ,P ] = 0 and [P ,Qi] = 0 for any i = 1, 2 one gets the supersymmetry

translation algebra, or supertranslation algebra for short, which we denote susy(R1|2).

Switching from fields to forms, in order to write the cochains Cp
CE(susy(R1|2)) = SpΠsusy(R1|2)∗,

we have to find the dual vielbeins (up to a parity shift) to the above fields. These are

V ..= dx− θ1dθ2 − θ2dθ1, ψα = dθα, (4.57)

18



for α = 1, 2, and it can be easily checked that V (πP) = 1 and ψα(πQβ) = δαβ . The

Maurer-Cartan equations for the vielbeins C1
CE(susy(R1|2)) = {ψα|V } are easily computed

to be

dV = −2ψ1ψ2, dψα = 0, (4.58)

for α = 1, 2. Now the cohomology is readily computed observing that terms involving V
will never be closed and terms involving the product ψ1ψ2 will always be exact. This

leads to the following differential Chevalley-Eilenberg cohomology

Hp
CE,dif (susy(R1|2)) ∼= R · {(ψα)p}, (4.59)

for any p ≥ 0 and α = 1, 2. Assigning the weights to Maurer-Cartan forms according to

W (V ) = 1 and W (ψα) = 1/2 for any α = 1, 2, one finds for the Poincaré series

P dif
susy(R1|2)

(t) =
1− t(

1−
√
t
)2 =

1 +
√
t

1−
√
t

= 1 + 2
∞∑
n=1

tn/2 , (4.60)

where the denominator has been expanded around 0. This is in agreement with the

previous computation, which indeed says that the Betti numbers of the superalgebra are

b1(susy(R1|2) = 1, bp≥1(susy(R1|2) = 2. (4.61)

Let us now look at the integral Chevalley-Eilenberg cohomology. Repeating the above

analysis, posing

Dsusy(R1|2)
..= V εαβδ(ψα)δ(ψβ) ∈ BerH (susy(R1|2)), (4.62)

one finds that

H1−p
CE,int (susy(R1|2)) = R ·

{
(ιπQ1)

pDsusy(R1|2), (ιπQ2)
pDsusy(R1|2)

}
, (4.63)

where we notice in particular that the (Haar) Berezinian (Dsusy(R1|2)) generates the integral

1-cohomology H1
CE,int (susy(R1|2)). Mirroring what above, terms coming from a double

contraction ιπQ1ιπQ2 are not closed, while terms that do not contain V are exact. Just

like above, this matches the Poincaré series computation, namely

P int
susy(R1|2)(t) =

1− t(
1− 1/

√
t
)2 (−1√

t

)2

=
1 +
√
t

1−
√
t

= −1− 2
∞∑
n=1

t−n/2, (4.64)

where now we expanded the denominator around infinity, as to represent the cohomology

spaces with negative form degree.
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Before we move to higher dimensional examples, some remarks are in order. First of all,

already in this example it has to be noted an obvious yet striking difference between the

ordinary and the super Chevalley-Eilenberg cohomology, namely the fact that even the

cohomology of finite dimensional Lie superalgebras can be infinite, whereas clearly every

finite-dimensional Lie algebras has a finite-dimensional Chevalley-Eilenberg cohomology.

This is allowed by the very structure of the cochain complex, which is not bounded from

above for a true Lie superalgebra, i.e. a Lie superalgebra whose odd dimension is different

from zero, and by the structure of the commutators, which can leave “unconstrained” an

even form, such as in the case of ψα above.

4.2 Dimension 2: “Flat” and “Curved” Cases

We now pass to study some more interesting cases of cohomology of Lie superalgebras,

which both have two bosonic dimensions. Namely we study the Lie superalgebra of

supertranslations related to the superspace R1,1|2, which we will call flat superspace as it

is constructed over the Minkowski space R1,1, and the Lie superalgebra u(1|1). For the

sake of completeness and readability of the paper, the general mathematical structure of

the Lie superalgebra u(n|m) is described in Appendix A.

4.2.1 Flat Case: Supertranslations of the D = 2, N = 1 Superspace

Repeating the above discussion for the 1-dimensional case, one is lead to consider the

algebra of supertranslations generated by the following vector fields

Qα ..=
∂

∂θα
− (θβΓβα)i

∂

∂xi
, Pi ..= − ∂

∂xi
, (4.65)

where xi|θα for i = 0, 1 and α = 1, 2 are coordinate for R1,1|2 and the gamma matrices

Γiαβ generating the spin representation of so(1, 1) in which the odd coordinates transform,

are given by

Γ1
αβ =

(
1 0

0 −1

)
, Γ2

αβ =

(
0 1

1 0

)
. (4.66)

The non-trivial commutation relations (supersymmetries) characterizing the Lie superal-

gebra susy(R1,1|2) read

{Qα,Qβ} = −2ΓiαβPi. (4.67)
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Dually, we introduce the vielbeins, which will generate the cochains for the Lie superal-

gebra. These are given by

V i = dxa − θαΓaαβdθ
β, ψα = dθα (4.68)

again for i = 0, 1 and α = 1, 2. The Maurer-Cartan equations reads

dV i = ψαΓaαβψ
β, dψα = 0, (4.69)

leading to the following cohomology:

H0
CE,dif (susy(R1,1|2)) ∼= R · 1, H1

CE,dif (susy(R1,1|2)) ∼= R · {ψ1, ψ2}

H2
CE,dif (susy(R1,1|2)) ∼= R ·

{ 2∑
α=1

(ψα)2
}
, Hp>2

CE,dif (susy(R1,1|2)) ∼= 0. (4.70)

This result is in agreement with the Poincaré polynomial, as indeed

P dif
susy(R1,1|2)

[
√
t] =

(1− t)2(
1−
√
t
)2 = 1 + 2

√
t+ t. (4.71)

Switching to integral forms, posing as above

Dsusy(R1,1|2)
..= V 1V 2δ(ψ1)δ(ψ2) ∈ BerH (susy(R1,1|2), (4.72)

and repeating the above computations one gets accordingly that

H2
CE,int (susy(R1,1|2)) ∼= R · Dsusy(R1,1|2), H1

CE,dif (susy(R1,1|2)) ∼= R · {ιπQαDsusy(R1,1|2)}

H0
CE,int (susy(R1,1|2)) ∼= R ·

{ 2∑
α=1

(ιπQα)2Dsusy(R1,1|2)

}
, Hp<0

CE,dif (susy(R1,1|2)) ∼= 0. (4.73)

The Poincaré polynomial reads

P int
susy(R1,1|2)[t] =

(1− t)2(
1− 1/

√
t
)2 (−1√

t

)2

= 1 + 2
√
t+ t. (4.74)

4.2.2 Curved Case: Lie Superalgebra u(1|1)

We now aim at computing the cohomology of the 2|2-dimensional Lie superalgebra u(1|1).

Further, later on, we briefly comment on Cartan’s theorem on the cohomology of compact

and connected Lie groups in the supersetting. Before we start, we recall that, for the
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sake of the readability of the paper, the construction of the Lie superalgebra u(n|m) for

arbitrary values of n and m is given in Appendix A.

In the easiest case u(1|1), one has a 2|2-dimensional Lie superalgebra, whose general

element can be given in the following form

X =

(
ia θ + iψ

−ψ − iθ ib

)
, (4.75)

for a, b ∈ R and θ, ψ ∈ ΠR, so that the even and odd generators can be chosen to be the

matrices

X1 =

(
i

0

)
, X2 =

(
0

i

)
, Ψ1 =

(
1

−i

)
, Ψ2 =

(
i

−1

)
, (4.76)

together with the commutation relations

[Xi, Xj] = 0, [X1,Ψ1] = Ψ2, [X1,Ψ2] = −Ψ1, [X2,Ψ1] = −Ψ2, [X2,Ψ2] = Ψ1

(4.77)

{Ψ1,Ψ1} = −2X1 − 2X2, {Ψ2,Ψ2} = −2X1 − 2X2, {Ψ1,Ψ2} = 0.

(4.78)

Introducing the dual (up to parity) basis of Maurer-Cartan forms of Πu(1|1)∗, defined

so that Πu(1|1)∗ = SpanR{V i|ψα} for i = 1, 2 and α = 1, 2, with V i(πXj) = δij and

ψα(πΨβ) = δαβ , one sees from (4.77) and (4.78) that the Maurer-Cartan equations read

dV 1 = dV 2 = −
2∑

α=1

(ψα)2, dψ1 = ψ2 (V 1 − V 2)

2
, dψ2 = ψ1 (−V 1 + V 2)

2
. (4.79)

Changing the basis to U ..= V 1−V 2

2
and W ..= V 1+V 2

2
, the Maurer-Cartan equations simplify

to

dU = 0, dW = −
2∑

α=1

(ψα)2, dψ1 = Uψ2, dψ2 = −Uψ1. (4.80)

Starting from the p-cochains Cp(u(1|1)) = Sp(Πu(1|1)∗) and using the above Maurer-

Cartan equations (4.80), it is not hard to compute the related Chevalley-Eilenberg coho-

mology:

H0
CE,dif (u(1|1)) ∼= R · 1, H1

CE,dif (u(1|1)) ∼= R · {U}, Hp>1
CE,dif (u(1|1)) = 0. (4.81)
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This is in agreement with the computation of the Poincaré polynomial, which is the one

of the ordinary 1-dimensional unitary Lie algebra u(1) as shown also by Fuks:

P dif
u(1|1)[t] = P dif

u(1)[t] = 1− t. (4.82)

In the case of integral Chevalley-Eilenberg cohomology one has the following cohomology

H2
CE,int (u(1|1)) ∼= R · Du(1|1), H1

CE,int (u(1|1)) ∼= R · {ιπU∗Du(1|1)},
Hp<1
CE,int (u(1|1)) = 0. (4.83)

where we have posed again Du(1|1) = UWδ(ψ1)δ(ψ2) so that for example the represen-

tative of the 1-cohomology group is given by Wδ(ψ)δ(ψ), and accordingly the Poincaré

polynomial is computed to be

P int
u(1|1)[t] = t2 − t. (4.84)

4.2.3 A Remark on Cartan Theorem on Compact Lie Groups

A crucial result in Lie algebra cohomology theory is a theorem due to Cartan, which

states that under the topological assumptions of compactness and connectedness, the de

Rham cohomology of a Lie group G is isomorphic to the cohomology of its Lie algebra

(valued in the real numbers), i.e. Hp
dR(G) ∼= Hp

CE(g); clearly, the result is remarkable

not only from a conceptual point of view, but also from a computational point of view,

for it allows to get topological informations on large interesting classes of Lie groups via

linear algebra. The above result on u(1|1) shows that the result does not hold true in the

supersetting, whereas one naively substitutes the ordinary compact Lie group G with a

compact Lie supergroup G and the Lie algebra g with its Lie superalgebra.

