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Abstract

We present a study on the integral forms and their Čech and de
Rham cohomology. We analyze the problem from a general perspec-
tive of sheaf theory and we explore examples in superprojective man-
ifolds. Integral forms are fundamental in the theory of integration
in supermanifold. One can define the integral forms introducing a
new sheaf containing, among other objects, the new basic forms δ(dθ)
where the symbol δ has the usual formal properties of Dirac’s delta
distribution and acts on functions and forms as a Dirac measure. They
satisfy in addition some new relations on the sheaf. It turns out that
the enlarged sheaf of integral and ”ordinary” superforms contains also
forms of ”negative degree” and, moreover, due to the additional re-
lations introduced it is, in a non trivial way, different from the usual
superform cohomology.



1 Introduction

Supermanifolds are rather well-known in supersymmetric theories and in
string theory. They provide a very natural ground to understand the su-
persymmetry and supergravity from a geometric point of view. Indeed, a
supermanifold contains the anticommuting coordinates which are needed to
construct the superfields whose natural environment is the graded algebras
[1, 2].

Before explaining the content of the present work, we stress the relevance
of this analysis observing that recently the construction of a formulation of
superstrings [4] requires the introduction of the superforms described here.
In addition, the physics behind that formalism is encoded into the BRST
cohomology which, in mathematical terms, is translated into the Čech and
de Rham cohomology objects of our study.

The best way to understand the supermanifold theory is using the theory
of sheaves [2, 3]. In the present notes we review the sheaf theory approach
to supermanifolds and we use the results of our previous paper [5].

In the first section, we recall some definitions and some auxiliary mate-
rial. We point out that in order to formulate the theory of integration for
superforms, one needs some additional ingredients such as integral forms.
Enlarging the space of superforms to take into account those new quantities
results in bigger complexes of superforms. These new mathematical objects
should be understood in the language of the sheaves in order that the pre-
vious considerations about the morphisms are applicable. In particular, we
study the behaviour of integral forms under morphisms and we show that
they can be globally defined.

By a hand-waving argument, we can describe as follows the need of the
integral forms for the theory of integration in the supermanifold. In the the-
ory of integration of conventional forms for a manifold M, we consider a
ω ∈ Ω•(M). We can introduce a supermanifold [6] M̂ whose anticommuting

coordinates are generated by the fibers T ∗M. Therefore, a function on M̂ is
the same of a differential form of Ω•(M), F(M̂) ≡ C∞(M̂) ∼= Ω•(M). The
correspondence is simply dxi ↔ ψi. For the manifold M we can integrate
differential forms of the top degree Ω(n)(M), but in general we cannot inte-

grate functions since M has no natural measure. On the other hand in M̂
we can indeed write µ̂ = dx1 ∧ ... ∧ dxn ∧ dψ1 ∧ ... ∧ dψn where the integral
on the variables ψi is the Berezin integral (

∫
dψf(ψ) = ∂ψf(ψ)). If ω̂ is a

function of F(M̂), we have
∫
M̂ µ̂ ω̂ =

∫
M ω where the superspace integration

is the integration of forms. We have to notice that being the integral on
the anticommuting variables a Berezin integral, it selects automatically the
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degree of the form.
Now, the same construction can be performed in the case of a superman-

ifold N with only fermionic coordinates θa. In that case its cotangent space
T ∗N is not finite dimensional. Therefore, mimicking the above construction,
we define the form integration by considering the measure µ̂ for the manifold
N ⊕ T ∗N where the commuting superforms dθa are replaced by commuting
coordinates λa and the measure is given µ̂ = dθa∧ ... dθb∧dλa∧ ... dλb. Thus,
in contraposition to the commuting case the integral over the coordinates θa

is a Berezin integral, while the integration over the 1-forms λa is an ordi-
nary n-dimensional integral. In order that the latter has finite answer for a
given superform, we introduce the integration forms ωa1...anδ(λ

a1)∧ ...∧δ(λan)
where the Dirac delta functions δ(λa) localize the integral at the point λa = 0.
These new quantities behave as “distributions”, and therefore they satisfy
new relations that we will describe in Sec. 4. We show that the set of relation
they ought to obey are preserved in passing from one patch to another and
therefore that they are global properties. This implies that the sheaf of inte-
gral forms is well defined. Finally, we derive a Čech - de Rham theorem for
these new superforms. The interesting aspect is that the distributional rela-
tions (here translated into an algebraic language) modifies the cohomology
and therefore we find non-trivial results.

In sec. 2, we review briefly the construction of the supermanifolds, the un-
derlying structure using ringed spaces, their morphisms and the local charts
on them. We specify the constructions to the case of superprojective man-
ifolds. In sec. 5 and in sec. 6 we compute some examples of Čech and
de Rham cohomology groups for superprojective spaces. We also prove a
generalization of usual Čech-de Rham and Künneth theorems.

2 Supermanifolds

We collect here some definitions and considerations about supermanifolds

2.1 Definitions

A super-commutative ring is a Z2-graded ring A = A0 ⊕ A1 such that if
i, j ∈ Z2, then aiaj ∈ Ai+j and aiaj = (−1)i+jajai, where ak ∈ Ak. Elements
in A0 (resp. A1) are called even (resp. odd).

A super-space is a super-ringed space such that the stalks are local
super-commutative rings (Manin-Varadarajan). Since the odd elements are
nilpotent, this reduces to require that the even component reduces to a local
commutative ring.
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A super-domain Up|q is the super-ringed space
(
Up, C∞p|q

)
, where Up ⊆

Rp is open and C∞p|q is the sheaf of super-commutative rings given by:

V 7→ C∞ (V )
[
θ1, θ2, ..., θq

]
, (1)

where V ⊆ Up and θ1, θ2, ..., θq are generators of a Grassmann algebra. The
grading is the natural grading in even and odd elements. The notation is
taken from [7] and from the notes [8].

