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Summary. — The definition of a sphere depends on the definition of distance in the
embedding three-dimensional space; the classification is straightforward, but should
be clearly understood to appreciate the richness and the variety of this concept in
geometry and mathematical physics. There are essentially three loci of points with
the same “distance” from a centre O: the ordinary sphere S2, the single-sheet hyper-
boloid AdS2 and the two-sheet hyperboloid H. The extraordinary fertility of AdS2

and H began in the XIX century, when the Italian mathematician E. Beltrami dis-
covered an intrinsic metric on a disk on the plane which is a canonical realization of
two-dimensional hyperbolic geometry with constant curvature, but did not recognize
that it is just a stereographic projection of H. Subsequently, AdS2 became an im-
portant geometrical building block in special relativity, in cosmology and, in 1959, in
a solution of Einstein-Maxwell’s field equations corresponding to a uniform electro-
magnetic field. This space-time, here called BR after Bertotti and Robinson’s papers
of 1959, consists in the combination of two (generalized) spheres and can be obtained
in a purely geometric way. The BR geometry has played a relevant role in the search
for new unifying fundamental laws, in particular in very high-energy physics, and
has provided examples to test and exemplify new physical principles. In sect. 4
we briefly outline three general areas. The first area is the extension of a classical
field theory to the complex domain (in particular, in relation to quantum gravity).
Ideally, the most interesting complexification of a Riemannian manifold consists in
endowing it with a Kählerian structure; it turns out that, while this is possible for
a definite signature in many cases, in space-time a Kählerian manifold is obtained
only if it is just the BR solution (or, trivially, if it is flat). The other two areas are:
the exploration of the quantum properties of the horizon of a black hole and the
holographic principle; string theory, and the fundamental role of a scalar field, the
dilaton. We give, and clarify, examples in which the BR solution has been applied.

PACS 04.20.-q – Classical general relativity.
PACS 02.40.-k – Geometry, differential geometry, and topology.
PACS 04.60.-m – Quantum gravity.
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1. – Pseudospheres

The requirement of a positive metric must be abandoned. In a (real) flat embedding
space (R3,dσ2) with metric

(1) dσ2 = εξdξ2 + εηdη2 + εζdζ2,

consider the fundamental quadric [1]

(2) εξξ
2 + εηη

2 + εζζ
2 = εR2.

εξ, εη, εζ and ε take the values +1 or −1. Each case will be denoted with the symbol
(sgn εξ sgn εη sgn εζ , sgn ε); since the two cases (+++,−) and (−−−,+) are forbidden,
with a permutation of the embedding coordinates, we can choose εζ = ε.

The manifolds (2) with the induced metric (1), are complete surfaces in
(
R
3,dσ2

)
with

constant scalar curvature R = 2ε/R2 �= 0; when simply connected, they are the only
ones with these properties. Their geodesics are the intersections with planes through
the origin O. Note that ε is the sign of the square of the normal vector n, and can
be directly found taking a particular point, e. g., P . When viewed as subsets of the
Euclidean R

3, there are three topologically distinct kinds (see fig. 1). With a definite
metric (εζ = εη = εζ = 1), ε must also be 1; this is the usual sphere S2 (Note that it
is the only one that can be embedded with the induced metric in the Euclidean R

3.)
We have also the “negative sphere” (− − −,−). When the metric (1) is indefinite, the
fundamental quadric is a hyperboloid. A double-sheet hyperboloid can be realized either
as (−− +,+) or (+ + −,−); in both cases the induced metric ds2 is also definite, (−−)
in the first case and (++) in the second. (− + −,−) and (+ − +,+) are single-sheet
hyperboloids; at every point there are two null lines, the intersections with the tangent
plane. The induced metric is indefinite, (−+) in the first case and (+−) in the second. If
the coordinates ξ and η are interchanged the same is true for (−+ +,+) and (+−−,−).

All these metrics appear in pairs, obviously equivalent from the point of view of the
geometry of the geodesics; they differ only in the sign of scalar curvature R. In all cases
they are the locus of the points at the same σ-distance from the origin O and, therefore,
they possess the three-dimensional isometry group which leaves the embedding metric
invariant. Their Riemann and Ricci tensors are

(3) Rijkh = ε/R2(gikgjh − gihgjk), Rij = ε/R2gij , R = gikgjlRijkl = 2ε/R2 ,

where Latin indexes denote two intrinsic coordinates.
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Fig. 1. – Topological classification of the fundamental quadrics (2) in R
3, with constant scalar

curvatureR = 2ε/R2. a) The sphere S2. The triangle ABP illustrates Gauss’Theorema egregium
(9). b) The single-sheet hyperboloid. If viewed as a space-time, it is called dS2 (for “de Sitter”
in two dimensions) or AdS2 (for “Anti de Sitter”) according to whether its axis is time-like or
space-like (see table below). c) The two-sheet hyperboloid H. As explained in the text, each of
these topologically different cases can be realized metrically in two ways. The direction of the
vector n corresponds to one of them. Each realization is denoted by the signs of the four ε’s;
the second bracket gives the intrinsic signature.

These two-dimensional metrics can be written in a “conformally flat” form:

(4) ds2 =
εξdu2 + εηdv2(

1 + ε
4R2 (εξu2 + εηv2)

)2 ,
where

u =
2ξ

1 +
(
1 − ε

R2 (εξξ2 + εηη2)
)1/2 , v =

2η

1 +
(
1 − ε

R2 (εξξ2 + εηη2)
)1/2 ,

are coordinates in a “plane” with metric dl2 = εξdu2+εηdv2. The pseudospheres can also
be mapped with hyperbolic variables (−∞ < χ < ∞, 0 ≤ φ < 2π). For the single-sheet
case the intrinsic metrics are

(5) ds2 = εR2
(−dχ2 + cosh2 χdφ2

)
;

for the two-sheet case

(6) ds2 = εR2
(−dχ2 − sinh2 χdφ2

)
.

The two-dimensional surfaces generated by fundamental quadrics (fig. 1) can be com-
bined to construct Riemannian manifolds with an even number of dimensions, endowed
with interesting symmetries. For space-time, however, the correct number of time-like
(one) and space-like (three) intrinsic coordinates must be ensured, narrowing down the
choice. Consider a four-dimensional manifold Σ4 = Σ+ × Σ−, topological product of
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two two-dimensional manifolds, Σ+ with coordinates (x0, x1), and Σ−, with coordinates
(x2, x3); a tensor is termed decomposable if a) its components with mixed indexes vanish
and b) its components relative to Σ+ (Σ−) depend only on the respective coordinates.
A Riemannian manifold Σ4 with this property is decomposable if its metric tensor is
decomposable(1):

(7) gµν = g(+)µν + g(−)µν .

