Breve nota sugli anelli $\mathbb{Z}\left[\sqrt{A}\right]$ e l'equazione di Pell-Fermat.

Versione del 29 Febbraio 2008

Importanti esempi di **domini di integrità** si costruiscono generalizzando il caso degli interi di Gauss:

Sia $A \neq 0 \in \mathbb{Z}$. Allora l'insieme:

$$\mathbb{Z}\left[\sqrt{A}\right] = \left\{a + \sqrt{A}b \text{ con } a, b \in \mathbb{Z}\right\}$$

è un sottoanello commutativo di \mathbb{C} senza divisori dello zero (dove $0 = 0 + \sqrt{A0}$, e $1 = 1 + \sqrt{A0}$).

I divisori dello zero $a + \sqrt{A}b \neq 0$ sono elementi tali che esiste $(x + \sqrt{A}y) \neq 0$ in modo che:

$$\left(x + \sqrt{A}y\right)\left(a + \sqrt{A}b\right) = 0.$$

Osserviamo ora che se $a+\sqrt{A}b=0$, necessariamente a=b=0. Infatti se A<0 il risultato si ottiene separando la parte reale e la parte immaginaria, mentre se A>0 il risultato si ottiene osservando che se A non è un quadrato, se $a+\sqrt{A}b=0$ con a e b ambedue $\neq 0$, si otterrebbe $\sqrt{A}=-\frac{a}{b}$, ma questo è assurdo perchè \sqrt{A} è un numero irrazionale¹. Dobbiamo quindi studiare il sistema:

$$\begin{cases} ax + Aby = 0 \\ bx + ay = 0 \end{cases}$$

$$k^2 = p^{2\alpha - 1}Bb^2$$

Ancora si ottiene $k^2 \mod p = 0$ e allora, essendo \mathbb{Z}_p un campo, $k \mod p = 0$. Cioè si avrebbe k = hp e quindi $(hp)^2 = p^{2\alpha-1}Bb$, quindi:

$$h^2 = p^{2\alpha - 3}Bb^2$$

Procediamo così fino a quando l'esponente di p a destra dell'uguale si riduce a 1 (non può ridursi a zero perchè ad ogni passo sottraiamo 2 ad un numero dispari). Abbiamo quindi, dopo un numero finito di passi:

$$l^2p^2 = pBb^2$$

e quindi anche $b^2 \mod p = 0$, cioè $b \mod p = 0$, ma questo è assurdo perchè abbiamo supposto a e b primi fra loro. Il lettore con buona memoria noterà che abbiamo banalmente generalizzato la dimostrazione elementare e notissima del fatto che $\sqrt{2}$ è irrazionale.

¹Infatti se A > 0 non è un quadrato deve necessariamente contenere almeno un fattore primo p elevato a una potenza dispari, ovvero deve essere $A = p^{2\alpha+1}B$ e B non contiene p come fattore primo. Se \sqrt{A} fosse razionale, sarebbe $\sqrt{A} = \frac{a}{b}$ con a e b primi fra loro. Cioè $a^2 = p^{2\alpha+1}Bb^2$, e quindi $a^2 \mod p = 0$ e allora, essendo \mathbb{Z}_p un campo, $a \mod p = 0$. Cioè si avrebbe a = kp e quindi $(kp)^2 = p^{2\alpha+1}Bb$, otteniamo allora:

Questo sistema lineare omogeneo nelle incognite x, y ha soluzioni diverse da zero se e solo se $a^2 - Ab^2 = 0$. Questo però non può mai verificarsi: se A < 0 dovrebbe essere a = b = 0 (escluso per ipotesi), se invece A > 0, $a^2 - Ab^2 = 0$ implicherebbe la razionalità di \sqrt{A} contro l'ipotesi che A non sia un quadrato.

La ricerca delle unità in questi anelli coinvolge interessanti questioni di teoria elementare dei numeri. Mentre il caso A<0 non presenta ulteriori difficoltà e verrà studiato in seguito, il caso A>0 si basa su un'importante equazione diofantina di secondo grado, già nota come "equazione di Pell" oppure di Fermat, che la studiò approfonditamente, pur senza giungere a risultati completi (il risultato definitivo fu raggiunto da Lagrange). Siccome

L'equazione in questione è:

$$x^2 - Ay^2 = \pm 1$$

con x, y interi che possiamo supporre > 0 (trascuriamo infatti, nel caso $x^2 - Ay^2 = 1$, le soluzioni banali $x = \pm 1, y = 0$) e, inoltre, A > 0 non deve essere il quadrato di un naturale.