Let us look indeed at the Lie supergroup U(1|1) related to u(1|1). Especially in this

context, it is convenient to introduce the unitary supergroup U(1|1) as the super Harish-

Chandra pair (U(1) × U(1), u(1|1)), since the categories of Lie supergroups and super

Harish-Chandra pairs are indeed equivalent [5]. As it is well-known [8], the de Rham

cohomology of a supermanifold only depends on its underlying topological space, and

as such it is completely determined by the first entry, i.e. the ordinary Lie group, of

the super Harish-Chandra pair. In our case, we obtain the cohomology of a 2-torus

S1 × S1 ∼= U(1)× U(1):

Hp
dR(U(1|1)) ∼=


R p = 0

ΠR2 p = 1

R p = 2.

(4.85)
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This shows that the de Rham cohomology of compact Lie supergroups, such as for example

U(1|1) which is topologically a 2-torus, is not isomorphic to the Chevalley-Eilenberg

cohomology of superforms of their related Lie superalgebras.

Notice by the way, that the isomorphism is restored once one reduces to deal with the

even - or topological - part of a Lie superalgebra. In other words, if, as a vector space, a

Lie superalgebra is such that g = g0 ⊕ g1, and its related (e.g. via Harish-Chandra pair)

Lie supergroup G is topologically compact as a (super)manifold, then one finds that for

any p

Hp
dR(G) ∼= Hp

CE,dif (g0). (4.86)

This is readily seen in the above case for the Lie superalgebra u(1|1), where modding out

the odd part of the underlying vector space, one is left with Maurer-Cartan equations of

the form dU = 0 and dW = 0, which indeed lead to the same cohomology of the 2-torus.

Once again, it has therefore to be stressed that whilst fermions play really no role when

computing de Rham cohomology of a supermanifold as nilpotents do not modify topology,

in the case of Chevalley-Eilenberg cohomology of a Lie superalgebra, which is ultimately

determined by the structure of commutators or, equivalently, by the Maurer-Cartan equa-

tions, fermions play a crucial role and they do indeed determine the cohomology structure,

which might be very different - either richer or poorer - from the cohomology of the topo-

logical even part of the superalgebra.

4.3 Dimension 3: “Flat” and “Curved” Cases

In this section we study two examples of superalgebras that have 3 bosonic dimensions.

In particular, we study the cohomology of the Lie superalgebra of superstranslations of

flat superspace R1,2|2 and, after having reviewed (in appendix B) the construction of

the (simple) Lie superalgebra osp(n|2m) for generic values of n and m we study the

cohomology of its simplest case, namely osp(1|2), corresponding to the classical simple

Lie superalgebra B(0, 1) in Kac’s classification.

4.3.1 Flat Case: Superstranslations of D = 3, N = 1 Superspace

We describe the supermanifold R1,2|2, based on the Minkowski space R1,2 by a set of two

coordinates (xa, θα). In terms of these coordinates, we have the following supersymmetry
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generators

Qα ..=
∂

∂θα
− (γαβθ

β)a
∂

∂xa
. (4.87)

Notice that in the above we are using real and symmetric gamma matrices γaαβ, which are

defined via charge conjugation, given by the Pauli matrix C ..= −iσ2 = εαβ, so that we

have

γ0αβ
..= (CΓ0)αβ = −1, γ1αβ

..= (CΓ1)αβ = σ3, γ2αβ
..= (CΓ2)αβ = −σ1 ,(4.88)

where

Γ0 ..= iσ2 =

(
0 1

−1 0

)
, Γ1 ..= iσ1 =

(
0 1

1 0

)
, Γ2 ..= σ3 =

(
1 0

0 −1

)
, (4.89)

which satisfies the the Clifford algebra relation {Γa,Γb} = 2ηab1, with ηab the Minkowski

metric and they must be looked at as (Γa)αβ from the point of view of spinor indices.

Defining as above Pa = − ∂
∂xa

, we have the commutation relations of the algebra susy(R1,2|2)

{Qα,Qβ} = 2γaαβPa. (4.90)

Switching to forms, we have the following dual (up to parity) basis of Maurer-Cartan

1-forms C1
CE,dif (susy(R1,2|2)) ..= {ψα|V a} for a = 0, . . . , 2 and α = 1, 2 with

V a ..= dxa − θαγaαβdθβ, ψα ..= dθα. (4.91)

From the commutation relation above one reads the Maurer-Cartan equations

dV a = ψαγaαβψ
β, dψα = 0 , (4.92)

which in turns leads to the following (differential) Chevalley-Eilenberg cohomology1

H0
CE,dif (susy(R1,2|2)) ∼= R · 1,

H1
CE,dif (susy(R1,2|2)) ∼= R · {ψα},

H2
CE,dif (susy(R1,2|2)) ∼= R ·

{
V aγa,αβψ

β

}
,

H3
CE,dif (susy(R1,2|2)) ∼= R ·

{
V aψαγa,αβψ

β

}
, (4.93)

1Some results have been already appeared in the liturature [47].
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and Hp>3
CE,dif (susy(R1,2|2)) = 0. The closure of the above 2-forms and 3-form is easily seen

by using Fierz identities. Accordingly, the computations of the Poincaré polynomial in

the present case gives

P dif
susy(R1,2|2)

[
√
t] =

(1− t)3

(1−
√
t)2

= (1−
√
t)(1 +

√
t)3 = 1 + 2

√
t− 2t

√
t− t2, (4.94)

where we observe that the signs indeed match the parity of the representatives. Passing

to the integral Chevalley-Eilenberg cohomology we find, keeping explicit the structure of

the generators and leaving the wedge product understood,

H3
CE,int (susy(R1,2|2)) ∼= R · {V 0V 1V 2δ(ψ1)δ(ψ2)},

H2
CE,dif (susy(R1,1|2)) ∼= R · {V 0V 1V 2ιπQαδ(ψ

1)δ(ψ2)}

H1
CE,int (susy(R1,1|2)) ∼= R ·

{
V aV bγab,αβιπQβδ(ψ

1)δ(ψ2)

}
,

H0
CE,int (susy(R1,1|2)) ∼= R ·

{
V aV bιπQαγab,αβιπQβδ(ψ

1)δ(ψ2)

}
Hp<0
CE,dif (susy(R1,1|2)) ∼= 0, (4.95)

where we have defined γab ..= 1
2
[γa, γb] and it can be seen that γabαβ = εabc γ

c
αβ. Also notice

that, as above, the highest integral cohomology group is indeed generated by the (Haar)

Berezinian, namely R · Dsusy(R1,1|2) = εabcV aV bV cεαβδ(ψ
α)δ(ψβ). The Poincaré polynomial

reads

P int
susy(R1,2|2)[

√
t] =

(1− t)3(
1− 1/

√
t
)2 (−1√

t

)2

= 1 + 2
√
t− 2t

√
t− t2. (4.96)

where we have used the assignement of the charges as in the previous sections. The factor

(1−t)3 is due to V a’s, the factor (1−1/
√
t)2 in the denominator is due to the contractions

ιπQα (being a contraction w.r.t. an odd vector a commuting object). The factor (−1/
√
t)2

is due to the term δ(ψα)δ(ψβ). Notice that the Poincaré polynomial is exactly the same

as in (4.94).

As it is known, beside integral and differential forms, there are also forms with non-

maximal and non-zero picture number, which are usually called pseudoforms [44, 10, 11,

12, 15, 16]. Just as a hint, in the present case, pseudoforms have picture number 1 and

form other two complexes unbounded both from above and from below. The prototype

for these forms is V . . .V (ψ1)a(ι2)
bδ(ψ2) where a, b ≥ 0 (by exchanging ψ1 with ψ2, we
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get the other complex). Counting again the scaling dimensions we have

Ppseudo[
√
t] =

(1− t)3(
1− 1√

t

)
(1−

√
t)

(
−1√
t

)
= 1 + 2

√
t− 2t

√
t− t2 (4.97)

where the factor (1 − t)3 is due to the V ’s, 1/(1 − 1√
t
) takes into account the powers of

ι2, 1/(1 −
√
t) takes into account the powers of ψ1. Finally, −1√

t
represents δ(ψ2) which

scales as 1/
√
t and the minus sign takes into account the fermion nature of a single delta.

We do not explore any further this “sector” of the cohomology, but it will turn out to

be crucial for a complete understanding of the Chevalley-Eilenberg cohomology in this

extended framework [13].

4.3.2 Curved Case: Lie Superalgebra osp(1|2) and its İnönü-Wigner Contrac-

tion to susy(R1,2|2)

For the sake of readability of the paper, we review in Appendix B the construction of

the orthosymplectic Lie superalgebra osp(n|2m) for generic values of n and m. Here we

restrict to the case osp(1|2) = B(0, 1) and compute its cohomology. Last, we relate the

computation with the case of the previous “flat” case of the Lie superalgebra susy(R1,2|2)

considered above.

The choice of a basis for osp(1|2) using the relations (B.194) is reflected into the commu-

tation relations. However, a neat and convenient choice is provided as follows:

P0 =
1

2

 0 0 0

0 0 1

0 −1 0

 , P1 =
1

2

 0 0 0

0 1 0

0 0 −1

 , P2 =
1

2

 0 0 0

0 0 1

0 1 0

 , (4.98)

Q1 =

 0 1 1

1 0 0

−1 0 0

 , Q2 =

 0 1 −1

−1 0 0

−1 0 0

 . (4.99)

Making use of the previously introduced (real and symmetric) gamma matrices γiαβ the

commutation relations can be written in the following very convenient way

[Pa,Pb] = −εabcPc, {Qα,Qβ} = −2γaαβPa, [Qα,Pa] = −γ a
α βQβ (4.100)

where εabc is the Levi-Civita symbol and where we observe that the first commutation

relation follows by the isomorphism sp(2,R) ∼= so(2, 1,R) ∼= su(1, 1,C).
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We now introduce the Maurer-Cartan forms which are dual to the above generators of the

Lie superalgebra osp(1|2) up to parity. More precisely we introduce a basis of forms such

that C1
CE,dif (osp(1|2)) = Πosp(1|2)∗ = SpanR{ψα|V a} for a = 0, 1, 2 and α = 1, 2 with

V a(πPb) = δab and ψα(πQβ) = δαβ . The above commutation relations lead to the following

set of Maurer Cartan equations (up to a sign redefinition):

dV a = ε a
bc V bV c + ψαγaαβψ

β, dψα = V aγa,αβψ
β (4.101)

The cohomology reads

H0
CE,dif (osp(1|2)) ∼= R · 1,

H1
CE,dif (osp(1|2)) ∼= 0,

H2
CE,dif (osp(1|2)) ∼= 0

H3
CE,dif (osp(1|2)) ∼= R ·

{
1

2
V a(ψγaψ)− 1

6
εabcV aV bV c

}
(4.102)

and Hp>3
CE,dif (osp(1|2)) ∼= 0. Notice that this result is confirmed by the theorem of Fuks,

which states that the cohomology of osp(1|2) is isomorphic to that of its bosonic subal-

gebra sp(2,R), thus leading to the Poincaré polynomial

P dif
osp(1|2)[t] = Psp(2,R) = 1− t3. (4.103)

Notice, though, that with respect to the bosonic Lie algebra sp(2,R) the representative

of the 3-cohomology of the Lie superalgebra osp(1|2) is shifted in the fermionic directions

as can be seen directly by the above expression.