Its Ricci tensor has the same property [2]:

(8) Rµν = (R+/2)g(+)µν + (R−/2)g(−)µν .

As discussed in sect. 4, they directly lead to the Bertotti-Robinson solution of Einstein-
Maxwell field equations [3, 4].

Obviously the fundamental quadrics can be generalized to n-dimensional manifolds
of constant scalar curvature R embedded in a flat space R

n+1.

2. – Geometry and physics of pseudospheres

In this section of historical interest we briefly recall some relevant applications of
fundamental quadrics in geometry and physics. They have played a very important role
in the development of non-Euclidean geometry (see, e.g., [5-7]) and provided a striking
and direct realization of trigonometry and Gauss’ Theorema egregium

(9) α+ β + γ − π = ε = KA,

which connects the sum of the internal angles of a geodetic triangle with its area A. ε
is called the excess angle (not to be confused with ε). (A word of caution about the
concept of the Gaussian curvature K is in order here. In a positive definite metric
K = 1/(RMRm) is defined in terms of the radii of curvature of the sections of the
surface with the family of planes through its normal at a given point; RM and Rm
are, respectively, the upper and lower bounds of such radii. But in the indefinite case,
a careful definition of the radius of curvature and its sign is required; more generally,
in non-Euclidean geometry trigonometry should be appropriately generalized (see [8]).
We skirt this complication and confine ourselves to concepts of intrinsic Riemannian
geometry, without using angles at all.)

In 1868 the Italian mathematician Beltrami investigated a realization of hyperbolic
geometry (with K < 0) in an open disk in a plane [9]. It is intrinsically defined by the
metric

(10) ds2B = R2 (R2 − v2)du2 + 2uv du dv + (R2 − u2)dv2

(R2 − u2 − v2)2
.

The variables u and v are confined to the open disk u2 +v2 < R2, the points correspond-
ing to its boundary being at infinity. In this representation geodesics are just straight
segments in the (u, v)-plane, and the model is geodesically complete. Consider now the

(1) In this paper we adopt Einstein’s summation rule. Greek indices run from 0 to 3.
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two-sheet quadric labelled c) in fig. 1, whose metric can be written as (6); it can easily be
shown that the stereographic projection of one sheet from the origin O onto the tangent
plane through P reproduces Beltrami’s metric ds2B (10) or −ds2B. Explicitly, the required
mapping (χ, φ) → (u, v) is

u = R tanhχ cosφ, v = R tanhχ sinφ.

The points on the circumference u2 + v2 = R2 correspond to the points at infinity on
the upper null cone ξ2 + η2 = ζ2 (ζ > 0). A complete representation can be obtained
by formally identifying the antipodal points (ξ, η, ζ) and (−ξ,−η,−ζ). Beltrami solution
has been extensively investigated from the projective point of view, allowing recovery of
its trigonometric properties; we did not find in the literature this simple and clarifying
interpretation, which throws full light also on its topological properties.

The single-sheet hyperboloid b) (− + −,−) (fig. 1) also provides a realization of
hyperbolic geometry. Denoting with (u, v) the ξ and η coordinates in the projection
plane ζ = R, the projection P0 of a point P = R(coshχ cosφ, sinhχ, coshχ sinφ) on the
hyperboloid has u = R cotφ, v = R tanhχ cscφ, leading to the metric

ds2B2 = R2 (v2 −R2)du2 − 2uvdudv + (u2 +R2)dv2

(R2 + u2 − v2)2
,

to be compared with the original Beltrami metric (10). The straight lines in the (u, v)-
plane are still geodesics, but Beltrami’s disk is replaced by v2 − u2 < R2.

The four-dimensional generalization of the single-sheet hyperboloid b) has played
important roles in physics. In special relativity the energy E and the momentum p =
(px, py, pz) of a free particle with rest-mass m fulfill(2)

(11) E2 − p2x − p2y − p2z = m2.

This is the extension of the two-sheet hyperboloid (− − +,+) to four dimensions; the
two sheets correspond to particles and antiparticles, respectively. The fact that this,
de facto, introduces non-Euclidean geometry has been fully recognized first by Varićak
(1865-1942) in 1912 [10] (see also [11]), in particular in relation to the relativistic law of
addition of velocities.

De Sitter’s four-dimensional manifold dS4 generalizes the single-sheet hyperboloid
(− + −,−); in a flat five-dimensional space R

5 with metric

(12) dσ2 = −dζ2 + dη2 − dξ2 − dυ2 − dω2,

it is defined by the fundamental quadric

(13) −ζ2 + η2 − ξ2 − υ2 − ω2 = −R2.

The induced metric has the correct space-time signature (+ − −−). This manifold is
invariant under the 10-parameter isometry group consisting of the linear transformations

(2) The signature (+−−−) is assumed for space-time, at variance with the usual choice (−+++)
in quantum field theory; the velocity of light is unity.
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in R
5 which leave (12) invariant; when restricted to the fundamental quadric, in the limit

R → ∞ it corresponds to the Lorentz group combined with the four-parameter transla-
tional group (the Poincaré group SO(3, 1) � T 4)(3). All points of dS4 are equivalent.

Just like the sphere is the “perfect” surface in ordinary space (and for this reason it
played such an important role in Hellenistic and Tolomean cosmologies), we have here
the perfect space-time: an obvious cosmological model in which there is no origin, nor
history. This is the Steady State Theory (see the pioneer papers [12, 13] and [14]), now
abandoned in face of compelling evidence for evolution (see [15] and references therein).
Its symmetry properties guarantee that De Sitter’s world dS4 is a solution of

(14) Rµν = Λgµν (Λ = 1/R2).

If in the fundamental quadric (13) η and ζ are exchanged, we obtain the four-dimensional
anti-de Sitter’s Universe, in which the time t is cyclic: every physical field is a periodic
function of t. With obvious generalizations, dSd is the de Sitter Universe in d dimensions
(embedded in R

d+1), one of which is time-like and open; similarly, in the AdSd universe
time is cyclic.