L'equazione ha a che vedere con la ricerca delle unità **non banali** di $\mathbb{Z}[A]$ perchè:

$$\left(x + \sqrt{Ay}\right)\left(x - \sqrt{Ay}\right) = x^2 - Ay^2$$

e quindi, se $x^2 - Ay^2 = 1$, allora $\left(x \pm \sqrt{A}y\right)$ è una unità perchè ha inverso $\left(x \mp \sqrt{A}y\right)$, mentre nel caso $x^2 - Ay^2 = -1$, $\left(\pm x + \sqrt{A}y\right)$ è una unità perchè ha inverso $\left(\mp x + \sqrt{A}y\right)$. Se troviamo una unità non banale, ad esempio $\left(x + \sqrt{A}y\right)$ con $x^2 - Ay^2 = 1$, è chiaro che anche $\left(x + \sqrt{A}y\right)^n$ per ogni n intero è una unità e quindi questi anelli, se hanno una unità non banale, ne hanno infinite. Lagrange ha dimostrato che l'equazione $x^2 - Ay^2 = 1$ ha sempre soluzioni non banali, mentre il caso $x^2 - Ay^2 = -1$ non sempre è risolubile.

Vediamo subito un esempio: se A=7, allora da $x^2-7y^2=-1$ seguirebbe che $x^2=-1=6$ mod 7, e questo, esaminando la tavola di moltiplicazione di \mathbb{Z}_7^* si rivela impossibile. Nel caso $x^2-Ay^2=1$ si ricava invece $x^2=1$ mod 7 e questo è possibile in infiniti modi, basta considerare i numeri della forma: x=1+7k, oppure x=6+7k. Naturalmente queste condizioni sono solo necessarie per l'esistenza di soluzioni, trovare a quali di questi numeri corrisponde effettivamente una soluzione è tutta un'altra storia! Nel caso del nostro esempio è facile trovare una soluzione particolare: x=8,y=3. Questa soluzione si chiama "fondamentale", perchè è la soluzione con x,y>0 in cui x,y assumono il minimo valore possibile.

Analizziamo un po' più approfonditamente il caso $x^2 - Ay^2 = 1$.

Trovata la soluzione fondamentale (Lagrange ha dimostrato che esiste sempre, e ha trovato un procedimento molto laborioso per trovarla; la sua teoria, specialmente il procedimento costruttivo, è tutt'altro che banale perchè richiede la teoria delle frazioni continue ed è stato lo scoglio su cui si è arenato il grande Fermat), è facile trovare *infinite* soluzioni, poniamo:

$$(x_n + \sqrt{A}y_n) = (x + \sqrt{A}y)^n$$
 da cui:
 $(x_n - \sqrt{A}y_n) = (x + \sqrt{A}y)^{-n}$

E' chiaro, per quanto detto sopra, che x_n, y_n è una soluzione se x, y lo è.

Se introduciamo le matrici:

$$M_n = \left(\begin{array}{cc} x_n & Ay_n \\ y_n & x_n \end{array}\right)$$

Abbiamo che tutte queste matrici sono invertibili perchè $\det M = 1$.

Si trova anche, per induzione, che:

$$M_n = \left(\begin{array}{cc} x_1 & Ay_1 \\ y_1 & x_1 \end{array}\right)^n$$

Inoltre:

$$\left(\begin{array}{c} x_2 \\ y_2 \end{array}\right) = \left(\begin{array}{cc} x_1 & Ay_1 \\ y_1 & x_1 \end{array}\right) \left(\begin{array}{c} x_1 \\ y_1 \end{array}\right)$$

Che si generalizza subito:

$$\begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = \begin{pmatrix} x_n & Ay_n \\ y_n & x_n \end{pmatrix} \begin{pmatrix} x_n \\ y_n \end{pmatrix} = \begin{pmatrix} x_1 & Ay_1 \\ y_1 & x_1 \end{pmatrix}^n \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$$

Possiamo ora dimostrare, con Fermat (anche se ovviamente, non con le sue notazioni)che, in questo modo, partendo dalla soluzione fondamentale troviamo tutte le soluzioni positive. La dimostrazione è molto brillante e si basa su un tipo di ragionamento molto caro a Fermat che lo inventò e lo utilizzò con successo in moltissimi teoremi. Il principio è (apparentemente) banale e consiste essenzialmente nel fatto che ogni insieme di numeri interi positivi ha un unico elemento minimo.

L'insieme delle soluzioni positive (x_n, y_n) può essere ordinato per ordine crescente delle x, esiste dunque un primo elemento (x_1, y_1) ; per tutti gli altri n si ha: $x_n > x_1 > 1$ e $y_n > y_1 > 0$, infatti:

 $(x_n + \sqrt{A}y_n) = (x_1 + \sqrt{A}y_1)^n \Rightarrow x_n = x_1^n + \dots$

Si vede allora che ambedue le successioni $x_n, y_n \to \infty$.

