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1 - Introduction

The algebraic group cohomology (see e.g. [1]), as opposed to the topological coho-

mology, has been recently applied to some aspect of field theory. The topological three

dimensional gauge theories are perhaps the most important examples [2]. Beside this ap-

plication, many problems in which a group or a group action play an important role, can

be described using the methods of group cohomology.

The problem of anomalies in field theories is one of them, and will be the main subject

of this talk. The origin of the anomalies problem is the lacking of gauge invariance of the

effective action; local anomalies arise when considering ”infinitesimal” gauge transforma-

tion, while global anomalies are connected with ”large” transformation (i.e. not in the

connected component of the identity).

The general framework for testing the possible occurrence of anomalies in field theories

can be constructed in terms of the theory of group actions on line bundles (see e.g.[3] and

its references). In this talk we revisit this topological construction through the application

of methods of group cohomology.

The starting point is the concept of G-line bundle over a principal G-bundle P
π→ M .

In physical applications P is the configuration space, while G is the invariance group of

the theory and the effective action Z(p) is a section of this G-line bundle.

In gauge theories P is the space of connections and G is the ”pointed” gauge group,

while for non linear supersymmetric sigma models P is the space of maps from a space

X to a homogeneous space K/H and G is the group of maps from X to a subgroup H ′

of K acting freely on K/H. For the bosonic string theory, P is the space of isometry-free

hyperbolic metrics on a Riemann surface of genus greater than two, and G is the semidirect

product of the diffeomorphisms and the Weyl (rescalings) group.
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The relevant cohomology group in which the anomalies live is interpreted as the kernel

of the map induced in (integer) cohomology by the projection map of the principal fibration

P . Local and global anomalies are split via the quotient fibration P/G0 (where G0 is the

identity connected component of G) : P
l→ P ′ = P/G0

g→ M = P ′/π0(G). Then some

spectral sequences analysis applies to describe the ”anomalies groups” and the ”anomalies

sequence”.

2 - Group Cohomology

If G is a group and M a right G-module, the group cohomology with coefficients in

M, H∗(G,M), is the cohomology of the complex C∗(G,M), where Cn(G,M), the module

of n-cochains, is the abelian group of maps from G × G × ... × G to M. The coboundary

operator, dn : Cn(G,M) → Cn+1(G,M), is:

dnF (g1...gn+1) = F (g2...gn+1)g1 +
n∑
1

(−1)iF (g1...gigi+1...gn+1) + (−1)n+1F (g1...gn)

An interesting fact, which was one of the starting point of the theory, relies group

cohomology to the usual singular cohomology; the cohomology of an aspherical space

depends only on its fundamental group. Stated in another way, if Y is an Eilenberg-

MacLane space of type K(G, 1), H∗(G,Z) = H∗(Y,Z), where, in the left-hand side, Z is

considered as a trivial G module. For finite groups, K(G, 1) is homotopy equivalent to BG,
the classifying space. The isomorphism H∗(G,Z) = H∗(BG,Z) is the heart of Witten’s

construction of a lattice gauge theory description of three dimensional topological gauge

theory for finite gauge groups [2].

The module of n-cochains Cn(G,M) is a G-module with a G-action given by:

(Fg)(g1...gn) = F (g−1g1g...g
−1gng)g

This action is trivial on H∗(G,M).

When H is a normal subgroup of G, one has an exact sequence:

0 → H1(G/H,MH)
inf→ H1(G,M)

res→ H1(H,M)G
T→ H2(G/H,MH)

inf→ H2(G,M)

where, for a G-module N , we have denoted by N G the G-invariant elements. The homo-

morphisms res and inf are, respectively, the restriction to H of the cocycles of G, and the

2



inflation, i.e. the composition of the cocycles of G/H with the projection p : G → G/H.

The homomorphism T is the transgression.

When H is a finite index normal subgroup of G , there exists a homomorphism, called

corestriction, going in the opposite direction: cor : H∗(H,M) → H∗(G,M). It is the

homomorphism defined, in dimension zero (where cor : MH → MG), by:

cor(m) =
∑

c∈G/H

mc̄

where, for each coset c ∈ G/H choose, once and for all, a representative c̄ requiring that

for c = H, c̄ = 1. Note that, for g ∈ G, c̄g and cg are such that c̄gcg−1 ∈ H. The definition

of cor in dimension one is:

(coru)(g) =
∑

c∈G/H

u(c̄gcg−1)c̄

An important property of cor is that the two compositions cor · res and res · cor are

both the multiplication by n = (G : H). It follows that, for any m different from zero,

na = 0 for any a ∈ Hm(G/H,MH).

3 - The Anomalies Sequence

The elementary properties of group cohomology briefly recalled in the previous section

turn out to be well suited for a description of anomalies. The only point is to find the

”relevant” G-module M.