3. – Bertotti-Robinson solution and the Already Unified Theory

With the geometrical tools discussed in sect. 1 and in the framework of Maxwell-
Einstein theory, it is easy to get the physical interpretation of the topological product
of two fundamental quadrics. A (covariantly) constant and not null(4) electromagnetic
field determines the traceless energy momentum tensor τµν in terms of its energy density
ρ (with dimensions L−2); if, in addition, we have a cosmological constant Λ, the field
equations read

(15) Rµν = τµν + Λgµν .

The field laws of general relativity can be expressed as second-order partial differen-
tial equations for the metric components and are usually solved in a specific coordinate
system. This has two serious drawbacks: the question of geodesic completeness and
of topology remains beyond reach; the geometric identity of the solution remains hid-
den. In fact, two different metric fields, expressed as functions of some coordinates, may
correspond to the same global geometry. On the contrary, the construction of the BR so-
lution, both in this paper and in the original article [16,3], is geometric and global, hence
free of these drawbacks. Robinson has investigated the case with vanishing cosmological
constant [4], while earlier Kasner [17] found the solution without electromagnetic field.

In the wake of Einstein and Schrödinger’s attempts to build a unified theory of gravity
and electromagnetism, the “Already Unified Theory” [18,19] was developed, based upon
the principle that geometry is all ; Einstein-Maxwell equations can be formulated in a
purely geometric form, which allows to extract the electromagnetic field from its imprint
on the metric. There are three questions:

1. Does a solution of Maxwell-Einstein (15) fulfill purely geometric conditions?

(3) The symbol � stands for semidirect group product.
(4) The null case is degenerate and it will not be discussed here.
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2. Are they sufficient to determine it?

3. Can the electromagnetic field be recovered?

Spacetime is a connected manifold endowed with a local metric g. At a point P the
operators ∂µ = ∂/∂xµ provide a basis for the tangent space TPM . The dual space T ∗

PM
is the set of 1-forms, linear mappings from TPM to R. The natural basis in T ∗

PM , called
dxµ (not infinitesimal!), is defined for each ∂ν by saying that this number is δµν , to wit, 1
when µ = ν and 0 otherwise. In [3] the BR solution was obtained with ordinary tensor
calculus; here, also in view of the developments of sect. 5, it is convenient to use the
language of forms (see, e. g., [20, 21]):

θ0 = nµdxµ, θ3 = lµdxµ,(16)
θ1 = −m̄µdxµ, θ2 = −mµdxµ.

They are four independent, local and null complex one-forms. The null fields nµ and lµ
(real) and mµ (complex) fulfill

g(l, n) = gµν l
µnν = 1, g(m, m̄) = gµνm

µm̄ν = −1.

In this null tetrad the metric tensor reads

(17) g = θ0 ⊗ θ3 + θ3 ⊗ θ0 − θ1 ⊗ θ2 − θ2 ⊗ θ1,

where ⊗ denotes the tensor product. The dual of a (possibly complex) two-form F =
Fijθ

i ∧ θj is defined as(5)

∗Fij =
i

2
εijpqF

pq.

This is an anti-idempotent operator, with ∗ ∗ F = −F . A two-form F is called self-dual
if ∗F = iF =

√−1F ; hence

F̃ =
1
2

(F − i ∗ F )

is the self-dual part of F.
The complex-valued two-forms:

Z1 = 2
√

2θ0 ∧ θ1,(18)

Z2 = 2
√

2θ2 ∧ θ3,
Z3 = 2

(
θ1 ∧ θ2 − θ0 ∧ θ3)

provide a basis for the space Λ2
SD of the self-dual complex two-forms F̃ . In the space of

complex two-forms, two bilinear forms are defined:

(F,G) =
1
4
FijG

ij , {F,G} = −1
2

(
FijG

j
k + ∗Fij ∗Gjk

)
θi ⊗ θk.

(5) In this section Latin indices from i on range from 0 to 3 and label the components in the
null tetrad. In an arbitrary frame, ∗Fµν =

√− det g εµνρσ F ρσ/2.
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(F,G) is a scalar which, when restricted to Λ2
SD, defines a metric and a covariant basis:

Z1 = Z2, Z2 = Z1, Z3 = −Z3.

{F,G} is a complex, traceless and symmetric tensor.
The two forms Za are parallel transferred by Cartan’s structure equations:

(19) dZa = εabcσb ∧ Zc. (a, b, c = 1, 2, 3).

The three one-forms σb are defined by the parallel transfer ∇X of θi along a vector
field X:

(20) ∇Xθi ⊗ θi =
1
2

(
σa(X)Za + σa(X)Za

)
.

The bar denotes the complex conjugate. The quantities σa are constructed with the
Christoffel symbols.

The source-free Maxwell equations and the electromagnetic energy-momentum tensor
τ are

dF̃ = 0, τ = {F̃ , F̃}.
The electromagnetic case corresponds to a real Fµν ; in this case, the mathematical and
physical content of Maxwell theory is fully encoded in its (complex) self-dual part. In
particular, (F̃ , F̃ ) is the only invariant(6) one can build with F̃ ; when

(
F̃ , F̃

)
�= 0 the

field is called non-null, and there is a frame in which

F̃ =
√

2
2
AZ3, τ = AĀ{Z3, Z̄3}.

A is a differentiable complex function over spacetime. The two-planes θ0∧θ3 and θ1∧θ2
are the blades of the electromagnetic field.

The first Cartan equation (19) gives

(21) dZ3 = σ1 ∧ Z1 − σ2 ∧ Z2 ≡ ψ ∧ Z3.

The one-form ψ is geometrically important, because its components are related to the well
known, and widely used, Newmann-Penrose spinor coefficients [22]. The most important
result of the Already Unified Theory [3,23] is that the necessary and sufficient conditions
for a metric to be a solution of Einstein-Maxwell equations for a non-null electromagnetic
field are

1. There is a frame in which the Ricci tensor is Ricci = AĀ{Z3, Z̄3}. This condition
is equivalent to the “algebraic condition” of [3].

2. In this frame, dψ = 0 (the “differential condition” of [3]).

(6) This is a complex invariant; its real and imaginary parts correspond to the usual real
invariants E2 − B2 and E · B.
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Table I. – The two possible realizations of the BR universe.