Every element of C∞p|q (V ) may be written as
∑

I fIθ
I , where I is a

multi-index. A super-manifold of dimension p|q is a super-ringed space
locally isomorphic, as a ringed space, to Rp|q. The coordinates xi of Rp are
usually called the even coordinates (or bosonic), while the coordinates θj are
called the odd coordinates (or fermionic). We will denote by (M,OM) the
supermanifold whose underlying topological space is M and whose sheaf of
super-commutative rings is OM .

To a section s of OM on an open set containing x one may associate
the value of s in x as the unique real number s̃ (x) such that s − s̃ (x) is

not invertible on every neighborhood of x. The sheaf of algebras
∼
O, whose

sections are the functions s̃, defines the structure of a differentiable manifold

on M , called the reduced manifold and denoted
∼
M .

2.2 Morphisms.

In order to understand the structure of supermanifolds it is useful to study
their morphisms. Here we describe how a morphism of supermanifolds looks
like locally. A morphism ψ from (X,OX) to (Y,OY ) is given by a smooth

map
∼
ψ from

∼
X to

∼
Y together with a sheaf map:

ψ∗V : OY (V ) −→ OX(ψ−1(V )), (2)

where V is open in Y . The homomorphisms ψ∗V must commute with the re-
strictions and they must be compatible with the super-ring structure. More-
over they satisfy

ψ∗V (s)∼ = s̃ ◦ ψ̃. (3)

Let us recall some fundamental local properties of morphisms. A morphism
ψ between two super-domains Up|q and V r|s is given by a smooth map ψ̃ :
U → V and a homomorphism of super-algebras

ψ∗ : C∞ r|s(V )→ C∞ p|q(U). (4)

It must satisfy the following properties:
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• If t = (t1, . . . , tr) are coordinates on V r, each component tj can also be
interpreted as a section of C∞ r|s(V ). If fi = ψ∗(ti), then fi is an even
element of the algebra C∞ p|q(U).

• The smooth map ψ̃ : U → V must be ψ̃ = (f̃1, . . . , f̃r), where the f̃r
are the values of the even elements above.

• If θj is a generator of C∞ r|s(V ), then gj = ψ∗(θj) is an odd element of
the algebra C∞ p|q(U).

The following fundamental theorem (see for example [8]) gives a local
characterization of morphisms:

Theorem 1 [Structure of morphisms] Suppose φ : U → V is a smooth
map and fi, gj, with i = 1, . . . , r, j = 1, . . . , s, are given elements of C∞ p|q(U),
with fi even, gj odd and satisfying φ = (f̃1, . . . , f̃r). Then there exists
a unique morphism ψ : Up|q → V r|s with ψ̃ = φ and ψ∗(ti) = fi and
ψ∗(θj) = gj.

2.3 Local charts on supermanifolds

We describe now how supermanifolds can be constructed by patching local
charts. Let X =

⋃
iXi be a topological space, with {Xi} open, and let Oi

be a sheaf of rings on Xi, for each i. We write (see [7]) Xij = Xi ∩ Xj,
Xijk = Xi ∩Xj ∩Xk, and so on. We now introduce isomorphisms of sheaves
which represent the “coordinate changes” on our super-manifold. They allow
us to glue the single pieces to get the final supermanifold. Let

fij :
(
Xji,Oj|Xji

)
−→

(
Xij,Oi|Xij

)
(5)

be an isomorphisms of sheaves with

f̃ij = Id. (6)

This means that these maps represent differentiable coordinate changes on
the underlying manifold.

To say that we glue the ringed spaces (Xi,Oi) through the fij means
that we are constructing a sheaf of rings O on X and for each i a sheaf
isomorphism

fi : (Xi,O|Xi
) −→ (Xi,Oi), (7)

f̃i = IdXi
(8)

such that
fij = fif

−1
j , (9)

4



for all i and j.
The following usual cocycle conditions are necessary and sufficient for the

existence of the sheaf O:

i. fii = Id on Oi;

ii. fijfji = Id on Oi|Xi
;

iii. fijfjkfki = Id on Oi|Xijk
.

3 Projective superspaces

Due to their importance in mathematical and physical applications we now
give a description of projective superspaces (see also [5]). One can work
either on R or on C, but we choose to stay on C. Let X be the complex
projective space of dimension n. The super-projective space will be called
Y . The homogeneous coordinates are {zi}. Let us consider the underlying
topological space as X, and let us construct the sheaf of super-commutative
rings on it. For any open subset V ⊆ X we denote by V ′ its preimage in
Cn+1 \ {0}. Then, let us define A (V ′) = H (V ′) [θ1, θ2, ..., θq], where H (V ′)
is the algebra of holomorphic functions on V ′ and {θ1, θ2, ..., θq} are the odd
generators of a Grassmann algebra. C∗ acts on this super-algebra by:

t :
∑
I

fI (z) θI −→
∑
I

t−|I|fI
(
t−1z

)
θI . (10)

The super-projective space has a ring over V given by:

OY (V ) = A (V ′)
C∗

(11)

which is the subalgebra of elements invariant by this action. This is the
formal definition of a projective superspace (see for example [8]), however we
would like to construct the same space more explicitly from gluing different
superdomains as in sec. 2.3.