Quite similarly, the integral Chevalley-Eilenberg cohomology reads

H3
CE,int (osp(1|2)) ∼= R · εabcV aV bV cεαβδ(ψ

α)δ(ψβ),

H2
CE,int (osp(1|2)) ∼= 0,

H1
CE,int (osp(1|2)) ∼= 0,

H0
CE,int (osp(1|2)) ∼= R ·

{
1

2
V aV b(ιπQαγ[ab],αβιπQβ)εαβδ(ψ

α)δ(ψβ)− 1

6
εαβδ(ψ

α)δ(ψβ)

}
.

(4.104)

It is worth to observe the relation between the “curved” and “flat” 3-dimensional case.

Indeed, simply redefining the generators of the superalgebra osp(1|2) by a constant pa-

rameter λ as follows,

Qλα ..=
1√
λ
Qα, Pλa ..=

1

λ
Pa, (4.105)
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one finds that the new Maurer-Cartan equations for V a
λ and ψαλ read

dV a
λ = λε a

bc V b
λV c

λ + ψαλγ
a
αβψ

β
λ , dψαλ = λV aγa,αβ. (4.106)

The limit λ → 0 is called İnönü-Wigner contraction and it is immediate to see that it

gives back the Maurer-Cartan equations for the superalgebra susy(R1,2|2) : in this sense

susy(R1,2|2) can be seen as the “flat” limit of the orthosymplectic superalgebra osp(1|2).

4.4 Dimension 4: “Flat” and “Curved” Cases

4.4.1 Flat Case: Supertranslations of the D = 4, N = 1 Superspace R1,3|4

Let us now move to a 4 dimensional example. Here we consider the physically relevant

superspace R1,3|4 based upon the 4-dimensional Minkowski space R1,3. This is the usual

superspace for rigid supersymmetry models N = 1 and therefore the first step toward

supergravity models. Some of results of the present section have been also discussed in

[46].

Again, we describe this flat supermanifold via the coordinates (xa|θα) for a = 0, . . . 3

and α = 1, . . . 4. The supersymmetry generators read exactly as in equation (4.87),

but clearly now the gamma’s are 4-dimensional Dirac matrices, instead of 2-dimensional.

Accordingly, passing to the Maurer-Cartan forms and defining V a = dxa + θαγaαβdθ
β and

ψα = dθα one has that the generators of the 1-cochains of the Lie superalgebra satisfies

the Maurer-Cartan equations

dV a = ψαγaαβψ
β, dψα = 0 . (4.107)

Notice, by the way, that it is convenient switching the reducible Dirac representation

ψ ∈ (1/2, 0)⊕ (0, 1/2) to its irreducible components, the (left) Weyl spinors χα ∈ (1/2, 0)

and (right) anti-Weyl spinors λ̄α̇ ∈ (0, 1/2) for α, α̇ = 1, 2 so that ψ = (χα, λ̄α̇). The

above Maurer-Cartan modifies to

dV αα̇ = χαλ̄α̇, dχα = 0, dλ̄α̇ = 0. (4.108)

Here we are using the spin structure to represent the odd 1-forms V a as bispinors: V αα̇ =

σ̄αα̇a V a, where we have used the matrices σ̄ of the (0, 1/2) irreducible component. Instead

of giving the cohomology classes, let us first look at the Poincaré polynomial. Assigning

weights 1/2 to the Maurer-Cartan forms (χα, λ̄α̇) and 1 to the Maurer-Cartan form V i

respectively, as already done early on, one considers

P dif
susy(R1,3|4)

[
√
t] =

(1− t)4

(1−
√
t)4

=
(1−

√
t)4(1 +

√
t)4

(1−
√
t)4

= 1 + 4
√
t+ 6t+ 4t

√
t+ t2. (4.109)
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Here the numerator corresponds to product of the V αα̇’s - these are odd forms, thus they

appear in the numerators - and the denominator corresponds to product of the χα’s and

λ̄α̇’s - these are even forms, thus they appear in the numerator. Let us now see explicitly

the first cohomology groups:

H0
CE,dif (susy(R1,3|4)) ∼= R · 1,

H1
CE,dif (susy(R1,3|4)) ∼= R · {χα, λ̄α̇}

H2
CE,dif (susy(R1,3|4)) ∼= R · {χαχβ, λ̄α̇λ̄β̇, χαεαβV ββ̇, λ̄α̇εα̇β̇V

ββ̇},

H3
CE,dif (susy(R1,3|4)) ∼= R · {χαχβχγ, λ̄α̇λ̄β̇λ̄γ̇, χγχαεαβV ββ̇, λ̄γ̇λ̄α̇εα̇β̇V

ββ̇, χαλ̄α̇εαβεα̇β̇V
ββ̇},

H4
CE,dif (susy(R1,3|4)) ∼= R · {χαχβχγχδ, λ̄α̇λ̄β̇λ̄γ̇λ̄δ̇, . . . } (4.110)

where the sum over repeated indices is understood, and the ellipses in the 4-cohomology

group stays for other cohomology representatives which we have not written. Notice that

the cohomology is again infinite dimensional, for example one has that

χα1 . . . χαp ∈ Hp
CE,dif (susy(R1,3|4)) (4.111)

for any p ≥ 1. With reference to the assigned weights, one sees that the Poincaré series

(in
√
t) is reconstructed as follows:

dimH0
CE,dif (susy(R1,3|4)) 1,

dimH1
CE,dif (susy(R1,3|4)) 2

√
t+ 2

√
t,

dimH2
CE,dif (susy(R1,3|4)) −2t

√
t− 2t

√
t+ 3t+ 3t

dimH3
CE,dif (susy(R1,3|4)) 4t

√
t+ 4t

√
t− 4t2 − 4t2 − t2

dimH4
CE,dif (susy(R1,3|4)) 5t2 + 5t2 + . . . . (4.112)

Summing up the above terms, this leads to 1+4
√
t+6t+4t

√
t+ t2 = P dif

susy(R1,3|4)
. Compar-

ing explicit computations with the above Poincaré polynomial one indeed sees that the

contributions for weights higher than 2 vanishes, or better, they sum up to zero, even if

there is cohomology at any degree higher than 4.

However, the Maurer-Cartan equations allow to take different weights, namely distinguish

between the left spinors and the right spinors, and associating to the χ’s the weight
√
t

and to λ̄’s the weight
√
t̄, so that V is associated with

√
t
√
t̄. This choice leads indeed to

the series:

P dif
susy(R1,3|4)

(
√
t,
√
t̄) = 1 + 2(

√
t+
√
t̄) + 3(t+ t̄) + 4(t

√
t+ t
√
t)− 2(t̄

√
t+ t
√
t̄) + . . .

(4.113)
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where each monomial of the series is in a one-to-one correspondence with a cohomology

representative and the signs stand for even and odd parity.

4.5 Curved Case: Lie Superalgebra osp(2|2)

Before discussing coset superspaces - which appear more suitable to provide useful example

of supergravity backgrounds - we consider a “curved” 4 dimensional case, studying the

cohomology of the Lie superalgebra osp(2|2) = C(2). The setting is given exactly as above

and we refer to Appendix B. Before we start, though, it is useful to stress that the related

Lie supergroup OSp(2|2) cannot be given an interpretation from Minkowskian point of

view, since it breaks the SO(1, 3)-invariance to the subgroup SO(2)×Sp(2) - and indeed

fermionic coordinates transforms under this subgroup. However, the example provides a

useful comparison with the remarkable “flat superspace” case above.

The Maurer-Cartan forms are V a = γaαβV αβ, V 0 and ψαI , having separated a “time”

direction. They satisfy the Maurer-Cartan equations

dV αβ = (V ∧ V )αβ + ψαI η
IJψβJ ,

dV 0 = −εαβψαI εIJψ
β
J ,

dψαI = (V ∧ ψ)αI + εJI V 0ψαJ . (4.114)

Notice that in the suitable “flat” limit, one retrieves the flat model discussed in the

previous section. According to Fuks, the cohomology should match with the one of the

sp(2,R) subalgebra, and therefore we expect the Poincaré polynomial to be of the form

P dif
osp(2|2)[t] = (1− t3). (4.115)

The cohomology generators are indeed found to read

H0
CE,dif (osp(2|2)) = R · 1 ,

H3
CE,dif (osp(2|2)) = R ·

{
ψαI η

IJψβJVαβ + ψαI ε
IJψβJ εαβV 0 + V ∧ V ∧ V

}
(4.116)

On the other hand, cohomology classes in the integral form sector are explicitly given by

H1
CE,int (osp(2|2) = R ·

{
ιIαηIJ ι

J
βV 0(V ∧ V )αβδ4(ψ) + ιIαεIJ ι

J
βε
αβ(V ∧ V ∧ V )δ4(ψ) + V 0δ4(ψ)

}
H4
CE,int (osp(2|2) = R ·

{
V 0V ∧ V ∧ V δ4(ψ)

}
. (4.117)
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5 Coset Superspaces and

Equivariant Chevalley-Eilenberg Cohomology

In this section we briefly introduce equivariant Chevalley-Eilenberg cohomology, a crucial

tool to study the cohomology of coset or homogeneous superspaces G/H where G is a Lie

supergroup and H is a Lie sub-supergroup of G.

Very few examples of Lie supergroup, or group supermanifolds, are indeed solutions

of supergravity/string equations of motion, for example AdS3 in the case of non-critical

strings and few others. Nonetheless, the space of geometric backgrounds modelled on

coset spaces is much richer, in particular the case of supersymmetric background built

on coset supermanifolds. In this context, the most important instance is that of a coset

supermanifold realized by modding out a certain bosonic subgroup: the infamous examples

of AdS5×S5 and AdS4×CP3 belong this category [38] [42]. Furthermore, a less explored

instance it that obtained by modding out a true Lie sub-supergroup. In any of each cases,

it is interesting to compute their (equivariant) cohomology, as it can uncover insights in

the physics related to the model.