Symbol Quadrics Σ+ ⊗ Σ− Time

BR1 (−−−,−)⊗ (+−+,+) S2 ⊗ AdS2 cyclic with period 2πR−
BR2 (−+−,−)⊗ (−−+,+) dS2 ⊗ H2 (−∞,∞)

The electromagnetic self-dual two-form is then given by

F̃ =
√

2
2
eiαAZ3,

where eiα is a constant duality rotation.
The metric of the topological product of two surfaces of constant curvature trivially

fulfills these two conditions. For the first one, note that when R+ + R− = 0 the Ricci
tensor is traceless; moreover (see eq. (3))

Ricci =
R+

2
g+ +

R−
2
g− =

R+

2
g+ − R+

2
g−,

and hence

R+

(
θ0 ⊗ θ3 + θ3 ⊗ θ0) −R+

(
θ1 ⊗ θ2 + θ2 ⊗ θ1) = −R+{Z3, Z̄3}.

For the second condition, since the metric has constant curvature, we obtain ψ = 0.
The correct signature of spacetime and, as explained below, the positive sign of the

electromagnetic energy restricts the choice among the six quadrics of fig. 1 to just two
possibilities, as shown in table I (see also fig. 1 of [16]). BR1, with a cyclic time, has been
extensively used for quantum field-theoretical applications. In these papers, sometimes,
neither the sign subtleties involved in the Gaussian curvature, nor global aspects have
been taken into account.

The electromagnetic field self-dual form is covariantly constant and given by

F̃ =
√

2
2

√
ρZ3, τ = ρ{Z3, Z̄3},

where

ρ = −R+ = R− > 0.

In BR2 we have

g+ = θ0 ⊗ θ3 + θ3 ⊗ θ0, g− = − (
θ1 ⊗ θ2 + θ2 ⊗ θ1) .
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The null tetrads are

(22)




√
2θ0 =

(
1 − x2

R2
+

)1/2

dt+
(

1 − x2

R2
+

)−1/2

dx,
√

2θ1 = i
(

1 + z2

R2
−

)1/2

dy +
(

1 + z2

R2
−

)−1/2

dz,
√

2θ2 = −i
(

1 + z2

R2
−

)1/2

dy +
(

1 + z2

R2
−

)−1/2

dz,
√

2θ3 =
(

1 − x2

R2
+

)1/2

dt−
(

1 − x2

R2
+

)−1/2

dx.

Here x, y, z, t take their usual Cartesian meaning when R+, R− → ∞ (see eq. (5) and
(6) expressed in terms of an appropriate pseudospherical coordinates).

For BR1 we have

g+ = − (
θ1 ⊗ θ2 + θ2 ⊗ θ1) , g− = θ0 ⊗ θ3 + θ3 ⊗ θ0,

with null tetrads

(23)




√
2θ0 =

(
1 + x2

R2
−

)1/2

dt+
(

1 + x2

R2
−

)−1/2

dx,
√

2θ1 = i
(

1 − z2

R2
+

)1/2

dy +
(

1 − z2

R2
+

)−1/2

dz,
√

2θ2 = −i
(

1 − z2

R2
+

)1/2

dy +
(

1 − z2

R2
+

)−1/2

dz,
√

2θ3 =
(

1 + x2

R2
−

)1/2

dt−
(

1 + x2

R2
−

)−1/2

dx;

i.e.

(24) ds2 =
(

1 +
x2

R2−

)
dt2 −

(
1 +

x2

R2−

)−1

dx2 −
(

1 − z2

R2
+

)
dy2 −

(
1 − z2

R2
+

)−1

dz2.

In terms of pseudo-spherical coordinates x = R− sinhχ, t = R−φ. In both cases, the
scalar curvatures are R+ = −2/R2

+, R− = 2/R2
−, with R2

+ = R2
−.

We can also introduce the cosmological constant Λ by setting, instead,

R+ = 2(Λ − ρ), R− = 2(Λ + ρ),

so that

Ricci = τ + Λg.

Then we can have R2
+ �= R2

−; the positive energy condition requires R− > 2Λ > R+,
R+ < 2Λ. An analogous discussion for the choice of the fundamental quadrics easily
follows.

The geometric structure of the BR spacetime is best reflected in its holonomy group.
In a Riemannian manifold M (with a generic signature), parallel transfer of vectors
around a closed curve through a point P generates a mapping of the tangent space TPM
onto itself, which leaves the scalar product unchanged. The set of the mappings for
all closed curves through P is the holonomy group at P . Under reasonable conditions
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the holonomy groups at all points are isomorphic and generate the holonomy group of
M . For a spacetime it is a subgroup of the six-dimensional Lorentz group L. The
classification of the holonomy groups is based upon the connected Lie subgroups of the
Lorentz group and leads to 15 elements (R1, . . . , R15 = L); each of them is characterized
by the set of its generators, which are just simple bivectors fields. The BR spacetimes are
the only solutions of the Einstein-Maxwell’s equations belonging to R7 [24]; the Lorentz
subalgebra is two-dimensional, with generators θ0 ∧ θ3 and θ1 ∧ θ2.

4. – The BR metric as a playground for high-energy physics

The Already Unified Theory previously quoted is just one of the many attempts to
extend to more general field theories the extraordinary success that general relativity had
achieved for gravitation. In all these attempts one investigates mathematical structures
which, hopefully, embody new fundamental physical principles—like the Equivalence
Principle, the main driver for General Relativity—and lead to self-consistent and verifi-
able unification schemes. As discussed by Bousso [25], these principles must be explored
and tested. We have seen already that the pseudosphere concept ranges far beyond pure
mathematics; indeed, it has been often revisited and applied in the current search for a
satisfactory quantum theory of high-energy particle physics. In the following subsections
we discuss three applications of the BR spacetime along this line; they belong to three
general areas briefly reviewed below.

4.1. Ascension to Heaven by complexification. – Extending Riemannian metrics to
complex coordinates is a very powerful tool to generate new solutions of Einstein’s equa-
tions from a given real solution gµν(xρ). If the arguments xρ are allowed to take complex
values and, after a (complex) coordinate transformation, are restricted again to real
values, with a different time slice, a new solution may result. Such a procedure, for in-
stance, generates Kerr’s rotating black hole from Schwarzschild’s spherical solution (see,
e. g., [26]). These complex solutions have been called heavenly ; one can say, Einstein’s
equations in complex coordinates is a Heaven, from which beautiful earthly goodies gra-
tuitously descend.

This kind of complexification produce manifolds with twice as many real dimensions;
we will later address the more difficult and interesting case in which a complex structure
is introduced in a real 2n-dimensional real manifold to produce an n-dimensional complex
manifold.

