Esercizi su divisibilità, primi ed equazioni diofantine

- 1. È vero che per ogni numero intero m vale quanto segue: se si divide m^2 per 4 si ottiene 0 oppure 1 come resto?
- 2. È vero che se si divide un qualunque numero primo maggiore di 6 per 6 si ottiene sempre come resto 1 oppure 5?
- 3. Determinate per quali valori interi di a hanno soluzioni intere le seguenti equazioni: 2ax+y=a; 4ax+2ay=a; 4ax+2ay=a+1; 2ax+4ay=4; 2ax+4y=a;
- 4. Provate che la retta di equazione 2x 2y + 1 = 0 non passa per nessun punto del piano con entrambe le coordinate intere.
- 5. Stabilite se la retta di equazione $y = \frac{3}{2}x + 1$ passa per punti del piano che abbiano entrambe le coordinate intere. In caso affermativo determinarne qualcuno.
- 6. Determinate, se ne esistono, alcuni valori di a (a intero) per cui siano contemporaneamente verificate: $a \mod 11 = 2$ e $a \mod 5 = 1$.
- 7. Determinate, se ne esistono, alcuni valori di a (a intero) per cui siano contemporaneamente verificate: $a \mod 16 = 3$ e $a \mod 8 = 2$.
- 8. Determinate tutti i numeri interi dispari a tali che $a \mod 3 = 1$.
- 9. Dimostrare che se p > 3 è un numero primo, allora $p^2 1$ è divisibile per 24.
- 10. Tre scimmiette rubano un carico di banane e le nascondono in un loro deposito. La prima scimmietta vuole mettere al sicuro la sua parte di banane e si reca nottetempo da sola al deposito e asporta un terzo delle banane (dopo averne mangiata 1 perché il numero originario di banane non era divisibile per 3). La seconda scimmietta fa lo stesso con le banane rimanenti: ne mangia 1 e asporta un terzo delle rimanenti; lo stesso fa la terza. Al mattino le tre scimmie si recano insieme al deposito e prendono ciascuna un terzo delle banane rimaste (che sono in numero multiplo di 3). Quante potevano essere le banane all'inizio?
- 11. Il giorno di San Baudolino viene organizzata una sfilata in costume per le vie di Alessandria. I partecipanti si dispongono in file da 7 ma si accorgono che in questo modo uno di loro rimane da solo in una fila.

Provano allora a disporsi in file da cinque, ma ancora rimane una fila con una persona sola, e la stessa cosa succede quando provano a disporsi in file da tre e due. Sapendo inoltre che i partecipanti sono meno di 300, quanti ne resterebbero da soli se si disponessero in file da 4?

- 12. Il giorno di San Gaudenzio viene organizzata una sfilata in costume per le vie di Novara. I partecipanti si dispongono in file da dieci ma si accorgono che in questo modo uno di loro rimane da solo in una fila. Provano allora a disporsi in file da nove, ma ancora rimane una fila con una persona sola, e la stessa cosa succede quando provano a disporsi in file da otto, sette, sei, cinque, quattro, tre e due. Dire quanti erano i partecipanti alla sfilata sapendo che erano meno di 5000.
- 13. Il primo gennaio 2002 Ilaria va a fare la sua prima spesa in Euro. Dopo un'ora si accorge di aver già speso metà dei suoi soldi, e di essere rimasta con tanti centesimi quanti erano gli Euro che aveva all'inizio e con un numero di Euro pari alla metà dei centesimi che aveva all'inizio. Quanto ha speso Ilaria? (supponiamo ovviamente che il numero di centesimi iniziali sia minore di 100)

Esercizi su congruenze, teorema di Fermat e residui di Gauss

- 1. Trovate, se ne esistono, tutte le soluzioni di $2x = 5 \mod 6$, di $2x = 0 \mod 4$, di $3x = 4 \mod 5$.
- 2. Provate che per ogni a,b,c interi, il numero b^2-4ac è congruo (modulo 4) a 0 oppure a 1.
- 3. Provate che se MCD(x, 6) = 1, allora $x^2 \mod 24 = 1$
- 4. Provate che se, dati gli interi a, b e il naturale n, vale a = nb, allora MCD(a, n) = MCD(b, n).
- 5. Rappresentate con tabelle opportune somma, reciproco e prodotto in \mathbb{Z}_4 .
- 6. Determinare tutti gli elementi invertibili di \mathbb{Z}_{12} e calcolarne gli inversi.
- 7. Provate che se a, b sono invertibili in \mathbb{Z}_n , allora anche $a \times b$ è invertibile in \mathbb{Z}_n .
- 8. Dimostrare che n^5 e n hanno la stessa cifra finale (quella delle unità).

- 9. Dimostrare che se 7 non divide n, necessariamente divide $n^{12} 1$.
- 10. Dimostrare che, per ogni intero $n, n^{13} n$ è divisibile per 2, 3, 5, 7, e 13.
- 11. Dimostrare che $n^9 + 2n^7 + 3n^3 + 4n$ è sempre divisibile per 5.
- 12. Dimostrare che se n non è divisibile per 13 allora n^6 diviso 13 ha resto 1 oppure 12.
- 13. Dimostrare che se n non è divisibile per 23 allora n^{11} diviso per 23 ha resto 1 oppure 22.
- 14. Enunciare e dimostrare il risultato generale di cui gli esercizi 12 e 13 sono casi particolari.
- 15. Dimostrare che esistono e trovare le due soluzioni (positive e minori di 11) dell'equazione $x^2 = 5 \mod 11$
- 16. Dimostrare che, per tutti gli interi m, esiste un intero n tale che $n^2 5m^2$ è divisibile per 11
- 17. Dimostrare che, per tutti gli interi m, esiste un intero n tale che $n^2 + 627m^2$ è divisibile per 17
- 18. Dimostrare che se n e m sono interi primi fra loro allora nessun numero della forma $n^2 + 5m^2$ è multiplo di 11.
- 19. Dimostrare che, per ogni primo p, si ha: $(p-1)! = (p-1) \mod p$
- 20. Dimostrare che l'equazione $x^2 + 4x 1 = 0$ è risolubile modulo 11 e trovare le soluzioni positive e minori di 11.
- 21. Dimostrare che l'equazione $x^2 + 4x + 5 = 0$ non è risolubile modulo 7.
- 22. Dimostrare che se nnon è divisibile per 17 allora $(n^8-16)\,\mathrm{mod}\,17=0$ oppure = 2
- 23. Dimostrare che $n^5/5 + n^3/3 + 7n/15$ è un intero per ogni n.
- 24. Dimostrare che $n^{13} n$ è divisibile per 2730 qualsiasi sia l'intero n.