Given a Lie supergroup G and a Lie sub-supergroup H of G we define the related Lie

superalgebras by g and h. Then, attached to the coset superspace G/H we will have,

correspondingly, the quotient g/h, whose elements are equivalence classes gmod h. As a

vector superspace, there always exists a direct linear decomposition of g such that

g = h⊕ C, (5.118)

but the choice of C is ambiguous and different compatibility conditions between this direct

linear decomposition and the Lie algebra structures can be imposed. More in details, the

coset superspace G/H is said to be reductive if there exists an ad(h)-invariant choice of

C, i.e.

ad(h) · C = [h,C] ⊂ C. (5.119)

Further, imposing that [C,C] ⊂ h we get that the coset G/H is a symmetric superspace,

but in the following we will consider the more general relation

[C,C] ⊂ g. (5.120)

As in the ordinary setting, left-translation in the coset superspace induces a map (`[g−1])∗ :

T[g]G/H → T[e]G/H ∼= g/h which can be seen as g/h-valued 1-forms, the so-called Maurer-

Cartan forms. As above, we will always deal with matrix Lie superalgebras. In this
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case the Maurer-Cartan is usually written starting from the coset superspace elements as

ωgMC = [g−1dg]. Notice that, choosing another representative gh for h ∈ H instead of g,

we get

ωghMC = [ad(h)(g−1dg)] = ad(h) · ωgMC , (5.121)

since [h−1dh] = 0 in the quotient g/h. Passing from the above coordinate-invariant

formalism to a particular choice of coordinates, in line with the general philosophy of the

paper of finding explicit expressions, we choose a certain direct linear decomposition of

g as above and, in turn, a basis {hi} for i = 1, . . . , dim h of generators for h and a basis

{kJ} for J = 1, . . . , dimC of generators for C. Notice that the parametrization of the

elements of the coset superspace [g] ∈ G/H is far from being unique. The Maurer-Cartan

form related to this decomposition and choice of basis can be computed as to get

ωMC = V JkJ + ωihi, (5.122)

where the V i’s are the supervielbein forms and the ωj’s are interpreted as the connection

forms associated with the action of the sub-superalgebra h. The vielbein and connection

forms satisfy the following Maurer-Cartan equations that can be read off the (5.119) and

(5.120)

dV I = f IJKV J ∧ VK + f IiJ ω
i ∧ V J ,

dωi = f ijkω
j ∧ ωk + f iIJV I ∧ VK . (5.123)

The second one can be re-written as

R i ..= dωi − f ijkωj ∧ ωk = f iIJV I ∧ VK . (5.124)

Here the structure constants are written with respect to the above decomposition of the

Lie superalgebra g = h⊕C and R i is referred to as the “curvature” of the gauge connection

ωi related to the sub-algebra h. The form of the first Maurer-Cartan equation in (5.123)

in turn makes convenient to introduce a covariant differential defined as

DV I ..= dV I − f IiJ ωi ∧ V J . (5.125)

Notice that this differential is not nilpotent, indeed one has

D2V I = −R if IiJV J (5.126)

using Jacobi identity. This can be re-written as D2V I = −LR V
I , where we have denoted

LR the action of the Lie derivative on the vielbeins V I along the (vertical) vector R ihi.
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The above expression makes clear that in order to have a well-defined differential cochain

complex for coset superspaces, we need to impose further conditions on the forms to take

into account. Namely, we need the Maurer-Cartan forms, call them Ω’s, to be basic, this

means that we require

LHΩ = 0, ιHΩ = 0, (5.127)

for any vectorH coming from the sub-algebra h. Roughly speaking, one can visualize these

requirements thinking about a principal H-bundle π : P → G/H: in this respect a basic

form Ω is a form defined on the principal bundle Ω = π∗(V ) such that it has no vertical

components (it is horizontal) and no vertical variation (it stays horizontal), i.e. basic forms

are in the intersection ker(ιH)∩ker(LH). Calling Cp
Basic(g/h) the (vector) superspace of the

basic p-forms, we accordingly define the equivariant (Chevalley-Eilenberg) cohomology to

be the cohomology of the basic forms with respect to the differential D introduced above.

Hp
EQ (g/h) ..=

{Ω ∈ Cp
Basic(g/h) : DΩ = 0}

{Ω ∈ Cp
Basic(g/h) : ∃η ∈ Cp−1

Basic(g/h) Ω = Dη}
. (5.128)

5.1 Methods for Computations: Poincaré Polynomial Revised

In absence of encompassing “structure theorems”, different methods are possible in order

to compute cohomology of coset superspaces. Our strategy will be to supplement brute

force computations with the indications coming from the Poincaré polynomial of coset

superspaces. This will tell, for example, when a cohomology space is expected to be

infinite dimensional, as we shall see.

Following [26], if g is a Lie superalgebra with Poincaré series given by Pg(t) =
∑

i b
g
i t
i,

where the bgi ’s are the Betti numbers of the Lie superalgebra g, i.e. bgi
..= dimH i

CE(g) and

h is a Lie sub-superalgebra of g, of the same rank (Cartan Pairs, see [26]) having Poincaré

series given by Ph(t) =
∑

j b
h
i t
j, then the Poincaré series for the coset will be given by the

following formula

Pg/h(t) =

∑
i b

g
i t
i+1∑

j b
h
jt
j+1

=

∏
l(1− tc

g
l+1)∏

m(1− tchm+1)
(5.129)

where cgl and chm are the usual exponents in the factorised form of the polynomial. This

product formula is very helpful since it provides some informations regarding the different

cohomology classes.

A remark is in order: for ordinary coset spaces arising from purely bosonic finite

dimensional Lie algebras h ⊂ g the above formula (5.129) always yields a polynomial:
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Ph(t) divides Pg(t) (which is a polynomial), or equivalently the chm are a subset of the cgl .

For example, a 2n-dimensional sphere S2n can be seen as the coset manifold given by

the quotient of Lie groups SO(2n + 1)/SO(2n). In the simplest case n = 1 we obtain a

2-sphere S2: passing to the algebras we have the coset so(3)/so(2) which is isomorphic to

the coset su(2)/u(1). The vielbeins {V 0,V +,V −} for so(3) ∼= su(2) satisfies the following

Maurer-Cartan equations

dV 0 = V + ∧ V − , dV + = iV 0 ∧ V + , dV − = −iV 0 ∧ V +. (5.130)

These can be rewritten as

R = dV 0 = V + ∧ V −, DV ± = 0 , (5.131)

where D is as above and the Bianchi identities imply that DR = 0 and D2V ± = ±iR ∧
V ± = 0. Notice that the nilpotent of D holds true since since R = V + ∧ V − and

V ± ∧ V ± = 0. In addition, we notice that LT V ± = iV ± where T is the generator of u(1)

subalgebra. This implies that the only basic forms are given by {1,V + ∧ V −}, indeed

notice also that ιT V 0 = 1 6= 0, thus V 0 is not a basic form. The basic forms {1,V +∧V −}
are closed and not exact. The first statement is obvious. For the latter we observe that

V + ∧ V − = DV 0, with D given in (5.125) (notice that DV 0 = dV 0) but since V 0 is not

basic. It follows that V + ∧ V − defines indeed an equivariant cohomology class.

The Poincaré polynomial for so(3) is given by Pso(3)(t) = Psu(2)(t) = 1 − t3, while the

subalgebra u(1) ∼= so(2) has Poincaré polynomial given by Pu(1)(t) = 1 − t, so that

according to the above formula the coset has Poincaré polynomial given by

Pso(3)/so(2)[t] =
1− t4

1− t2
= 1 + t2, (5.132)

thus matching the above calculation. In the next section we generalize this easy example

to the case of the supersphere.

5.2 Lower Dimensional Cosets of osp(1|2) and u(1|1)

Let us now consider the Lie superalgebra osp(1|2) introduced above. In agreement with an

early result by Fuks, we have seen that H•CE(osp(1|2)) ∼= H•CE(sp(2,R)) and in particular,

its Poincaré polynomial reads Posp(1|2)(t) = 1− t3 with the 3-cohomology class generated

by ω(3) = ψγaψV a + 1
3
εabcV aV bV c, where the vielbeins ψ’s and V ’s have been introduced

above together with the gamma matrices γiαβ.

Looking at the Lie supergroup OSp(1|2) related to osp(1|2) it is natural to consider two
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coset manifolds. The first one is the coset OSp(1|2)/SO(1, 1), which is known as the

supersphere S2|2. The second one is a purely fermionic superspace, actually a “fat point”,

given by the coset OSp(1|2)/Sp(2,R), which is a 0|2-dimensional superspace.

Let us start from the supersphere: the Lie algebra coset Poincaré polynomial reads

Posp(1|2)/so(1,1)[t] =
1− t4

1− t2
= 1 + t2, (5.133)

upon using the so-called Weyl trick, in order to identify the Chevalley-Eilenberg cohomol-

ogy of so(1, 1) with that of so(2) ∼= u(1). This suggests that besides the constants there

is a single cohomology class at degree two. Explicitely, introducing the Maurer-Cartan

vielbeins {V 0,V ‡,V =|ψ±} - notice that the the V ’s are odd forms and the ψ’s are even

forms - one gets the following Maurer-Cartan equations:

DV 0 = R = iV ‡ ∧ V = + ψ+ ∧ ψ− , DV ‡ = iψ+ ∧ ψ+ , DV = = −iψ− ∧ ψ− ,
Dψ+ = V ‡ ∧ ψ− , Dψ− = V = ∧ ψ+ . (5.134)

The infinitesimal action of the subgroup is given by

LT V
‡ = 2iV ‡ , LT V

= = −2iV = , LT ψ
± = ±iψ±. (5.135)

Note that the 2-form

R = iV ‡ ∧ V = + ψ+ ∧ ψ− (5.136)

is (real) basic and closed. It is not exact because R = DV 0, but V 0 is not a basic form.

Notice in particular that the 3-cohomology class of osp(1|2) is no longer a cohomology

class of the coset; it is invariant under the action of the subgroup, but it is not basic. We

have

Hp
EQ (osp(1|2)/osp(1|1)) =

{
R p = 0, 2

0 else.
(5.137)

In the case of the fermionic coset the Poincaré polynomial reads

Posp(1|2)/sp(2)(t) =
1− t4

1− t4
= 1. (5.138)

We expect therefore only the constants be in the cohomology, which is indeed the case

since now R is not basic as now the forms V ‡ and V = are not vielbeins, but connections

instead, coming from the subalgebra sp(2):

Hp
EQ (osp(1|2)/sp(2,R)) =

{
R p = 0

0 else.
(5.139)
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We now consider the case of u(1|1), whose Chevalley-Eilenberg cohomology has been dis-

cussed above. Namely, we consider the coset u(1|1)/u(1) of dimension 1|2 and u(1|1)/u(1)⊕
u(1) of dimension 0|2.