In quantum gravity, ascending from real to complex variables not only has proved very
effective, but has also opened up completely new perspectives (see [27] for an introduction
and a collection of papers). Recall that in the path-integral formulation of quantum field
theory in a Minkowsky spacetime, probabilities amplitudes are defined by functional
integrals of the type

(25) Z =
∫

d[φ] exp[iS[φ]];

here φ represents the set of fields (for instance, a real scalar), S[φ] is the classical ac-
tion and d[φ] is the appropriate infinitesimal measure in φ-space. The integral is carried
out over all the field histories which take up at t1 and t2 the initial and final values φ1
and φ2. A powerful tool to define and carry out the integration is to take an imagi-
nary time variable t′ = it (the Wick rotation), which produces a Euclidean (negative
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definite) metric; it also replaces hyperbolic equations with elliptic equations, making the
use of powerful mathematical tools possible. In the functional integral the exponent
iS[φ] = S′[φ] becomes the (real) Euclidean action. Having calculated the path integral
in the Euclidean section (x, y, z, t′) real, one then tries to continue analytically Z to
the Minkowski section (x, y, z, t) real. In the application of this idea to quantum grav-
ity (see, e. g., [28]), one considers the Einstein action and a time slicing of spacetime;
transition amplitudes between t1 and t2 are then defined with a functional integration
over the class of admissible metric fields g (with the Minkowsky signature) between t1
and t2. The mathematical status of the required functional measure is largely unknown.
When the imaginary time is introduced the signature becomes definite, and the action
is stationary at those metrics which are solutions of Einstein’s equations in a locally
Euclidean, four-dimensional space. They are called instantons, and play an essential role
in quantum gravity. The functional integral is carried out in the class of definite metrics
and, hopefully, analytical continuation will provide the physical value of the transition
amplitudes. While the programme of Euclidean quantum gravity is still far from physical
completeness and mathematical clarity (in particular in relation to the analytical con-
tinuation), it has opened up extraordinary perspectives. As stressed by Hawking [29],
one can escape the slavery of perturbation expansions around a flat spacetime, leading
to an understanding of black holes in the quantum domain. The integration over the
metric fields can, in principle, be performed including different topologies; indeed, very
near the Big Bang the radius of curvature is of the order of Planck’s length, so that
quantum processes must needs include topological transitions (the spacetime foam). In
the Euclidean domain the problem of the initial conditions for the quantum state of the
Universe can be formulated and, in principle, solved; this provides quantum cosmology
with a completely new foundation (see, e. g., [30]). The thermal properties of quantum
gravity are based upon a partition function obtained from (25) with an imaginary time.

A complex manifold is a manifold in which complex coordinates can be consistently
introduced, in the sense that the manifold locally looks like C

n and the only allowed
coordinate transformations between overlappings charts are holomorphic functions. The
simple case of a complex curve, i. e. a complex manifold of complex dimension one, can
introduce the constructions we will need. If z = x+ iy is a complex coordinate in a chart,
the basis at z0 of the complex tangent space is

∂

∂z

∣∣∣∣
z0

.

Under a holomorphic transformation z → w(z) we have

∂

∂z
→ dz

dw
∂

∂z
=

∂

∂w
.

At the point z0 the transformation is a complex linear operator on the tangent space,
given by the multiplication by

λ =
dz
dw

∣∣∣∣
z0

.

The tangent space can also considered as a two-dimensional real space, generated by
∂/∂x and i∂/∂y, but the holomorphic change of coordinates restricts the possible linear
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transformations in R
2 to those of the form

(
a b
−b a

)
,

where λ = a+ ib. This means that in order to introduce consistently complex coordinates
in a real even-dimensional manifold, some additional structure must be imposed on its
tangent space.

We want to stress again that is always possible to trivially complexify a real manifold
just by allowing the coordinates to take complex values, but in this case the number of
complex dimensions will be equal to the number of real dimensions. We are discussing
now a different problem: how and when can we introduce complex coordinates without
“doubling” the dimension of the real manifold?

Again, the case of a real orientable surface M and one of its tangent spaces TPM
can introduce the concept. We need a linear anti-idempotent operator J—called almost
complex structure—(with J2 = −I, I being the identity) acting on TPM , where it plays
the role that the imaginary unit i =

√−1 has for complex numbers. In order to keep
track of the signature of the metric, let us denote by

g(X ′, Y ′) = X ′
1Y

′
1 +X ′

2Y
′
2

the positive definite scalar product in its (local) Euclidean form. Similarly, for the hy-
perbolic case

g(X ′′, Y ′′) = X ′′
1 Y

′′
1 −X ′′

2 Y
′′
2 .

The meaning of the symbol g (and of J) results from its arguments: primed or double
primed in each case. The almost complex structure J must be Hermitian, to wit, the
scalar product between two vectors X and Y in the tangent space must be the same as
the scalar product between J(X) and J(Y ); this allows a unique definition of parallel
transport. Thus the choice of J depends on the signature. For the canonical forms above,
respectively,

J(X ′) =
(

0 1
−1 0

)
X ′ =

(
X ′

2

−X ′
1

)
,

J(X ′′) =
(

0 i
i 0

)
X ′′ =

(
iX ′′

2

iX ′′
1

)
.(26)

A hyperbolic metric requires the matrix J to have complex elements.
This construction must be extended to the whole manifold. In a given coordinate

system covering a patch, J is defined as a tensor field; it is said to be integrable if this
holds in all charts. Then the manifold becomes a complex manifold.

The Euclidean case applies to the quadrics a) and c) of fig. 1 (the sphere S2 and the
two-sheet hyperboloid H). In the Euclidean projection plane (ξ, η) J(X ′) provides the
complex coordinate z = ξ + iη and its complex conjugate z:

(I − iJ)
(
ξ
η

)
=

(
ξ + iη
ξ − iη

)
=

(
z
z

)
.
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The squared distance from the origin is zz. The corresponding metrics read

(27) ds2 =
dzdz̄(

1 ± zz̄
4R2

)2 ,
where the + and − signs refer, respectively, to H and S2 (in the latter case, of course,
they are bounded by zz < R2).

For AdS2, the hyperbolic case b) of fig. 1, gives

(I − iJ)
(
ξ
η

)
=

(
ξ + η
ξ − η

)
=

(
w
w

)
.

In the projection of AdS2 on the (Minkowskian!) plane (ξ, η) the appropriate “complex”
variable is now w = ξ + η, with “conjugate” w = ξ − η. The metric of AdS2, in its two
realizations corresponding to the character (time-like or space-like) of the ζ-axis, reads

(28) ds2 =
dw dw(

1 ± ww
4R2

)2 .
An orientable surface is always conformally flat, which is evident in both metrics.