Let Xi be the open set where the coordinate zi does not vanish. Then
the super-commutative ring OY (Xi) is generated by elements of the type

f0

(
z0
zi
, . . . ,

zi−1
zi

,
zi+1

zi
, . . . ,

zn
zi

)
, (12)

fr

(
z0
zi
, ...,

zi−1
zi

,
zi+1

zi
, ...,

zn
zi

)
θr

zi
, r = 1, . . . , q . (13)
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In fact, to be invariant with respect to the action of C∗, the functions fI
in equation (10) must be homogeneous of degree −|I|. Then, it is obvious
that the only coordinate we can divide by, on Xi, is zi: all functions fI are
of degree −|I| and holomorphic on Xi. If we put, on Xi, for l 6= i, Ξ

(i)
l = zl

zi

and Θ
(i)
r = θr

zi
, then OY (Xi) is generated, as a super-commutative ring, by

the objects of the form

F
(i)
0

(
Ξ
(i)
0 ,Ξ

(i)
1 , ...,Ξ

(i)
i−1,Ξ

(i)
i+1, ...,Ξ

(i)
n

)
, (14)

F (i)
a

(
Ξ
(i)
0 ,Ξ

(i)
1 , ...,Ξ

(i)
i−1,Ξ

(i)
i+1, ...,Ξ

(i)
n

)
Θ(i)
a , (15)

where F
(i)
0 and the F

(i)
a ’s are analytic functions on Cn. In order to avoid

confusion we have put the index i in parenthesis: it just denotes the fact
that we are defining objects over the local chart Xi. In the following, for
convenience in the notation, we also adopt the convention that Ξ

(i)
i = 1 for

all i.
We have the two sheaves OY (Xi)|Xj

and OY (Xj)|Xi
. In the same way as

before, we have the morphisms given by the “coordinate changes”. So, on
Xi∩Xj, the isomorphism simply affirms the equivalence between the objects
of the super-commutative ring expressed either by the first system of affine
coordinates, or by the second one. So for instance we have that Ξ

(j)
l = zl

zj

and Θ
(j)
r = θr

zj
can be also expressed as

Ξ
(j)
l =

Ξ
(i)
l

Ξ
(i)
j

, Θ(j)
r =

Θ
(i)
r

Ξ
(i)
j

. (16)

Which, in the language used in the previous section, means that the mor-
phism ψji gluing (Xi∩Xj,OY (Xi)|Xj

) and (Xj ∩Xi,OY (Xj)|Xi
) is such that

ψ̃ji is the usual change of coordinates map on projective space and

ψ∗ji(Ξ
(j)
l ) =

Ξ
(i)
l

Ξ
(i)
j

, ψ∗ji(Θ
(j)
r ) =

Θ
(i)
r

Ξ
(i)
j

(17)

The super-manifold is obtained by observing that the coordinate changes
satisfy the cocycle conditions of the previous section.

4 Integral forms and integration

Most of supergeometry can be obtained straightforwardly by extending the
commuting geometry by means of the rule of signs, but this is not the case
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in the theory of differential forms on supermanifolds. Indeed the naive no-
tion of “superforms” obtainable just by adding a Z2 grading to the exterior
algebra turns out not to be suitable for Berezin integration. In this section
we briefly recall the definition of ”integral forms” and their main properties
referring mainly to [11] for a detailed exposition. The theory of superforms
and their integration theory has been widely studied in the literature and it
is based on the notion of the integral superforms (see for example [2] [12]).
The problem is that we can build the space Ωk of k-superforms out of basic
1-superforms dθi and their wedge products, however these products are nec-
essarily commutative, since the θi’s are odd variables. Therefore, together
with a differential operator d, the spaces Ωk form a differential complex

0
d−→ Ω0 d−→ Ω1 . . .

d−→ Ωn d−→ . . . (18)

which is bounded from below, but not from above. In particular there is no
notion of a top form to be integrated on the supermanifold Cp+1|q.

The space of ”integral forms” is obtained by adding to the usual space
of superforms a new set of basic forms δ(dθ), together with its ”deriva-
tives” δn(dθ), and defining a product which satisfies certain formal proper-
ties. These properties are motivated and can be deduced from the following
heuristic approach. In analogy with usual distributions acting on the space
of smooth functions, we think of δ(dθ) as an operator acting on the space of
superforms as the usual Dirac’s delta measure. We write this as

〈f(dθ), δ(dθ)〉 = f(0),

where f is a superform. This means that δ(dθ) kills all monomials in the
superform f which contain the term dθ. The derivatives δ(n)(dθ) satisfy〈

f(dθ), δ(n)(dθ)
〉

= −
〈
f ′(dθ), δ(n−1)(dθ)

〉
= (−1)nf (n)(0),

like the derivatives of the usual Dirac δ measure. Moreover we can consider
objects such as g(dθ)δ(dθ), which act by first multiplying by g then applying
δ(dθ) (in analogy with a measure of type g(x)δ(x)), and so on. The wedge
products among these objects satisfy some simple relations such as (we will
always omit the symbol ∧ of the wedge product):

dxIdxJ = −dxJdxI , dxIdθj = dθjdxI ,

dθidθj = dθjdθi , δ(dθ)δ(dθ′) = −δ(dθ′)δ(dθ), (19)

dθδ(dθ) = 0 , dθδ′(dθ) = −δ(dθ).

The second and third property can be easily deduced from the above eu-
ristic approach. To prove these formulas we recall the usual transformation
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property of the usual Dirac’s delta function

δ(ax+ by)δ(cx+ dy) =
1

Det

(
a b
c d

)δ(x)δ(y) (20)

for x, y ∈ R. By setting a = 0, b = 1, c = 1 and d = 1, the anticommutation
property of Dirac’s delta function of dθ’s of (20) follows.