The interpretation of the effective action Z as a section of a G-line bundle over P ,

gives naturally that M = C∗(P ), the right G-module of the non vanishing functions from

P to C, with the natural action (fg)(p) = f(pg). As usual, we switch to a multiplicative

notation for C∗ and, therefore, for the cohomology.

A one-cochain F : G → C∗(P ), putting f(p, g) = F (g)(p), gives a map f : P×G → C∗,

and the cocycle condition become f(p, g1g2) = f(pg1, g2)f(p, g1). The cohomology group

H1(G,C∗(P )) represents, geometrically, the group of G-isomorphism classes of topologically

trivial G-lines bundles over P , that is the anomalies. This can be seen from the exact

sequence:

1 → H1(G,C∗(P )) → H2(M,Z)
π∗

→ H2(P,Z)

where the first (injective) arrow is given by f → P ×f C (i.e. we identify (p, c) and

(pg, f(p, g)c)).
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These G-isomorphism classes represent the anomalies in the sense that in perturbative

field theory one first defines the effective action Z(p); the obstruction to extending this

functional to the whole G-orbit is given by the non triviality of f . In fact the action of G
on Z is represented by Z(pg) = f(p, g)Z(p).

When the group G is not connected, one could find ”global anomalies”, that is trivial

G0-cocycles that extends non trivially to G. The non trivial (and G-invariant) G0-cocycles

are called ”local anomalies”.

Putting H = G0 and observing that C∗(P )G0 = C∗(P ′), the exact sequence of the

previous section gives the ”anomalies sequence”:

1 → H1(π0(G),C∗(P ′))
inf→ H1(G,C∗(P ))

res→ H1(G0,C
∗(P ))G

T→ H2(π0(G),C∗(P ′))

The geometrical interpretation in terms of line bundles over P , applied to the factorisation

P
l→ P ′ = P/G0

g→ M = P ′/π0(G), gives:

1 → H1(G0,C
∗(P )) → H2(P ′,Z)

l∗→ H2(P,Z)

and

1 → H1(π0(G),C∗(P ′)) → H2(M,Z)
g∗

→ H2(P ′,Z)

These sequences identify H1(π0(G),C∗(P ′)) with the global anomalies and the G-invariant
elements of H1(G0,C

∗(P )) with the local anomalies.

In the case of SU(N) gauge theories (N ≥ 3), π0(G) is finite when, for example, the

first Betti number of the four-manifold X representing the (euclidean) compact space-time

is zero (i.e. H3(X,Z) is finite). In this case the existence of the cor map says that all the

global anomalies are torsion elements. This means that, if local anomalies are absent, and

if n = (G : G0), the n-th power of the effective action is gauge invariant.

Note that, if π0(G) is finite, the anomalies sequence implies that, if H2(π0(G),C∗(P ′))

is trivial, the map res is surjective. Moreover cor is injective. This means that the only

torsion elements in the anomaly group are the global anomalies. All local anomalies, in

this case, can be detected via the family index theorem and represented by functionals on

the space P .

The topological interpretation of the first cohomology group of G with values in the

G-module C∗(P ) gives a more explicit description of anomalies in terms of the topology of

G and P .
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For the local anomalies, H1(G0,C
∗(P )) , one can apply the low dimensional exact

cohomology sequence of the bundle P → P ′. In this case (recall that G0 is, by definition,

a connected group) the Leray spectral sequence gives, in absence of monodromy, an exact

sequence. The result is:

0 → H1(P ′,Z) → H1(P,Z) → H1(G0,Z) → H2(P ′,Z)
l∗→ H2(P,Z)

From this,

H1(G0,C
∗(P )) = kerl∗ = H1(G0,Z)/H

1(P,Z)

In the case of gauge theories, where P is the space of connections , all the cohomology of

P is trivial and we find:

H1(G0,C
∗(P )) = H1(G0,Z) = H2(P ′,Z)

The last group is the group of lines bundles over P ′; the effective action is a section of

the determinant line bundle of the Dirac chiral operator over P . This line bundle is G0

trivial if the corresponding bundle over P ′ has vanishing Chern class. The local anomaly

cancellation is controlled by the family index theorem that computes precisely this class.

In the case of the bosonic string theory, the situation is completely different: local

anomalies are absent and global anomalies are of free type (see [3]).

One final remark is in order: even if it is not suited for practical computations, the

group cohomological analysis of anomalies that we have described in this talk shows its

effectiveness in giving a a priori description of the objects we are dealing with. For example,

it is not always true that global anomalies are of torsion type and local anomalies are of

free type; this depends on the topology of both the ”gauge group” and the ”configuration

space”. A detailed analysis of concrete examples could reveal anomalies of a completely

unexpected nature.
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