As briefly discussed in the next section, endowing a differential manifold with an
even number of dimensions with an integrable complex structure leads to a Kählerian
manifold with n complex dimensions (with coordinates, say, zα, with α = 1, ..., n). Its
metric is fully determined by a complex scalar function U (eq. (29)). This beautiful and
simple geometry has been discovered in 1933 by Kähler in a concise paper written when
he was 23 years old [31] (see, for instance, [20]) and has a large number of applications in
mathematics and physics [32]. Solutions of the field equations of general relativity in such
a manifold, with n = 2 would be very interesting in the complexification programme,
in particular for quantum gravity. Several solutions have been found in the case of a
definite signature; they represent gravitational instantons. The best example is S2 × S2,
found by Kähler [31]; see also [33]). However, the imposition of a Kählerian structure on
spacetime, with indefinite signature, is highly restrictive; indeed, much more restrictive
than for a definite signature. The following theorem has been proved [34]: the only
Kählerian solutions of Einstein-Maxwell’s equations (with cosmological constant) are the
flat spacetime, the BR solution and Nariai metric [35, 36]. Thus Kählerian geometry
can be used in quantum gravity only for a complex metric, for which the signature is
meaningless, or for definite metrics. One way to go to Heaven seems precluded.

4.2. The structure of the horizon of a black hole. – Hawking’s discovery that, due to
quantum effects, a black hole is not really “black”, but emits thermal radiation at a rate
proportional to the area A of its horizon, has opened up deep and unexpected perspectives
for the foundations of thermodynamics and quantum theory. The changes undergone by
the black hole due to this emission obey the second law of thermodynamics, where the
black-hole entropy SBH is proportional to the area A of its horizon. The proportionality
between SBH—in the statistical meaning a dimensionless quantity—and the area requires
specifying the elementary area taken up by a single bit of information (see, e. g., [37]).
Note that, due to dimensional reasons, the only candidate is the square of Planck’s length

BP =

√
G�

c3
= 1.7 × 10−33cm.
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A black hole of one solar mass, with a spherical horizon of area 6× 1011 cm2 has a really
huge entropy!

When two black holes coalesce the entropy changes from (A1+A2)/B2P to A/B2P, a most
striking result if compared with ordinary thermodynamics, where the entropy is additive
with respect to the volume of the system. Surely, if a physical system contains black holes,
the second principle, which describes how information is lost, must be reformulated. At
a fundamental level, perhaps, the information content of a general physical system is
not the sum of the information contents of its three-dimensional parts, but resides on
a two-dimensional boundary (see, e. g. [38] and [39]). Such boundary must include not
only the horizons of the black holes it may harbour, but also a large surface in which it is
contained. This is, in essence, the holographic principle, first discovered by ’t Hooft (see,
e. g., [38] and [39]). Its realization, in principle, requires the following: any dynamical
change occurring in the system must reflect itself in changes in the relevant fields at the
boundary: these changes must be sufficient to describe what is going on in the bulk, both
classically and at the quantum level. Extensive and heuristic explorations and testing
of this principle have been made, and no inconsistencies or no-go results have emerged.
This principle may usher a revolution and a unification in our conceptions of gravity,
quantum theory and particle physics at very high energies.

To explore the holographic principle in an assigned Riemannian manifold it is conve-
nient to use a simple geometry with a high symmetry; its spatial and null infinity should
be easily defined and compactified. The best candidates which have been studied include
as a component our fundamental quadric AdS2; an important role is played by the met-
ric AdSd ⊗ Sd, which reduces to BR1 when d = 2 (see [40] and references therein). The
BR universes, in particular BR1, based upon AdS2, have played an important role in
this exploration and have given occasion to a large number of papers. In the search for
realizations of holography, Since AdSd is conformally flat, it may be possible to establish
a correspondence between the content of a conformally-invariant dynamics in the bulk
of the manifold with its content at infinity. As shown in fig. 1, however, the time coordi-
nate in AdS is cyclic and causality cannot be implemented. To circumvent this problem,
spacetime must be “unwrapped”, by mapping the periodic time variable into R.

In a generic, asymptotically flat spacetime, a horizon H separates an interior region
(topologically an infinite cylinder around the time axis) from its exterior, extending to
spatial infinity, with the following property: no future-pointing time-like line can cross H
from inside to outside. Near a horizon quantum field theory is deeply affected; Hawking’s
radiation is produced, which carries away energy and information. The investigation of
the geometric and the quantum structure near a horizon, therefore, is important. It
turns out that the neighbourhood of the horizon of a particular solution of Einstein-
Maxwell’s equations corresponding to a point with mass and charge has a geometric
structure identical to the BR1 solution.

4.3. String theory and the dilaton field . – String theory, in which the fundamental
entities subject to quantization are geometrical objects with a time-like and a space-like
dimension, just like an ordinary string in spacetime, has emerged as a possible unified
scheme of all physical interactions. Strings are embedded in an abstract, d-dimensional
Lorentzian manifold; the d − 4 dimensions which lie beyond four-dimensional space-
time are usually assumed to be a compact submanifold with a small volume, which
can be probed only at exceedingly high energies. In bosonic string theories, in which
the fundamental entities are two-dimensional surfaces in spacetime (or, in general, in
pseudo-Riemannian manifolds), a complexifying rotation produces a Riemann surface
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and makes exceptional analytic tools available.
A common feature of string theory is the universal appearance of a scalar field φ—the

dilaton—inextricably coupled with the metric. At low energies a model of classical fields
interacting with gravity emerges, in which φ is produced by the mass-energy distribution;
when its mass vanishes the scalar field has a long range effect which simulates gravity and
produces discrepancies in the classical tests of general relativity and violates the Weak
Equivalence Principle. A unique, complete and self-consistent low-energy approximation
to string theory with its scalar field is not available; many examples have been studied
in detail. It is interesting to note that, as will be briefly discussed in sect. 7, the BR
spacetime appears in some solutions, including its AdS2 part. This is an interesting
feature from the holographic point of view.

5. – Kähler geometry and the BR universe

The technical content of this section is abbreviated, stressing instead definitions and
results; see also [20,34,41].