We do not wish here to give an exhaustive and rigorous treatment of in-
tegral forms. As we will see later, it is suffcient for our purposes that these
simple rules give a well defined construction in the case of superprojective
spaces. A systematic exposition of these rules can be found in [9] and they
can be put in a more mathematical framework using the results of [3]. An
interesting consequence of this procedure is the existence of ”negative de-
gree” forms, which are those which reduce the degree of forms (e.g. δ′(dθ)
has degree −1). The integral forms could be also called ”pseudodifferential
forms”.

We introduce also the picture number by counting the number of delta
functions (and their derivatives) and we denote by Ωr|s the r-forms with
picture s. For example, in the case of Cp+1|q, the integral form

dx[K1 . . . dxKl]dθ(il+1 . . . dθir)δ(dθ[ir+1) . . . δ(dθir+s]) (21)

is an r-from with picture s. All indices Ki are antisymmetrized among them-
selves, while the first r− l indices are symmetric and the last s+ 1 are anti-
symmetrized. We denote by [I1 . . . Is] the antysimmetrization of the indices
and by (i1 . . . in) the symmetrization. Indeed, by also adding derivatives of
delta forms δ(n)(dθ), even negative form-degree can be considered, e.g. a
form of the type:

δ(n1)(dθi1) . . . δ(ns)(dθis) (22)

is a −(n1 + . . . ns)-form with picture s. Clearly Ωk|0 is just the set Ωk of
superforms, for k ≥ 0.

We now briefly discuss how these forms behave under change of coordi-
nates, i.e. under sheaf morphisms. For very general type of morphisms it is
necessary to work with infinite formal sums in Ωr|s as the following example
clearly shows.

Suppose Φ∗(θ̃1) = θ1 + θ2 , Φ∗(θ̃2) = θ2 be the odd part of a morphism.
We want to compute

Φ∗(δ
(
dθ̃1
)

) = δ
(
dθ1 + dθ2

)
(23)
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in terms of the above forms. We can formally expand in series about, for
example, dθ1 :

δ
(
dθ1 + dθ2

)
=
∑
j

(dθ2)
j

j!
δ(j)(dθ1) (24)

Recall that any usual superform is a polynomial in the dθ, therefore only a
finite number of terms really matter in the above sum, when we apply it to
a superform. Infact, applying the formulae above, we have for example,〈

(dθ1)k,
∑
j

(dθ2)
j

j!
δ(j)(dθ1)

〉
= (−1)k(dθ2)k (25)

Notice that this is equivalent to the effect of replacing dθ1 with −dθ2. We
could have also interchanged the role of θ1 and θ2 and the result would be to
replace dθ2 with −dθ1. Both procedures correspond precisely to the action we
expect when we apply the δ (dθ1 + dθ2) Dirac measure. We will not enter into
more detailed treatment of other types of morphisms, as this simple example
will suffice. In the case of super-projective spaces the change of coordinate
rule is simple and will be discussed in the next section. In the rest of the
paper we will ignore the action 〈 , 〉 and do the computations following the
above rules.

We will see later, in Section 6, that integral forms form a new complex
as follows

. . .
d−→ Ω(r|q) d−→ Ω(r+1|q) . . .

d−→ Ω(p+1|q) d−→ 0 (26)

where Ω(p+1|q) is the top ”form” dx[K1 . . . dxKp+1]δ(dθ[i1) . . . δ(dθiq ]) which can
be integrated on the supermanifold. As in the usual commuting geometry,
there is an isomorphism between the cohomologies H(0|0) and H(p+1|q) on
a supermanifold of dimension (p + 1|q). In addition, one can define two
operations acting on the cohomology groups H(r|s) which change the picture
number s (see [9]).

Given a function f(x, θ) on the superspace C(p+1|q), we define its integral
by the super top-form ω(p+1|q) = f(x, θ)dp+1xδ(dθ1) . . . δ(dθq) belonging to
Ω(p+1|q) as follows∫

C(p+1|q)
ω(p+1|q) = εi1...iq∂θi1 . . . ∂θiq

∫
Cp+1

f(x, θ) (27)

where the last equalities is obtained by integrating on the delta functions and
selecting the bosonic top form. The remaining integrals are the usual integral
of densities and the Berezin integral. The latter can be understood in terms
of the Berezinian sheaf [10]. It is easy to show that indeed the measure is
invariant under general coordinate changes and the density transform as a
Berezinian with the superdeterminant.
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5 Čech cohomology of P1|1

We describe now Čech cohomology on super-projective spaces, with respect
to this particular sheaf of ”integral 1-forms”.

We will begin by considering P1|1. P1 has a natural covering with two
charts, U0 and U1, where

U0 = {[z0; z1] ∈ P1 : z0 6= 0}, (28)

U1 = {[z0; z1] ∈ P1 : z1 6= 0}. (29)

The affine coordinates are γ = z1
z0

on U0 and γ̃ = z0
z1

on U1. The odd generators

are ψ on U0 and ψ̃ on U1. The gluing morphism of sheaves on the intersection
U0 ∩ U1 has pull-back given by:

Φ∗ : O(U0 ∩ U1)[ψ] 7−→ O(U0 ∩ U1)[ψ̃] (30)

with the requirement that:

Φ∗(γ) =
1

γ̃
,Φ∗(ψ) =

ψ̃

γ̃
. (31)

We now consider a sheaf of differential on P1|1. As we already said in the
previous section, we must add objects of the type ”dγ” and of the type ”dψ”
on U0. But dψ is an even generator, because ψ is odd, so we are not able to
find a differential form of maximal degree. We introduce then the generator
δ(dψ), which allow us to perform integration in the ”variable” dψ. It satisfies
the rule dψδ(dψ) = 0. This means that δ(dψ) is like a Dirac measure on the
space of the analytic functions in dψ which gives back the evaluation at zero.
We must also introduce the derivatives δ(n)(dψ), where dψδ′(dψ) = −δ(dψ),
and, in general, dψδ(n)(dψ) = −δ(n−1)(dψ). In this way, the derivatives of
the delta represent anticommuting differential forms of negative degree.