Let us start from the first coset space. A subtle point is that we have to choose how to em-

bed the abelian factor u(1) inside u(1|1): indeed the automorphism of u(1|1)0 = u(1)⊕u(1)

that exchange the factors does not lift to u(1|1) (see, e.g., [22]). With reference to the

previous section, we can embed u(1) in such a way that its Maurer-Cartan form (the

connection, in view of the equivariant cohomology) is associated either to U or to W . In

the case it is associated to U , then the cohomology trivializes as can be readily observed

from the Maurer-Cartan equations: the only non-zero equivariant cohomology group is

the zeroth-cohomology group:

Hp
EQ (u(1|1)/uU(1)) =

{
R p = 0

0 else,
(5.140)

having called u(1|1)/uU(1) the related coset.

Things changes drastically in case u(1) is embedded in a way such that its Maurer-Cartan

forms correspond with W . In this case U is the generator of a cohomology class, in-

deed it is closed and basic. Moreover, also the bilinears (ψ1ψ2)p for any p are in the

equivariant cohomology: indeed they can be seen to be exact with respect to a non-basic

term. The cohomology is therefore infinite-dimensional and generated by the elements

{1, U} ⊗ {(ψ1ψ2)p} for any p ≥ 0.

Hp
EQ (u(1|1)/uW (1)) =

{
R p even

ΠR p odd,
(5.141)

having called u(1|1)/uW (1) the related coset.

Finally, considering the coset u(1|1)/u(1) ⊕ u(1) we have that in this case both U and

W correspond to Maurer-Cartan forms for the subalgebra. From the Maurer-Cartan

equations it follows that the cohomology is generated by the representatives given by

the fermionic bilinears {(ψ1ψ2)p}, for any p ≥ 0 so that the equivariant cohomology is

non-zero in any even degree.

Hp
EQ (u(1|1)/u(1)⊗ u(1)) =

{
R p even

0 p odd,
(5.142)

The corresponding Poincaré series read

Pu(1|1)/uW (1)(t) =
1− t
1− t2

=
1

1 + t
= 1− t+ t2 − t3 . . . . . (5.143)
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and

Pu(1|1)/u(1)⊗u(1)(t) =
1− t2

(1− t2)2
=

1

1− t2
= 1 + t2 + t4 + . . . . (5.144)

which match the computations above.

5.3 Higher Dimensional Cosets of osp(2|2), osp(3|2) and osp(4|2)

We now consider higher-dimensional cosets of osp(n|2) for n = 2, 3, 4. We start with

some general considerations, and then we specialize to the single cases together with their

cosets.

On a general ground, the Maurer-Cartan equations for osp(n|2)

dV(αβ) = ψIαψ
J
βηIJ + (V ∧ V )(αβ) ,

dT [IJ ] = −ψIαψJβΩαβ + (T ∧ T )[IJ ] ,

dψIα = VαβΩβγψIγ + T [IJ ]ηJKψ
K
α (5.145)

where the Maurer-Cartan forms are given by {ψIα|V (αβ), T [IJ ]} for α, β = 1, 2 and I, J,K, . . . =

1, . . . , n. We have (V ∧ V )(αβ) = V(αγ)Ω
γδV(δβ) and (T ∧ T )[IJ ] = T [IK]ηKLT [LJ ], where

Ωαβ is the 2-symplectic invariant tensor (from sp(2)) and ηIJ is the Euclidean rotation-

invariant metric (from so(n)).

For any n the 3-form

ω(3) = ψIαψ
J
βηIJV (αβ) + ψIαψ

J
βΩαβTIJ + (V ∧ V ∧ V )αβΩαβ + (T ∧ T ∧ T )IJη

IJ (5.146)

gives an invariant which is a representative of the 3-cohomology group H3
CE(osp(n|2)),

shared by all of the osp(n|2). This is the unique cohomology class up to n = 3 (besides

the constants in the 0-cohomology), indeed we have that

Posp(2|2)[t] = Posp(3|2)[t] = Posp(1|2)[t] = Psp(2,R)[t] = 1− t3. (5.147)

Things start changing in the case of osp(4|2), indeed in this case one has that

Posp(4|2)[t] = Pso(4)[t] = (1− t3)2, (5.148)

where we recall that D2
∼= A1 ⊗ A1 for the complexified algebras and the Poincaré poly-

nomial for A1 is indeed 1 − t3. We therefore expect a further 3-form in the cohomology

H3
CE(osp(4|2)). This is indeed the case and the extra cohomology representative is given

by

ω̃(3) = εIJKLψ
I
αψ

J
βΩαβT KL + εIJK[MηN ]LT IJT KLT MN . (5.149)

Cohomology classes for higher dimensional osp(n|2) for n > 4 can be constructed in

similar way.
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5.3.1 osp(2|2)

Let us now get back to the specific case of the Lie superalgebra osp(2|2). This is a

Lie superalgebra of dimension 4|4, whose reduced algebra is given by osp(2|2)0 = so(2)⊕
sp(2,R). We consider its cosets osp(2|2)/so(1, 1) and osp(2|2)/so(2)⊕so(1, 1), respectively

of dimension 3|4 and 2|4. While the Poincaré series for the first coset can not be guessed

by (5.129) (because the two superalgebras have different rank), it can be immediately

written for the double coset:

Posp(2|2)/(so(2)⊕so(1,1))(t) =
(1− t4)
(1− t2)2

=
1 + t2

1− t2
. (5.150)

Let us calculate explicitly the cohomology of the two cosets: by looking at the Maurer-

Cartan equations one finds

dV (αβ) = (V ∧ V )(αβ) + ψαi ∧ ψ
β
j η

ij,

dW = ψαi ∧ ψ
β
j ε
ijεαβ,

dψαi = V (αγ)εγβ ∧ ψβi −W εij ∧ ψαi . (5.151)

for α = 1, 2 and i = 1, 2, where ηij is the Minkowski metric.

In the case of the first coset osp(2|2)/so(1, 1), there are two ways to embed so(1, 1) in

osp(2|2): we can embed it in the sp(2) part or in the so(2) part (after a suitable signature

redefinition via unitary trick, i.e. we can identify so(1, 1) and so(2)). In the first case,

one finds the cohomology class

R = (γ0)αβ((V ∧ V )(αβ) + ψαi ∧ ψ
β
j η

ij) , (5.152)

where γ0 is the 0-th Dirac gamma matrix: it is easy to check that this is indeed a basic

closed and not exact form. To do this it is convenient to decompose the vielbeins as

V (αβ) = γa(αβ)V
a, a ∈ {0,±} (as in the previous section for osp(1|2)), then we are doing

the quotient w.r.t. V 0. Hence (5.152) represent a form which is closed by construction,

basic since it does not depend on V 0 and non-exact, being exact w.r.t. a non-basic object.

In the second case, we have that the so algebra is embedded in the so subalgebra of osp,

hence in this case we are doing the quotient w.r.t. W . In this case we immediately see

from the MC equations (5.151) that the bilinear

(ψ · ψ) = ψαi ∧ ψ
β
j ε
ijεαβ = DW , (5.153)

together with its powers, is a basic, closed, non-exact form.
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On the other hand, we can study the second coset osp(2|2)/ (so(1, 1)⊕ so(2)). In this case,

either R or the bilinear (and all its powers) (ψ ·ψ) are part of the equivariant cohomology,

making the cohomology infinite dimensional, generated by {1,R } ⊗ {(ψ · ψ)p} for any p.

The cohomologies that we have studied explicitly then read

Hp
EQ (osp(2|2)/so(1, 1))V 0 =

{
R p = 0, 2

0 else,
(5.154)

Hp
EQ (osp(2|2)/so(1, 1))W =

{
R p even

0 else,
(5.155)

Hp
EQ (osp(2|2)/ (so(1, 1)⊕ so(2))) =


R p = 0,

R2 p = 2, 4, . . .

0 else.

(5.156)

5.3.2 osp(3|2)

Let us look at the case of the cosets of osp(3|2). Cosets by so(2) or so(1, 1) works in

pretty the same way as the above case of osp(2|2). On the other hand, it is interesting

to deal with the case osp(3|2)/so(2)⊕ so(1, 1). First, observe that the subgroup and the

supergroup have the same rank, so by (5.129) the Poincaré series reads

Posp(3|2)/so(2)⊕so(1,1)(t) =
1 + t2

1− t2
, (5.157)

which is the same as in the case of the coset osp(2|2)/so(2) ⊕ so(1, 1). However, in this

case we run into a problem. Indeed two equivariant cohomology classes can be singled

out:

DV0 = ψIαψ
J
βηIJγ

αβ
0 + V+ ∧ V−,

DT 0 = −ψIαψJβΩαβsIJ + T+ ∧ T−, (5.158)

where sIJ = −sJI , which select “direction” so(3) in denoted as T0 - in pretty much the

same way as the γ0 allows to select a “direction” in the Lie algebra sp(2,R). Notice that

the above elements are not exact as V 0 and T0 are not basic as they being the generators

of the subgroup. This result seems contradicting the above Poincaré series computation

though. Actually, to take into account the two independent cohomology classes above one

needs to have a term of the kind (1 + t2)2 in the numerator: we multiply and divide the

above series by 1 + t2 so that we get:

Posp(3|2)/so(2)⊕so(1,1)(t) =
(1 + t2)2

1− t4
. (5.159)
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This suggests that the cohomology must be infinite, depending on a 4-form which can

indeed be found to be

X (4) = ψIαγ
αβ
a ψJβη

abεRIJη
RSεSKLψ

K
α′γ

α′β′

b ψLβ′ , (5.160)

which is basic, closed and not exact. The cohomology therefore reads

Hp
EQ (osp(3|2)/so(2)⊕ so(1, 1)) =


R p = 0

R2 p even

0 p odd.