Let M be a (real) Riemannian manifold with an even number 2n of dimensions and
arbitrary signature. An almost complex structure on M is a tensor field J which maps
each tangent spaces TPM onto itself, with the property J2(X) = −X. The metric
g(X,Y ) of M is Hermitian if

g(J(X), J(Y )) = g(X,Y );

then X and J(X) are orthogonal. The two-form (an antisymmetric tensor field)

Ω(X,Y ) = g(X,J(Y )) = −Ω(Y,X) = Ω(J(X), J(Y ))

is invariant under the action of J ; it is called the Kähler form of the metric g. When
dΩ = 0 the form is closed and can be expressed locally in terms of a vector field Aµ:

Ωµν = ∂µAν − ∂νAµ.

In spacetime, this suggests the identification of Ω with the electromagnetic field; half of
Maxwell’s equations are thus fulfilled. Then the manifold is called Kählerian and the
structure J(X) is (covariantly) constant. As shown by Kähler [31], the metric of such a
manifold is determined by a single complex scalar U :

(29) g =
∂2U

∂zα∂zβ
dzαdzβ .

Let us see what this entails for spacetime. The metric of its tangent space TPM , with
vectors X = (X ′′,X ′), can always be locally decomposed as in (17), and written

g(X,Y ) = g(X ′′, Y ′′) − g(X ′, Y ′).

Using the expressions (26)

Ω(X,Y ) = g(X ′′, J(Y ′′)) − g(X ′, J(Y ′))
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and recalling the standard form of the null tetrad (16)

nµ = (1, 1, 0, 0), lµ = (1,−1, 0, 0), mµ = (0, 0, i,−i),

it is easily shown that Ω = iZ3.
A real Riemannian metric with arbitrary signature is said to have a product structure

if there is an idempotent (with P 2(X) = X) and traceless operator field P which leaves
the scalar product invariant [41].

g(P (X), P (Y )) = g(X,Y ) P 2(X) = X, TrP = 0.

One can show that it can always be written in the form

P (X) = {Z3, Z̄3}.

In spacetime, at a tangent space TPM , the matrix P is an element of the Lorentz group
consisting in the inversion of two (out of four) basis vectors. For the BR solution there
is a P which changes the sign of X ′′, but leaves X ′ unchanged; the previous relation can
be directly verified. For a Lorentz signature one has also

P (X) = JJ̄(X);

Hermitian and product structures are equivalent. For a definite signature J = J̄ , so that
JJ̄(X) is equal to −X and does not give a product structure.

The requirement of integrability of a product structure to the whole manifold is
crucial. It can be shown that in that case spacetime is decomposable, in the sense of
eq. (7).

The transport equation (21) shows that Ω is integrable if, and only if, σ1 = σ2 = 0.
Then it can be shown that the BR metric is the unique, non-flat Kählerian solution of
Einstein-Maxwell equations [34]. The electromagnetic self-dual form is proportional to
the Kähler structure Ω, and, therefore, is (covariantly) constant.

6. – Near-horizon limit of the Reissner-Nordstrøm black hole

The only asymptotically flat and spherically symmetric solution of Einstein-Maxwell
equations corresponding to a point with mass M and charge q was found by Reissner
(1916) and Nordstrøm (1918) [37]; it possesses two horizons at

r = M ±
√
M2 − q2.

In the extremal case M = |q| [42](7) and, in a global coordinate frame (t, r′, θ, ϕ), it reads

(30) ds2 =
(

1 − M

r′

)2

dt2 −
(

1 − M

r′

)−2

dr′2 − r′2d2Ω.

(7) In ordinary physical units, and in terms of lengths,

GM

c2
=

√
G|q|
c2

.
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Here d2Ω = sin θ dθ dϕ. The two horizons coalesce and the variable t never changes its
time-like character.

The structure of a quantum field theory in a given spacetime has been extensively
studied with this metric as a background. The main issue concerns the properties at
the quantum level of a physical system near the horizon where, eventually, semiclassical
analysis fails. This corresponds to the limit r = r′ −M → 0; in this limit, and with a
constant conformal rescaling, (30) becomes

(31) ds2 = M2

(
r2

M4
dt2 − dr2

r2
− d2Ω

)
.

We now let r vary over (0,∞). It can be shown that, as long as r2t2 > M4, a coordinate
transformation can be found (see [43] and [44]) that carries it into the metric

(32) ds2 =
(

1 +
x2

M2

)
dt2 −

(
1 +

x2

M2

)−2

dx2 −M2d2Ω.

The metric (31) is “half” the BR1 solution of Einstein-Maxwell equations (−−−,−) ⊗
(+ − +,+), product of a sphere S2 and a single-sheet hyperboloid with cyclic time
(AdS2), with R− = R+ = M (see (24)); hence r = 0 is just a coordinate singularity. One
can say, BR1 embodies the near-horizon properties of (30). Rather than displaying the
transformation, we start from the fundamental definition of the (t, x) part of the BR1

metric: it is the fundamental quadric ξ2 − η2 + ζ2 = M2 embedded in R
3 with metric

dσ2 = dξ2 − dη2 + dζ2. The required embedding reads

ξ(r, t) =

√
−M2 +

(
rt

M

)2

sinh
[

1
2

ln
(
t2

M2
− M2

r2

)]
,(33)

η(r, t) =

√
−M2 +

(
rt

M

)2

cosh
[

1
2

ln
(
t2

M2
− M2

r2

)]
,

ζ(r, t) = − rt
M
.

The restriction r2t2 > M4 is apparent. This curtailed spacetime (31) is labeled BR0.
Along this line, the embedding

ξ(r, t) =
√
M2 + r2 sin

(
t

M

)
,(34)

η(r, t) = r,

ζ(r, t) =
√
M2 + r2 cos

(
t

M

)

has no restriction, and produces the full BR1 metric (32), now called BR+. Finally, the
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embedding

ξ(r, t) =
√

−M2 + r2 sinh
(
t

M

)
,

η(r, t) =
√
−M2 + r2 cosh

(
t

M

)
,

ζ(r, t) = r(35)

also reproduces BR1, but with the restriction r2 > M2; this is called BR−. Its metric
reads

(36) ds2 =
(
−1 +

r2

M2

)
dt2 −

(
−1 +

r2

M2

)−1

dr2 −M2d2Ω.

It should be noted that, for simplicity, in the three cases we have used the same symbols
(t, r) for the time and the radial coordinate, although they label different points on the
quadric and do not have the same range. The entire BR1 spacetime can be interpreted
as the geodesic completion of BR0 (31) or of BR− (36). The three labels 0, + and −

refer to the sign occurring in the expressions of g00 and g11. Due to the presence of a
Killing horizon at r = M , BR− is physically quite appealing.