Let’s define the following sheaves of modules:

Ω0|0(U0) = O(U0)[ψ]; (32)

Ω1|0(U0) = O(U0)[ψ]dγ ⊕O(U0)[ψ]dψ; (33)

and similarly un U1. The general sheaf Ωn|0 is locally made up by objects of
the form

O(U0)[ψ](dγ)i(dψ)j, (34)

where i = 0; 1 and i + j = n. The definitions on U1 are similar, the only
difference is that we will use the corresponding coordinates on U1. Note that
Ωn|0 is non zero for all integers n ≥ 0.
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We also define the sheaves of modules Ωl|1, which, on U0, contain elements
of the form:

O(U0)[ψ](dγ)iδ(j)(dψ), (35)

with i − j = l. The elements containing ”dψ” cannot appear, since they
cancel with the delta forms. On U1, the sections of this sheaf assume a
similar structure with respect to the coordinates on U1.

Notice that Ωl|1 is non zero for all integers l with l ≤ 1, in particular
for all negative integers. We still have to describe coordinate change in the
intersection U0 ∩ U1 of the objects {dγ, dψ, δ(dψ)}. They are given by:

Φ∗dγ̃ = − 1

γ2
dγ, (36)

and

Φ∗dψ̃ =
dψ

γ
− dγ ψ

γ2
. (37)

More generally, for any integer n > 0, we have the formula

Φ∗(dψ̃)n =

(
dψ

γ

)n
− dγ ψ

γ2

(
dψ

γ

)n−1
. (38)

It only remains to compute how δ(dψ) transforms in a coordinate change.
We can proceed as outlined in the previous section.

In this case, we write:

Φ∗δ(dψ̃) = δ

(
dψ

γ
− dγ ψ

γ2

)
(39)

Then:

Φ∗δ(dψ̃) = γδ

(
dψ − dγψ

γ

)
= γδ (dψ)−γ dγ ψ

γ
δ(dψ) = γδ (dψ)−ψdγδ′(dψ).

(40)
Notice that the latter equation, together with (37), implies that

Φ∗(dψ̃δ(dψ̃)) = 0

as expected.
Hence the generator δ(dψ̃) and its properties are well defined. Similarily,

one can compute that the derivatives δn(dψ̃) satisfy the following change of
coordinates formula

Φ∗δn(dψ̃) = γn+1δn (dψ)− γnψ dγ δn+1(dψ). (41)

Now, we can proceed in calculating sheaf cohomology for each of the sheaves
Ωi|j with respect to the covering {U0;U1}.
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Theorem 2 The covering {U0;U1} is acyclic with respect to each of the
sheaves Ωi|j.

Proof. We know that U0 and U1 are both isomorphic to C, while U0 ∩ U1

is isomorphic to C∗. Moreover, we know that, classically, Hq(C;O) = {0},
and that Hq(C∗;O) = 0. We note that the restriction to each open set of
the sheaf Ωi|j is simply the direct sum of the sheaf O a certain finite number
of times.

For example,

Ω1|1(U0 ∩ U1) = O(C∗)dγδ(dψ) +O(C∗)ψdγδ(dψ). (42)

Note that the symbols dγδ(dψ) and ψdγδ(dψ) represent the generators of a
vector space, then, each of the direct summands can be treated separately.
So, we see that a chain of Ωi|j (on C or C∗) is a cocycle if and only if each
of the summands is a cocycle, and it is a coboundary if and only if every
summand is a coboundary.

We now begin the computation of the main cohomology groups on P1|1.
For Ȟ0 we have the following result:

Theorem 3 For integers n ≥ 0, the following isomorphisms hold

Ȟ0(P1|1,Ωn|0) ∼=

{
0, n > 0,

C, n = 0.

Ȟ0(P1|1,Ω−n|1) ∼= C4n+4,

Ȟ0(P1|1,Ω1|1) ∼= 0

Proof.

• Let’s begin from Ȟ0(P1|1,Ω0|0). On U1, the sections of the sheaf have
the structure:

f(γ̃) + f1(γ̃)ψ̃. (43)

On the intersection U0 ∩ U1 they transform in the following way:

f

(
1

γ

)
+
ψ

γ
f1

(
1

γ

)
(44)

So, the only globally defined sections (i.e which can be extended also
on P1|1) are the constants:

Ȟ0(P1|1,Ω0|0) ∼= C. (45)
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• Let’s consider Ȟ0(P1|1,Ωn|0), with n > 0. On U1, the sections of the
sheaf have the structure:(

f0(γ̃) + f1(γ̃)ψ̃
)
dγ̃ (dψ̃)n−1 +

(
f2(γ̃) + f3(γ̃)ψ̃

)
(dψ̃)n. (46)

Since both dγ̃ and dψ̃ transform, by coordinate change, producing a
term 1/γ2, none of these sections can be extended on the whole P1|1,
except the zero section. So,

Ȟ0(P1|1,Ωn|0) ∼= 0. (47)

• Let us now compute Ȟ0(P1|1; Ω−n|1) for every integer n ≥ 0. On U1,
the sections of the sheaf have the form:(

f0(γ̃) + f1(γ̃)ψ̃
)
δn(dψ̃) +

(
f2(γ̃) + f3(γ̃)ψ̃

)
dγ̃ δn+1(dψ̃). (48)