(5.161)

5.3.3 osp(4|2)

Finally, let us take a brief look at an interesting coset of osp(4|2), namely osp(4|2)/u(2). In

this case the problem can be studied by considering the spinor representation of so(1, 3) ∼
so(4) ∼= su(2)× su(2). In this formulation we have

T [IJ ] →

T (AB) = (σ[IJ ])
(AB)T [IJ ]

T̃ (ȦḂ) = (σ[IJ ])
(ȦḂ)T [IJ ]

, A,B = 1, 2 , (5.162)

ψIα → ψαAȦ = (σI)AȦψ
I
α , (5.163)

where (σI)AB and (σI)ȦḂ are the two copies of the Pauli matrices of su(2) × su(2),

(σ[IJ ])
(AB) =

[
(σI)

AȦ, (σJ) B
Ȧ

]
and (σ[IJ ])

(ȦḂ) =
[
(σI)

AȦ, (σJ) Ḃ
A

]
. The MC (5.145) then

become

dV(αβ) = (ψ · ψ)(αβ) + (V ∧ V )(αβ) ,

dT (AB) = − (ψ · ψ)(AB) + (T ∧ T )(AB) ,

dT̃ (ȦḂ) = − (ψ · ψ)(ȦḂ) + (T̃ ∧ T̃ )(ȦḂ) , (5.164)

dψαAȦ = VαβΩβγψγAȦ + σIAȦ

(
(σ[IJ ])(CD)T (CD) + (σ[IJ ])(ĊḊ)T

(ĊḊ)
)
ηJKσ

KAȦψαAȦ .

Let us consider the coset osp(4|2)/su(2): we can quotient out one of the two su(2), for

example the one generated by T̃ . We immediately see that the bilinears (ψ · ψ)(ȦḂ) =

−∇T̃ (ȦḂ) become exact, with respect to non basic objects, hence are cohomology represen-

tatives of the coset algebra. The same holds for any power and product of these bilinears.

Moreover, we have another cohomology representative which is given by (5.146) but with

just the non-modded out set of T ’s:

ω(3) = (ψ · ψ)(αβ) V (αβ)+(ψ · ψ)(AB) T(AB)+(V∧V∧V )αβΩαβ+(T ∧T ∧T )ABη
AB . (5.165)
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Hence, the cohomology is generated by
{

1, ω(3)
}
⊗
{[

(ψ · ψ)(ȦḂ)
]n}

,∀n ∈ N. The com-

putation of the dimensions of the cohomology spaces is not difficult, but tedious since it

heavily relies on the Fierz identities, hence it is not written here. Notice that the “finite

part” of the cohomology (to be precise, its bosonic restriction) is exactly what is left

from the bosonic quotient so(4)/su(2) ∼= su(2). Keeping in mind this observation, we will

comment further on this in the next paragraph.

We could now proceed further by quotienting by another u(1), in order to study the

coset space osp(4|2)/u(2). Given the previous results, the calculation is straightforward:

in modding out with respect to u(1), we can either embed it into the remaining su(2),

which is generated by the T (AB)’s, or into sp(2), which is generated by the V (αβ)’s. How-

ever, the two embeddings are equivalent since sp(2) ∼= su(2) at the level of complex

algebras. Suppose then that we perform the quotient in the sp(2) part, hence we im-

mediately see that (5.165) is no longer basic, hence it does not contribute to the coho-

mology. However, a 2-form as the one in (5.152) appears, making contribution to the

cohomology. It follows that the cohomology of the coset osp(4|2)/u(2) is generated by{
1,R (2)

}
⊗
{[

(ψ · ψ)(ȦḂ)
]n}

,∀n ∈ N.

A comment is now mandatory: as we already noticed at the end of the previous paragraph,

the “finite part” of the cohomology (again, its bosonic restriction) corresponds to what is

left from the bosonic quotient so(4)/u(2) ∼= su(2)/u(1). We can interpret this result, and

the previous one, as follows: Fuks’ theorem states that Hp
CE,dif (osp(4|2)) = Hp

CE,dif (so(4)).

When modding out the sub-algebra, we have found that bosonic restriction of the finite

part is actually given by the coset of the (purely bosonic) subalgebra which is selected by

Fuks’ theorem. Notice that, not completely surprisingly, this holds true as long as we are

embedding the sub-algebra in the part which actually contributes to the full cohomology

of the algebra at the numerator. Indeed, we have seen in the u(1|1)/u(1) example that if

we embed the divisor subalgebra in the subalgebra not contributing to the cohomology,

we obtain a different finite part. Hence, under the discussed assumption, it can be con-

jectured that, for example, if we consider the superalgebra osp(n|m), given a subalgebra

h, one will find that

[
Hp
CE

(
osp(n|m)

h

)]
FP

∼=

H
p
CE

(
so(n)
h

)
, if n ≥ 2m

Hp
CE

(
sp(m)

h

)
, if n < 2m

, (5.166)

where the subscript “FP” denotes the finite part of the cohomology. An evidence support-

ing this claim is provided by the Poincaré polynomials, which can be computed combining
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Fuks’ results with [26], in the case of equal rank pairs as follows

Posp(n|m)/h(t) =
P ′osp(n|m)(t)

P ′h(t)
(5.167)

where the prime denotes the augmented power by one for all powers in the Poincaré series.

It would be interesting to verify if this holds for cosets of the other basic Lie superalgebras

as well as to improve general results comprising also quotient spaces, as in [26].

5.4 Cosets of osp(1|4): D = 4, N = 1 Anti de Sitter Superspace

It is well-known that the ordinary anti de Sitter spacetimes AdSD in D-dimensions can

be obtained starting from the Lie groups SO(2, D − 1) and SO(1, D − 1) as the coset

manifold SO(2, D − 1)/SO(1, D − 1), for example the AdS4 is obtained by taking the

quotient of the Lie group SO(2, 3) by the Lorentz group SO(1, 3) (see [4] for a complete

discussion on the present case in relation to supergravity and in particular in relation with

Chevalley-Eilenberg cohomology. In [4] the computation of the easiest CE cohomology

has been performed) . This construction can be generalized to a coset superspace as to

obtain the superspace extension of the anti-de Sitter spacetimes. Namely, in this section

we are interested into computing the equivariant cohomology of one such construction,

namely the D = 4, N = 1 anti-de Sitter superspace AdS4|4 realized as the quotient super-

manifold OSp(1|4)/SO(1, 3). At the level of the Lie superalegbras one starts analyzing

the osp(1|4), of dimension 10|4, whose reduced Lie algebra is osp(1|4)0 = sp(4,R). Using

that sp(4,R) ∼= so(2, 3) one can trace back the quotient yielding the anti de Sitter 4-space

AdS4 at the level of the groups. Notice that the quotient manifold OSp(1|4)/SO(1, 3) has

dimension 4|4, therefore it is N = 1 (minimal) supersymmetric extension for the AdS4

and we call it AdS4|4. We will denote the corresponding coset at the Lie superalgebra

level ads4|4 ..= osp(1|4)/so(1, 3).

Let us start analyzing the the Chevalley-Eilenberg cohomology of osp(1|4). At the

level of the Poincaré polynomial we have

Posp(1|4)[t] = Psp(4,R)[t] = 1− t3 − t7 + t10. (5.168)

Introducing a set of gamma matrices γaαβ for a = 0, . . . , 9 and α, β = 1, . . . , 4 we represent

the Maurer-Cartan odd forms by bi-spinors as follows

V a = γaαβV αβ , a = 1, . . . , 10, α, β = 1, . . . , 4. (5.169)
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Notice that is consistent as long as the indices α, β are symmetrized, i.e. V αβ = V (αβ),

as to yield 10 components. Further, we use the (standard) symplectic matrix Ωαβ and its

inverse Ωαβ to lower and raise indices. This representation is particularly convenient, as

the Maurer-Cartan equations read

dVαβ = ψαψβ + (V ΩV )αβ ,

dψα = (V Ωψ)α , (5.170)

having introduced the (even) vielbeins ψα as well and where we have made use of the

notation (V ΩV )αβ = VαγΩ
γδVδβ and (V Ωψ)α = VαβΩβγψγ. Let us look for the 3-form

explicitely: the most general 3-form reads

ω(3|0) = c1
(

V α1β1Ωβ1α2V α2β2Ωβ2α3V α3β3Ωβ3α1

)
+ c2V αβψαψβ, (5.171)

where c1 and c2 are constants coefficient. We shorten the previous expression by ω(3) ..=

c1V (3) + c2Vψ(2). By compatibility with the cohomology of the reduced algebra sp(4,R)

we conclude that c1 6= 0, and in particular, we put c1 = 1. Imposing the closure condition

dω(3) = 0 we fix the second coefficient:

0 = dω(3) = 3
[(
ψα1ψβ1 + (V ΩV )α1β1

)
Ωβ1α2V

α2β2Ωβ2α3V α3β3Ωβ3α1

]
+

+c2
[
ψαψβψαψβ − 2V αβVαγΩ

γδψδψβ
]
. (5.172)

Let us look at the terms in this expression: the second term, namely the one proportional

to V 4 is zero by trace identity, indeed we can write V 3V = −VV 3, but on the other hand,

by cyclicity we have V 3V = VV 3. The third term, namely the one proportional to ψ4, is

zero since ψαψα = ψαΩαβψ
β = 0, being the ψ’s even and Ω antisymmetric. This allows

us to fix c2 = 3/2 as to get that the first cancel the last term and obtaining a closed form.

Further, in order to show that ω(3) is not exact, we have to consider the most general even

2-form and show that its Chevalley-Eilenberg differential cannot generate ω(3). However

a crucial observation simplifies the job: we cannot construct a (non-zero) 2-form which is

a singlet, i.e. having all of the indices contracted (the only case would be V αβVαβ +ψαψα

which is equal to zero, as shown above). Hence we have (after multiplying by an overall

factor)

H3
CE (osp (1|4)) =

{
1

3

(
V α1β1Ωβ1α2V

α2β2Ωβ2α3V
α3β3Ωβ3α1

)
+

1

2
V αβψαψβ

}
. (5.173)
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With completely analogous arguments we can construct the most general odd 7-form as

ω(7) = c1
(

V α1β1Ωβ1α2V α2β2Ωβ2α3V α3β3Ωβ3α4V
α4β4Ωβ4α5V α5β5Ωβ5α6V α6β6Ωβ6α7V

α7β7Ωβ7α1

)
+

+ c2
(
V α1β1Ωβ1α2V α2β2Ωβ2α3V α3β3Ωβ3α4V α4β4Ωβ4α5V α5β5

)
ψα1ψα5 +

+ c3
(

V sα1β1Ωβ1α2V α2β2Ωβ2α3V α3β3Ωβ3α1

)
(V α1µΩµνV να2)ψα1ψα2 +

+ c4
(

V α1βΩβγV γα2
)

V α3α4ψα1ψα2ψα3ψα4 . (5.174)

We note that we do not have a term of the form Vψ6 since it would be trivially 0, as can

be checked. We can write ω(7) in a more compact way as

ω(7) = c1V 7 + c2
(

V 5
)αβ

ψαψβ + c3V 3
(

V 2
)αβ

ψαψβ + c4
(

V 2
)αβ V γδψαψβψγψδ , (5.175)

where the contractions are omitted. Again by compatibility with the reduced algebra

cohomology, we need to have c1 6= 0. The remaining coefficients c2, c3, c4 can be easily

fixed imposing dω(7) = 0: again, as above, the resulting form will not be exact since it is

not possible to have a non-trivial singlet represented by an even 6-form.