The global structure of these spacetimes is best understood with Penrose diagrams
(see [43] for an excellent introduction). Since a two-dimensional spacetime is always
conformally flat, its metric can be put in the form

ds2 = C(u, v)du dv,

where u and v are two null coordinates, chosen in such a way as to be finite at spatial
infinity. It is possible, therefore, to represent an infinite spacetime in a finite sheet of
paper; the u and v lines are conventionally drawn as straight lines at 45◦. For BR+ (see
fig. 2)

(37) C(u, v) = −
(

1 + tan2
u− v

2

)
,

with the mapping

x = M tan
u− v

2
, t = M

u+ v

2
(0 < v < 2π, −π < u < π).

All points whose time coordinate t differs by 2πM are identified.

7. – Dilatonic models and the BR universe

The concept of point-particle is replaced with an extended one-dimensional object,
which spans in time evolution a two-dimensional surface Σ (with indefinite signature);
such a surface is embedded in a higher-dimensional Lorentzian d-dimensional manifold
M with metric gµν . Mathematically, Σ is a mapping Xµ : Σ →M . The string action is

S =
1

2πα′

∫
Σ

gµν∂Xµ∂Xν d2σ ,
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u=π

r=−

r=

I

II III
v=0

Fig. 2. – The Penrose diagram for the AdS component of the BR1 metric; the time t runs from
left to right, with period 2πM , repeating indefinitely the block between the dashed lines. The
r-coordinate is the one used for the complete BR1 metric. BR− is the restriction of BR+ to
region I, whereas BR0 is the union of I, II and III with the exclusion of the bold lines, which
represent the locus r = 0 in (31).

where Xµ(σ) are the embedding maps and α′ is the so-called string coupling constant.
It is known that, in order to preserve at a quantum level all the symmetries of the
classical system (most notably Lorentz covariance), the dimension of the target manifold
must be 26, or 10 if supersymmetry is taken into account. Since a complete analysis
of the above model is at present rather difficult, it is often customary to simplify the
system either considering Md as the Cartesian product of a four-dimensional manifold
M̃4 times a compact manifoldXd−4, or performing a perturbative expansion with respect
to α′. This procedure is not unique, but leads to a four-dimensional low-energy effective
action; within this latter class of theories an interesting model of a coupling between
electromagnetism, the dilaton and gravity is described by the following action [44]:

(38) S =
∫
M4

d4x
√

| g |e−2φ(R− FµνFµν).

R is the scalar curvature. Both the electromagnetic field Fµν and the scalar φ act as
sources for gravity. The electromagnetic Lagrangian appears with the factor exp[−2φ],
and so is the electromagnetic energy; as a consequence, the electric and magnetic binding
energies of a neutral body change when it moves in a gradient of φ, thereby violating
the weak-equivalence principle. This is an example of the fact that in string theory the
equivalence principle is generically violated.

The spherically symmetric solution depends upon two lengths R+, R−, and reads:

ds2 =
(

1 − R+

r

)
dt2 −

(
1 − R+

r

)−1 (
1 − R−

r

)−1

dr2 − r2d2Ω,(39)

Fµν =
2q√
3 r2

εµνρσu
ρvσ,

φ− φ0 = −1
4

ln
(

1 − R+

r

)
,

where r > R+, φ0 is an integration constant and

2M = R+ +
3
2
R−, q2 = R+R−.
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q is the charge; uµ, vν are two unitary and orthogonal space-like vectors tangent to the
surface r = const. The solution has two horizons at r = R+ and r = R−. The extremal
limit corresponds to R+ −R− = O(r −R+) � 1 and, with the variable

η = arcsinh

√
r −R+

R+ −R−
,

yields the BR− component of the BR1 metric in the form

(40) ds2 = q2(4 sinh2 η dt2 − 4 dη2 − d2Ω).

An important geometrical difference between the extremal Reissner-Nordstrøm solu-
tion (31) and the metric (39) should be emphasized: the radii of curvature of the two
components are equal in modulus in the former, but arbitrary in the latter.

As a second model, we quote the Jackiw-Teitelboim model (JT) of two-dimensional
gravity, with the “cosmological constant” Λ. Two-dimensional dilatonic models have
important and widely ranging applications, from toy models of quantum gravity to string
theory (see [45]). In the JT model gravity is coupled to the dilaton scalar φ with the
action

(41) S =
1

2π

∫ √
| g |d2xe−2φ(R+ 2Λ).

Its Euler-Lagrange equations admit the solution

(42) ds2 = (Λr2 − a2)dt2 − (Λr2 − a2)−1dr2, φ− φ0 = −1
2

ln
(√

Λ r
)
,

where a2 is a dimensionless integration constant. In (42) the metric coincides with the
(t, r) part of (36): a BR universe arising in a Einstein-Maxwell-dilaton system has the
same structure as the two-dimensional metric produced by a dilaton.

8. – Conclusion

After our long roaming, it is clear that the word “pseudospheres” in the title is in-
adequate: the real protagonist is a more general and abstract object, the fundamental
quadric discussed in sect. 1, with its different realizations and its symmetries. As shown
in fig. 1, it combines all the possible signatures of the embedding space and, topologi-
cally, gives rise to three possibilities. Its unexpected prolificacy and its role as a building
block for more complex structures is a consequence, in our view, of its fundamental and
deep mathematical simplicity. Only if this simplicity is fully grasped, the gist of its man-
ifold applications becomes manifest, in particular: the nature of Beltrami’s realization
of hyperbolic non Euclidean geometry, the underlying Kählerian structure of Bertotti-
Robinson solution, the relation of this solution to the structure of the horizon of the
extreme Reissner-Nordstrøm black hole, and the holographic application of the Anti de
Sitter Universe.

This prolificacy, however has a drawback for the present review: it has led us to
touching a bewildering variety of topics, most of which, in particular those under the
wide umbrella of sect. 4, have been discussed superficially and inadequately. Our aim
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was not to provide for each of them exhaustive mathematical and physical detail, but to
open a window into, and give examples of, the role of the fundamental quadric and its
derivatives in testing and modeling new fundamental theories. We have no final candidate
to encompass gravity and quantum fields and clearly this testing and modeling is far
from over; we have shown, we believe, that it can be carried out properly only at the
appropriate level of mathematical rigour and beauty.
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