Using the change of coordinates formula (41) one can verify that on
the intersection U0 ∩ U1 they transform in the following way:(

f0

(
1

γ

)
+ f1

(
1

γ

)
ψ

γ

)(
γn+1δn (dψ)− γnψ dγ δn+1(dψ)

)
−

−
(
f2

(
1

γ

)
+ f3

(
1

γ

)
ψ

γ

)
dγ

γ2
(
γn+2δn+1 (dψ)− γn+1ψ dγ δn+2(dψ)

)
=

=

(
f0

(
1

γ

)
γn+1 + f1

(
1

γ

)
γnψ

)
δn (dψ)−

−
(
f2

(
1

γ

)
γn +

(
f0

(
1

γ

)
γn + f3

(
1

γ

)
γn−1

)
ψ

)
dγ δn+1 (dψ) (49)

Therefore this expression extends to a global section if and only if the
following conditions hold. The coefficient f0 is a polynomial of degree
n+1, while f1, f2 and f3 are polynomials of degree n. Moreover, if an+1

and bn are the coefficients of maximal degree in f0 and f3 respectively,
then an+1 = −bn. This establishes that Ȟ0(P1|1,Ω−n|1) has dimension
4n+ 4.

• Let’s consider Ȟ0(P1|1; Ω1|1). On U1, the sections of the sheaf have the
structure: (

f0(γ̃) + f1(γ̃)ψ̃
)
dγ̃δ(dψ̃) (50)
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These sections cannot be defined on the whole P1, since they transform
as:

−
(
f0

(
1

γ

)
+ f1

(
1

γ

)
ψ

γ

)
dγ

γ2
(γδ (dψ)− ψdγδ′(dψ)) =

= −
(
f0

(
1

γ

)
1

γ
+ f1

(
1

γ

)
ψ

γ2

)
dγ δ (dψ) .

So,
Ȟ0(P1|1,Ω1|1) = 0. (51)

A similar computation can be done to obtain the groups Ȟ1(P1|1; Ωi|j).

The elements of the Čech cohomology are sections σ01 of Ω
i|j
|U0∩U1

which cannot
be written as differences σ0 − σ1, with σ0 defined on U0 and σ1 defined on
U1. We have the following result:

Theorem 4 For integers n ≥ 0, the following isomorphisms hold

Ȟ1(P1|1,Ωn|0) ∼= C4n

Ȟ1(P1|1,Ω−n|1) ∼= 0,

Ȟ1(P1|1,Ω1|1) ∼= C

Proof.

• Ȟ1(P1|1,Ω0|0) = {0}, since for every section on U1 ∩ U0 we have the
structure:

f(γ̃) + f1(γ̃)ψ̃, (52)

we can decompose the Laurent series of f and f1 in a singular part
and in a holomorphic component. The singular part is defined on U0,
while the holomorphic part is defined on U1. So, it’s easy to write every
section of Ω0|0 on U0 ∩ U1 as a difference of sections on U0 and U1.

• We now compute Ȟ1(P1|1,Ωn|0) for n > 0. A section on U0 is of the
type

(f0(γ) + f1(γ)ψ) dγ (dψ)n−1 + (f2(γ) + f3(γ)ψ) (dψ)n.

while a section on U1 is of the type(
g0(γ̃) + g1(γ̃)ψ̃

)
dγ̃ (dψ̃)n−1 +

(
g2(γ̃) + g3(γ̃)ψ̃

)
(dψ̃)n.

14



All functions here are regular. A computation shows that, taking the
difference of the two on U0 ∩U1 and expressing everything in the coor-
dinates γ and ψ, gives us an expression of the type(

f0(γ) + g0(γ
−1)γ−(n+1)

)
dγ (dψ)n−1+

+
(
f1(γ) + g1(γ

−1)γ−(n+2) + g2(γ
−1)γ−(n+1)

)
ψdγ (dψ)n−1+

+
(
f2(γ)− g2(γ−1)γ−n

)
(dψ)n+

+
(
f3(γ)− g3(γ−1)γ−(n+1)

)
ψ(dψ)n.

It is clear that in the first row there are no terms of the type akγ
−k

with 1 ≤ k ≤ n, so this gives us n parameters for an element of
Ȟ1(P1|1,Ωn|0). Similarily, the second row gives us n parameters, the
third gives us n − 1 and the fourth n. This gives a total of 4n − 1.
Notice now that in the above expression the coefficient of γ−(n+1) in
the second row must be equal to the coefficient of γ−n in the third row.
This constraint on the terms of the above type gives us room for an
extra parameter in the elements of Ȟ1(P1|1,Ωn|0). We therefore have a
total of 4n parameters.

• We compute in a similar way Ȟ1(P1|1,Ω−n|1) for n ≥ 0. A computation
shows that a difference between a section on U0 and a section on U1 is
of the type (

f0(γ)− g0(γ−1)γn+1
)
δn(dψ)+

+
(
f1(γ)− g1(γ−1)γn

)
ψδn(dψ)+

+
(
f2(γ) + g2(γ

−1)γn
)
dγ δn+1(dψ)+

+
(
f3(γ) + g0(γ

−1)γn + g3(γ
−1)γn−1

)
ψdγ δn+1(dψ).

It is clear that every section on U0 ∩ U1 is represented in such an ex-
pression. Therefore we have Ȟ1(P1|1,Ω−n|1) = 0

• We see in a similar way that Ȟ1(P1|1; Ω1|1) = C, in fact the section on
U0 ∩ U1 which are not differences are all generated by

ψdγδ(dψ)

γ
. (53)

This completes the proof.
Notice that Ȟ1(P1|1,Ωn+1|0) and Ȟ0(P1|1,Ω−n|1) have the same dimension.