Finally the top representative in the cohomology, the form ω(10) is simply given given by

the multiplication

ω(10) = ω(3) ∧ ω(7), (5.176)

exploiting the ring structure of the cohomology. Notice that ω(10) is non-zero since, for

example, the term of the form V 3 ∧ V 7 is non-vanishing, and since either ω(3) or ω(7) are

closed and non-exact it follows that ω(10) is closed and non-exact as well.

We now pass to study the equivariant cohomology of the coset superspace ads4|4 =

osp(1|4)/so(1, 3). In order to do so, we have to “split” the Maurer-Cartan forms V αβ

coming from the sp(4,R) ⊂ osp(1|4) into the coset Maurer-Cartan forms (vielbeins) and

those coming from so(1, 3) (connections). Again, making use of the gamma matrices, i.e.

of the spin structure, we can decompose the vielbeins as

V(αβ) = γa(αβ)Va + γ
[ab]
(αβ)V[ab], (5.177)

for a = 1, . . . , 4 and α = 1, . . . , 4, where the V a are the four vierbein of the coset space

that lifts to AdS4 and V[ab] are the six vielbeins of so(1, 3). The Poincaré polynomial can

be computed using the result by [26] - notice that both the algebras involved have the

same rank, actually 2 - and it reads

Pads4|4 [t] =
(1− t4) (1− t8)

(1− t4)2
= 1 + t4. (5.178)
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We therefore expect a single equivariant cohomology class at degree 4, besides the con-

stants. In particular, we expect this to be related to the “volume form” ω
(4)
ads4 coming

from the AdS4 space. Using the above decomposition (5.177) and the previously obtained

Maurer-Cartan equations (5.170) one gets the following Maurer-Cartan equations

DVa = ψγaψ ,

Dψα = Vaγ
aψ ,

Rab ≡ dV[ab] + (V ∧ V )[ab] = ψγ[ab]ψ (5.179)

where the covariant derivative D is with respect to the connection V[ab] of the subgroup

so(1, 3).

Working as above, we have that the most general even 4-singlet reads

ω(4|0) = c1εabcdV aV bV cV d + c2V aV b (ψγabψ) . (5.180)

Notice that there cannot be terms of the form ψ4 =
(
ψγabψ

)
(ψγabψ), since they vanish

because of the Fierz identities. As above, we have that c1 6= 0 by compatibility with

the cohomology of the reduced algebra ω
(4)
ads4 = εabcdV

aV bV cV d. Hence we can fix c1 = 1

without loss of generality. The coefficient c2 is fixed by imposing that Dω(4) = 0:

0 = Dω(4) = 4εabcd (ψγaψ) V bV cV d + 2c2
[
ψγaψV b (ψγabψ) + V aV b ((V cγcψ) γabψ)

]
.

(5.181)

The second term in the sum vanishes because of Fierz identities, while the last term,

after using γ matrices properties, cancels the first one upon fixing c2 = −2. Finally, we

can conclude that ω(4) is not exact, since, once again, it is not possible to write an odd

3-singlet that generates the term V 4. Hence we have

H4
EQ

(
ads4|4

)
= R ·

{
εabcdV aV bV cV d − 2V aV b (ψγabψ)

}
. (5.182)

All in all we have:

Hp
EQ

(
ads4|4

)
=

{
R p = 0, 4

0 else.
(5.183)

We conclude with the integral form Chevalley-Eilenberg cohomology. As discussed in the

previous section, by the isomorphism, we have two cohomology classes at picture four,

the maximal picture degree. They have the explicit expressions

H(0|4) (ads4|4) = R ·
{

2V aV bιπQγabιπQδ
4(ψ) + δ4(ψ)

}
H(4|4) (ads4|4) = R ·

{
εabcdV aV bV cV dδ4(ψ)

}
(5.184)

matching again the cohomology for superforms.
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6 Conclusions and Outlook

The present work spawns from the observation that since Lie superalgebra cohomology

is nothing but a straightforward generalization of ordinary Lie algebra cohomology, it is

not capable to account for objects different than differential forms on the corresponding

Lie supergroup. On the other hard, it is well-know that in order to make a meaningful

connection with integration theory, when working on supermanifolds, differential forms

has to be supplemented by integral forms, whose geometry is not at all captured by

Chevalley-Eilenberg cohomology.

To this end, after reviewing Chevalley-Eilenberg cohomology for ordinary Lie algebras and

Lie superalgebras and its relations to forms on the corresponding Lie groups or Lie super-

groups, we extend the notion of Chevalley-Eilenberg cochains as to include also integral

forms and we define a corresponding cohomology. We thus show a duality between the

ordinary Chevalley-Eilenberg cohomology for a certain Lie superalgebra - which looks at

forms on the corresponding Lie supergroup - and this newly defined (Chevalley-Eilenberg)

cohomology accounting for integral forms instead. We observe that, most notably - and

differently from de Rham cohomology -, this cohomology always feature the true analog

of a top-form, a Berezinian form appearing in the integral form complex.

Nonetheless, beside general results, a great deal of focus in this paper is on explicit direct

computations: in particular, we provide explicit expressions for cocycles of Lie superal-

gebras of physical interest, namely supertranslations of flat superspaces and classical Lie

superalgebras, up to dimension 4, in terms of their Maurer-Cartan forms.

The second part of the paper is devoted to equivariant Chevalley-Eilenberg cohomology,

which is related to the (super)symmetries of coset supermanifolds, which provides very

important backgrounds for supergravity and superstring theories. Again, several example

up to dimension 4 are studied and explicit expressions for their cocycles are provided,

culminating with the case of super anti-de Sitter space AdS4|4. Here, a mixture of tech-

niques have been exploited, spanning from Poincaré polynomials computations for equal

rank pairs to brute force computations.

We remark that our analysis have uncovered new cocycles spawning from fermionic gen-

erators - both in ordinary and equivariant Chevalley-Eilenberg cohomology - and several

characteristic examples of infinite dimensional cohomology. In hoping that the present

results might come useful to understand the geometry of supergravity and string back-

grounds and the mathematics behind it, we stress though, that this research scenario

looking at relating Chevalley-Eilenberg cohomology and the extended geometry of forms

on supermanifolds is far from being exhausted. Indeed, just as an example, in the present
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paper we have only hinted at pseudoforms, which nonetheless plays an important role

both in the integration theory on superspaces and in its applications: it is legit to ask

it they can be fitted in the picture we have presented and which role they play. We will

address this problem in a forthcoming paper [13], arguing that pseudoforms are indeed

crucial to understand the general structure of the cohomology.
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A The Unitary Lie Superalgebra u(n|m)

Following [14], in order to introduce the Lie superalgebra u(n|m) one can start with the or-

dinary Hermitian vector space (Cn+m, 〈·, ·〉Cn+m), where 〈·, ·〉Cn|m is the standard Hermitian

product: promoting Cn+m to a vector superspace Cn|m using the Z2-gradation, one then

defines the super Hermitian forms on Cn|m as 〈u, v〉Cn|m ..= (−1)|u||v|〈u, v〉Cn+m , where u and

v are Z2-homogeneous vectors in Cn|m. Notice that 〈u, v〉Cn|m = (−1)|u||v|〈v, u〉Cn|m , so that

this bilinear form is indeed Hermitian in the usual sense. Using this, the superadjoint of an

endomorphism A ∈ End(Cn|m) is naturally defined as 〈Au, v〉Cn|m = (−1)|A||u|〈u,A∗v〉Cn|m
and it is easy to see that T ∗ = i|T |T †, where the map T 7→ T † does not involve the

supertransposition, but just the ordinary transposition, i.e. T † is the usual adjoint with

respect to standard Hermitian form on Cn+m. These definitions leads immediately to

[A,B]∗ = −[A∗, B∗], which spell out the relations between superadjoint and the super-

commutator, which is what is needed in order to define a unitary representation of a Lie

superalgebra: in particular if ρ : g→ End(Cn|m) is a representation of g, we will say that

it is a unitary representation if ρ(A)∗ = −ρ(A) for A ∈ g. For the case of supermatrices

X ∈ gl(n|m,C), this leads to the definition

u(n|m) ..= {X ∈ gl(n|m,C) : X∗ = −X} . (A.185)

Realizing the above conditions in terms of matrices Cn|m × Cn|m, one finds

X =

(
A Θ

−iΘ† B

)
, (A.186)

48



for A ∈ u(p) and B ∈ u(q), so that A† = −A and B† = −B, and Θ ∈ Hom(ΠCm,Cn),

i.e. an odd matrix. This easily yield

dimR u(n|m) = n2 +m2|2nm. (A.187)

B The Orthosymplectic Lie Superalgebra osp(n|2m)

Working in the most general setting following again [14], given a number field k of char-

acteristic 0 the natural representation of the general linear Lie superalgebra gl(n|m, k)

on the vector superspace kn|m can be extended to a representation acting on the ten-

sor algebra T ens(kn|m) ..=
⊕

n≥0(k
n|m)⊗n, upon using the graded Leibniz rule, i.e. for

A ∈ gl(n|m, k) and vi ∈ kn|m homogeneous vectors one has

A · (v1 ⊗ . . .⊗ vn ⊗ . . .) =(A · v1)⊗ v2 ⊗ . . .⊗ vn ⊗ . . .+
+ (−1)|A||v1|v1 ⊗ (A · v2)⊗ v3 ⊗ . . .⊗ vn ⊗ . . .+ . . .+

+ (−1)
∑n−1
i=1 |A||vi|v1 ⊗ . . .⊗ vn−1 ⊗ (A · vn)⊗ vn+1 ⊗ . . . .