E' chiaro allora che per ogni coppia di soluzioni positive (x, y) possiamo trovare un n tale che:

$$x_n \le x < x_{n+1}$$
$$y_n \le y < y_{n+1}$$

Otteniamo allora:

$$x_n + \sqrt{A}y_n \le x + y\sqrt{A} < x_{n+1} + \sqrt{A}y_{n+1}$$

A questo punto moltiplichiamo i tre membri per $x_n - \sqrt{A}y_n$, ottenendo:

$$1 \le \left(x + y\sqrt{A}\right)\left(x_n - \sqrt{A}y_n\right) < \left(x_{n+1} + \sqrt{A}y_{n+1}\right)\left(x_n - \sqrt{A}y_n\right)$$

Osserviamo ora che $\left(x+y\sqrt{A}\right)\left(x_n-\sqrt{A}y_n\right)$ è una soluzione perchè è una unità essendo il prodotto di due unità, mentre:

$$(x_{n+1} + \sqrt{A}y_{n+1}) (x_n - \sqrt{A}y_n) = (x_1 + \sqrt{A}y_1)^{n+1} (x_1 + \sqrt{A}y_1)^{-n} = x_1 + \sqrt{A}y_1$$

Abbiamo quindi trovato una soluzione strettamente minore della soluzione fondamentale e questo è assurdo.

Deve quindi essere $x=x_n,y=y_n$: tutte le soluzioni si ottengono dalla formula $\left(x_n+\sqrt{A}y_n\right)=\left(x_1+\sqrt{A}y_1\right)^n$.

Osserviamo ora che se l'equazione $x^2 - Ay^2 = -1$ è risolubile, e u, v è la sua soluzione fondamentale, allora

$$x = u^2 + Av^2$$
$$y = 2uv$$

è la soluzione fondamentale di $x^2 - Ay^2 = 1$. Cioè:

$$x + \sqrt{A}y = (u + \sqrt{A}v)^2$$

Consideriamo ad esempio $\mathbb{Z}\left[\sqrt{5}\right]$: la soluzione fondamentale di $x^2-5y^2=-1$ esiste ed è ovviamente u=2,v=1. Allora x=9,y=4 è la soluzione fondamentale di $x^2-5y^2=1$. Il gruppo delle unità è allora generato dagli elementi $\left(9+4\sqrt{5}\right)$ e $\left(2+\sqrt{5}\right)$. Essendo però $\left(9+4\sqrt{5}\right)=\left(2+\sqrt{5}\right)^2$ abbiamo che il gruppo delle unità è isomorfo a \mathbb{Z} . Infatti:

$$(9+4\sqrt{5})^n (2+\sqrt{5})^m = (2+\sqrt{5})^{2n+m}$$

Questo risultato è valido in generale: il gruppo delle unità dell'anello $Z\left[\sqrt{A}\right]$ con A>0 intero non quadrato è sempre ciclico infinito. Infatti se x,y è la soluzione fondamentale di $x^2-Ay^2=1$ e $x^2-Ay^2=-1$ non è risolubile, allora $g=x+\sqrt{A}y$ è un generatore. Se invece $x^2-Ay^2=-1$ è risolubile e la sua soluzione fondamentale è u,v allora un generatore è $g=u+\sqrt{A}v$.

Per illustrare la difficoltà computazionale del problema ecco un esempio: $x^2 - 61y^2 = -1$ è risolubile, la sua soluzione fondamentale è u = 29718, y = 3805, allora $x = 29718^2 + 61 \times 3805^2 = 1766 319 049$ e $y = 2 \times 29718 \times 3805 = 226 153 980$ è la più piccola soluzione di $x^2 - 61y^2 = 1$.

Studiamo ora il caso A < 0. L'equazione in questione è ancora:

$$x^2 - Ay^2 = \pm 1$$

Il caso $x^2 - Ay^2 = -1$ è sempre escluso per ragioni di segno e resta solo il caso $x^2 - Ay^2 = 1$. Se A < -1 le soluzioni sono solo $x = \pm 1, y = 0$, mentre nel caso A = -1 appaiono anche le soluzioni $x = 0, y = \pm 1$. il gruppo delle unità dell'anello $Z\left[\sqrt{A}\right]$ con A < 0 intero è sempre ciclico finito: se A = -1 il gruppo è $\{\pm 1, \pm i\}$, se A < -1 il gruppo è $\{\pm 1\}$.