There is an interesting explanation of this fact, in fact we can construct a
pairing

Ȟ1(P1|1,Ωn+1|0)× Ȟ0(P1|1,Ω−n|1)→ Ȟ1(P1|1,Ω1|1) ∼= C

15



as follows. As explained above, an element of Ȟ1(P1|1,Ωn+1|0) is of the type(
f0(γ

−1) + f1(γ
−1)ψ

)
dγ (dψ)n +

(
f2(γ

−1) + f3(γ
−1)ψ

)
(dψ)n+1. (54)

where f0 and f1 are polynomials of degree at most n+ 1, while f1 and f2 can
be chosen to be respectively of degree at most n+ 2 and n or both of degree
at most n+ 1. An element of Ȟ0(P1|1,Ω−n|1) is of the type

(g0(γ) + g1(γ)ψ) δn(dψ) + (g2(γ) + g3(γ)ψ) dγ δn+1(dψ), (55)

where g0 is a polynomial of degree n + 1, g1 . . . , g3 are polynomials of
degree n and the coefficients of maximal degree in g0 and g3 are opposite to
each other. Now recall that we have a pairing

Ωn+1|0 × Ω−n|1 → Ω1|1

obeying the rules explained in Section 4. For instance

〈dγ (dψ)n, δn(dψ)〉 = (−1)nn! dγ δ(dψ),

〈(dψ)n+1, dγ δn+1(dψ)〉 = −(−1)n(n+ 1)! dγ δ(dψ),

〈dγ (dψ)n, dγ δn+1(dψ)〉 = 〈(dψ)n+1, δn(dψ)〉 = 0.

It can be checked that this product descends to a pairing in cohomology. We
have the following

Lemma 5 On P1|1 the above product in cohomology is non-degenerate.

Proof. The product between (54) and (55) is cohomologous to the expression

(−1)nn! ((f0g1 + f1g0)− (n+ 1)(f2g3 + f3g2))ψ dγ δ(dψ). (56)

We have to prove that if (55) is arbitrary and non zero, then we can chose
f0, . . . , f3 so that the above expression is cohomologous to (53). We can
assume one of the g0, . . . , g3 to be non zero. If g0 6= 0, let ak be the coefficient
of highest degree in g0, hence k ≤ n+ 1. Define

f1 = Cγ−k+1,

and f0, f2, f3 to be zero. Then, for suitably chosen C 6= 0 we can easily see
that (56) is cohomologous to (53). Notice also that k + 1 ≤ n + 2, so the
choice of f0, . . . , f3 gives a well defined element of Ȟ1(P1|1,Ωn+1|0). Similar
arguments hold when g1, g2 or g3 are not zero.

A consequence of this lemma is that Ȟ1(P1|1,Ωn+1|0) and Ȟ0(P1|1,Ω−n|1)
are dual to each other. This explains why they have the same dimension.
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6 Super de Rham Cohomology.

We now briefly describe smooth and holomorphic de Rham cohomology with
respect to the d differential on superforms.

On a fixed complex supermanifold Mn|m we denote by Ai|j and Ωi|j re-
spectively the sheaf of smooth and holomorphic superforms of degree i with
picture number j and by Ai|j and Ωi|j the global sections of these sheaves.
As usual for superforms, i can also have negative values. On A∗|j (or locally
on A∗|j) we can define the exterior differential operator d : Ai|j → Ai+1|j

which satisfies the following rules:

1.) d behaves as a differential on functions;

2.) d2 = 0;

3.) d commutes with δ and its derivatives, and so d(δ(k)(dψ)) = 0.

Similarily, the same operator d is defined on Ω∗|j, and behaves as the ∂
operator on holomorphic functions (since ∂ always vanishes).

It is easy to verify that, on the intersection of 2 charts, d commutes with
the pull-back map Φ∗ expressing the ”coordinate changes”. This is due to
the particular definition of the pull-back of the differentials, and it implies
that d is well defined and it does not depend on coordinate systems.

As an example, we prove it on P1|1 in the holomorphic case, leaving to
the reader the easy generalization to every other super-projective space.

• We know that Φ∗(γ̃) = 1
γ
, so it’s easy to see that d

(
1
γ

)
= Φ∗d(γ̃) =

− 1
γ2
dγ.

• We know that Φ∗(ψ̃) = ψ
γ

, so it’s easy to see that d
(
ψ
γ

)
= Φ∗d(ψ̃) =

− 1
γ2
dγ ψ + dψ

γ
.

• We know that Φ∗δ(dψ̃) = γδ (dψ)−dγ ψδ′(dψ). Then, Φ∗d(δ(dψ̃)) = 0.

But, d(Φ∗δ(dψ̃)) = d(γδ (dψ)−dγ ψδ′(dψ)) = dγ δ (dψ)+dγ dψ δ′(dψ)) =
0.

Now (A∗|j(M), d) and (Ω∗|j(M), d) define complexes, whose cohomology
groups we call respectively the smooth and holomorphic super de Rham
cohomology groups:

17



Definition 6 If Zi|j is the set of the d-closed forms in Ai|j, and Bi|j =
dAi−1|j. Then, the i|j-th smooth de Rham cohomology group is the quotient
of additive groups:

H
i|j
DR(Mn|m) =

Zi|j

Bi|j . (57)

Similarily we define the holomorphic de Rham cohomology groups which we
denote by H

i|j
DR(Mn|m, hol)

We now calculate the holomorphic super de Rham cohomology of Cm|n.
Let’s call {γ1, γ2, ..., γm} the even coordinates and {ψ1, ψ2, ..., ψn} the odd

coordinates of Cm|n.
Clearly the following forms are closed:

a) 1;

b) {dγi}, i ∈ {1; 2; ...,m};

c) {dψj}, j ∈ {1; 2; ...;n};

d) {dγh · ψk + γhdψk = d(γh · ψk)}, h ∈ {1; 2; ...,m}, k ∈ {1; 2; ..., n};

e) {δ(k)(dψa)}, a ∈ {1; 2; ...;n} and k ∈ N;

f) {ψbδ(dψb)}, b ∈ {1; 2; ..., n}.