(B.188)

Choosing k = R, it is possible to introduce a bilinear form on G : Rn|2m ⊗ Rn|2m → R,

such that for the standard basis SpanR{ei} = Rn|2m, one has

G(ei ⊗ ej) = gij with gij =

 1n×n 0m×n 0m×n

0m×n 0m×m 1m×m

0m×n −1m×m 0m×m

 . (B.189)

For short, we define

G ..=

(
1n

J2m

)
with J2m ..=

(
0m 1m

−1m 0m

)
. (B.190)

Here J is just the standard symplectic matrix, which has the property that J = −J t.
The orthosymplectic Lie superalgebra can therefore be defined as

osp(n|2m) ..= {X ∈ gl(n|2m,R) : G(X · (v1 ⊗ v2)) = 0, ∀v1, v2 ∈ Rn|2m}. (B.191)

One sees that, unraveling the above definition, one gets the following condition on X ∈
gl(n|2m,R) :

X tG+GX = 0. (B.192)
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In turn, writing X in block-form

X ..=

(
A Φ

Ψ B

)
(B.193)

forA ∈ HomR(Rn|0,Rn|0), B ∈ HomR(R0|2m,R0|2m) even matrices and Φ ∈ HomR(R0|2m,Rn|0)

and Ψ ∈ HomR(Rn|0,R0|2m) odd matrices one finds the conditions

At = −A, Bt = JBJ, Ψ = JΦt, (B.194)

having used that −J t = J in the relation for B, so that the generic element of the

superalgebra can be written as

osp(n|2m) 3 X ..=

(
A Φ

JΦt B

)
, (B.195)

with A ∈ so(n,R) and B ∈ sp(2n,R), which explains the denomination orthosymplectic.

Also, the above conditions makes it easy to count the dimensions of this Lie superalgebra,

namely one finds

dimR osp(n|2m) =
1

2
n(n− 1) +m(2m+ 1)|2mn. (B.196)
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mology of Integral Forms, J. Geom. Phys. 62, 4, (2012) 890

[9] R. Catenacci and P. A. Grassi, String Sigma Models on Curved Supermanifolds,

Universe 4 (2018) no.4, 60

[10] R. Catenacci, P. A. Grassi, S. Noja, A∞-Algebra from Supermanifolds, Ann. Henri

Poincare 20 (2019) no.12, 4163

[11] R. Catenacci, P. A. Grassi, S. Noja, Superstring Field Theory, Superforms and Su-

pergeometry, J. Geom. Phys. 148 (2020) 103559

[12] R. Catenacci, C. A. Cremonini, P. A. Grassi, S. Noja, On Forms, Cohomology, and

BV Laplacians in Odd Symplectic Geometry, arXiv:2004.02890

[13] R. Catenacci, C. A. Cremonini, P. A. Grassi, S. Noja, In preparation.

[14] K. Coulembier, R. B. Zhang, Invariant Integration on Orthosymplectic and Unitary

Supergroups, J. Phys. A 45, 9, (2012)

51



[15] C. A. Cremonini, P. A. Grassi, Pictures from Super Chern-Simons Theory , JHEP

03 (2020) 043

[16] C. A. Cremonini and P. A. Grassi, Super Chern-Simons Theory: BV-formalism and

A∞-algebras, Phys. Rev. D 102 (2020) 2, 025009

[17] C. A. Cremonini, P. A. Grassi, S. Penati, Supersymmetric Wilson Loops via Integral

Forms , JHEP 04 (2020) 161

[18] C. A. Cremonini, P. A. Grassi, S. Penati, Surface Operators in Superspace, JHEP 11

(2020), 050

[19] C. Chevalley, S. Eilenberg, Cohomology Theory of Lie Groups and Lie Algebras,

Trans. Am. Math. Soc. 63 (1948) 85

[20] D. Fiorenza, H. Sati, U. Schreiber, Super Lie n-algebra extensions, higher WZW

models and super p-branes with tensor multiplet fields, Int. J. Geom. Meth. Mod.

Phys., 12 (2015) 1550018

[21] D. Fiorenza, H. Sati, U. Schreiber, T-duality from super Lie n-algebra cocycles for

super p-branes, Adv. Theor. Math. Phys., 22 5 (2018)

[22] L. Frappat, P. Sorba, A. Sciarrino, Dictionary on Lie Algebras and Superalgebras,

Academic Press (2000)

[23] D. Fuks, Cohomology of Infinite-Dimensional Lie Algebras, (1986) Springer, New

York, NY

[24] P. A. Grassi, J. F. Morales Morera, Partition functions of pure spinors, Nucl. Phys.

B 751 (2006), 53-74

[25] P. A. Grassi, C. Maccaferri, Chern-Simons Theory on Supermanifolds, JHEP 1609

(2016) 170

[26] W. Greub, S. Halperin, R. Vanstone, Connections, Curvature, and Cohomology: Lie

groups, principal bundles, and characteristic classes. Vol.3. Academic Press (1973)

[27] P. Grozman, D. Leites, An Unconventional supergravity, in Duplij S., Wess J. (eds.)

Noncommutative Structures in Mathematics and Physics, NATO Science Series (Se-

ries II: Mathematics, Physics and Chemistry), vol 22. Springer (2000)

52



[28] P. Grozman, D. Leites, I. Shchepochkina, Invariant Operators on Supermanifolds

and Standard Models, in M. Olshanetsky, A. Vainstein (eds.) Multiple facets of quan-

tization and supersymmetry - Michael Marinov Memorial Volume, World Scientific

(2002)

[29] G. Hochschild, J. P. Serre, Cohomology of Lie Algebras, Ann. Math. 57 (1953) 591

[30] V. G. Kac, Classification of Simple Lie Superalgebras, Funk. Anal. Prilozhen 9

(1975)91

[31] D. A. Leites, Cohomologies of Lie Superalgebras, Funk. Anal. Prilozhen 9 (1975) 75

[32] J. A. de Azcarraga and J. M. Izquierdo, “Lie groups, Lie algebras, cohomology and

some applications in physics,” doi:10.1017/CBO9780511599897

[33] J. A. de Azcarraga and J. M. Izquierdo, “Superalgebra cohomology, the geometry

of extended superspaces and superbranes,” AIP Conf. Proc. 589 (2001) no.1, 3-17

doi:10.1063/1.1419311 [arXiv:hep-th/0105125 [hep-th]].

[34] J. A. de Azcarraga, J. M. Izquierdo, M. Picon and O. Varela, “Generating Lie

and gauge free differential (super)algebras by expanding Maurer-Cartan forms and

Chern-Simons supergravity,” Nucl. Phys. B 662 (2003), 185-219 doi:10.1016/S0550-

3213(03)00342-0 [arXiv:hep-th/0212347 [hep-th]].

[35] J. A. de Azcarraga, J. M. Izquierdo, M. Picon and O. Varela, “Extensions, expansions,

Lie algebra cohomology and enlarged superspaces,” Class. Quant. Grav. 21 (2004),

S1375-1384 doi:10.1088/0264-9381/21/10/010 [arXiv:hep-th/0401033 [hep-th]].

[36] D. A. Leites, Introduction to the Theory of Supermanifolds, Russ. Math. Surveys 35

(1980) no.1, 1.

[37] Y. I. Manin, Gauge Theory and Complex Geometry, Springer (1988)

[38] R. R. Metsaev, A. A. Tseytlin, Type IIB superstring action in AdS5×S5 background,

Nucl. Phys. B, 533 (1998) 109

[39] S. Noja, S. L. Cacciatori, F. Dalla Piazza, A. Marrani, R. Re, One-Dimensional

Super Calabi-Yau Manifolds and their Mirrors, JHEP 04 (2017) 094

[40] S. Noja, R. Re, A Note on Super Koszul Complex and the Berezinian,

arXiv:2012.02739

53



[41] M. Scheunert, R. B. Zhang, Cohomology of Lie Superalgebras and their Generaliza-

tions, J. Math. Phys. 39 (1998) 5024

[42] J. Gomis, D. Sorokin, L. Wulff, The complete AdS4 × CP3 superspace for the type

IIA superstring and D-branes, JHEP 03 (2009) 015

[43] H. Weyl, Classical Groups: their Invariants and Representations, Princeton Univer-

sity Press (1939), reprint (1997)

[44] E. Witten, Notes on Supermanifolds and Integration, Pure Appl. Math. Q. 15 (2019)3

[45] Yucai Su, R. B. Zhang, Mixed Cohomology of Lie Superalgebras, J. Alg 549 (2020)

1-29

[46] F. Brandt, Lagrangians and anomaly candidates of D = 4, N=1 rigid supersymmetry,

Nucl. Phys. B 392 (1993), 428-460 doi:10.1016/0550-3213(93)90680-N

[47] F. Brandt, Supersymmetry Algebra Cohomology: II. Primitive Elements in 2

and 3 Dimensions, J. Math. Phys. 51 (2010), 112303 doi:10.1063/1.3515845

[arXiv:1004.2978 [hep-th]].

54


	1 Introduction
	2 Chevalley-Eilenberg Cohomology: Main Definitions
	2.1 Lie Algebras and Lie Superalgebras
	2.2 Integral Forms and Chevalley-Eilenberg Cohomology
	2.2.1 A Primer of Integral Forms on Supermanifolds
	2.2.2 Defining Chevalley-Eilenberg Cohomology of Integral Forms

	2.3 Isomorphism Between Superform and Integral Form Cohomologies.

	3 Poincaré Polynomials and Betti Numbers
	4 Chevalley-Eilenberg Cohomology: Computations
	4.1 Dimension 1: Example of Infinite Cohomology
	4.2 Dimension 2: ``Flat'' and ``Curved'' Cases
	4.2.1 Flat Case: Supertranslations of the D=2, N=1 Superspace
	4.2.2 Curved Case: Lie Superalgebra u (1|1)
	4.2.3 A Remark on Cartan Theorem on Compact Lie Groups

	4.3 Dimension 3: ``Flat'' and ``Curved'' Cases
	4.3.1 Flat Case: Superstranslations of D=3, N=1 Superspace
	4.3.2 Curved Case: Lie Superalgebra osp (1|2) and its Inönü-Wigner Contraction to susy(R1,2|2)

	4.4 Dimension 4: ``Flat'' and ``Curved'' Cases
	4.4.1 Flat Case: Supertranslations of the D=4, N=1 Superspace R1,3|4

	4.5 Curved Case: Lie Superalgebra osp(2|2)

	5 Coset Superspaces and  Equivariant Chevalley-Eilenberg Cohomology
	5.1 Methods for Computations: Poincaré Polynomial Revised
	5.2 Lower Dimensional Cosets of osp(1|2) and u(1|1)
	5.3 Higher Dimensional Cosets of osp(2|2), osp(3|2) and osp(4|2)
	5.3.1 osp(2|2)
	5.3.2 osp(3|2)
	5.3.3 osp(4|2)

	5.4 Cosets of osp(1|4): D=4, N=1 Anti de Sitter Superspace

	6 Conclusions and Outlook
	A The Unitary Lie Superalgebra u (n|m)
	B The Orthosymplectic Lie Superalgebra osp(n|2m)