All other closed forms are products and linear combinations of these with
coefficients some holomorphic functions in the even coordinates. Observe
that {ψbδ(dψb)}, with b ∈ {1; 2; ..., n} are not exact. A calculation shows that
the holomorphic super de Rham cohomology H i|j(Cm|n, hol) is zero whenever
i > 0, it is generated by 1 when i = j = 0, by {ψbδ(dψb)} when i = 0 and
j = 1 and by their j-th exterior products when i = 0 and j ≥ 2. Similarily
we can compute the smooth de Rham cohomology of Rm|n.

Remark 7 In particular, we see that the super-vector space Cm|n (or Rm|n)
does not satisfy the Poincarè lemma, since its de Rham cohomology is not
trivial. The forms {ψiδ(dψi)} can be seen as even generators of the ”odd
component” of the cohomology.

As an example we compute the holomorphic de Rham cohomology of P1|1.
We have:
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Theorem 8 For n ≥ 0, the holomorphic de Rham cohomology groups of P1|1

are as follows:

H
n|0
DR(P1|1, hol) ∼=

{
0, n > 0,

C, n = 0.

H
−n|1
DR (P1|1, hol) ∼=

{
0, n > 0,

C, n = 0.

H
1|1
DR(P1|1, hol) ∼= 0.

Proof. We have given explicit descriptions of global sections of the sheaves
Ωi|j in Theorem 3 and therefore it is a rather straightforward computation
to determine which forms are closed and which are exact in terms of the
coefficients describing the forms (see formulas (46) and (48)). We leave the

details to the reader. Notice that H
0|1
DR(P1|1, hol) is generated by the closed

form ψδ(dψ) which is globally defined on P1|1.
Now consider a general smooth super manifoldMn|m. OnM we can define

the pre-sheaf which associates to every open subset U ⊂M the smooth super
de Rham i|j-cohomology group of Un|m and we denote the corresponding
sheaf by Hi|j. If follows from the above remark that Hi|j is the constant C-
sheaf when i, j = 0, a non zero sheaf when i = 0 and j > 0 and the zero sheaf
otherwise. It makes therefore sense to consider the Čech cohomology groups
which we denote by Ȟp(Mn|m,Hi|j) (which are zero when i > 0). Recall that
a good cover is an open covering Uα of M such that every non-empty finite
intersection Uα0 ∩Uα1 ∩ ...∩Uαp is diffeomorphic to Rn. We can now prove a

generalization of the classical equivalence of Čech and De Rham cohomology

Theorem 9 Given a supermanifold Mn|m, for i ≥ 0 we have the following
isomorphism

H
i|j
DR(Mn|m) ∼= Ȟ i(Mn|m,H0|j) (58)

Proof. For the proof we can use the same method used in [13] for the
classical equivalence of Čech and De Rham cohomology. Let us fix a good
cover U = {Uα} of M . For integers p, q ≥ 0, let us set

Kp,q = Cp(Aq|j,U), (59)

where the righthand side denotes the usual p-cochains of the sheaf Aq|j, with
respect to the covering U . Then we can form the double complex (K, d, δ),
where K = ⊕p,q≥0Kp,q and the operators are the usual exterior differential
operator d and the Čech co-boundary operator δ. From this double complex
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one can construct two spectral sequences (Ep,q
r , dr) and (E

′p,q
r , dr) both con-

verging to the total cohomology HD(K) of the double complex (see [13]). We
have that

Ep,q
2 = Ȟp(H

q|j
DR(Aq|j),U) = Ȟp(Mn|m,Hq|j). (60)

In particular Ep,q
2 = 0 when q > 0, therefore (Ep,q

r , dr) stabilizes at r = 2.
On the other hand we have

E
′p,q
2 = Hq

DR(Ȟp(Aq|j,U)). (61)

We can easily see that the sheaves are fine i.e. that

Ȟ0(Aq|j,U) = Aq|j (62)

and
Ȟp(Aq|j,U) = 0 when p > 0. (63)

The latter identity can be proved using standard partitions of unity relative to
the covering U of the underlying smooth manifold M . Therefore we conclude
that (E

′p,q
r , dr) also stabilizes at r = 2 and E

′p,q
2 = 0 when p > 0 and

E
′0,q
2 = H

q|j
DR(Mn|m). (64)

The theorem is then proved by using the fact that the two spectral sequences
must converge to the same thing and therefore

H
q|j
DR(Mn|m) = E

′0,q
2
∼= Eq,0 = Ȟq(Mn|m,H0|j). (65)

It may happen the sheaf H0|j is actually a constant sheaf, for instance
on projective superspaces Pn|m the forms {ψiδ(dψi)} are globally defined. In
this case, as a corollary of the above result, we obtain a sort of ”Kunneth
formula” for the super de Rham cohomology on supermanifolds.

Corollary 10 Let Mn|m be a super-manifold, such that H0|j is a constant
sheaf, (e.g. when the locally defined forms {ψiδ(dψi)} extend globally). Then
the de Rham cohomology of Mn|m is:

H
∗|j
DR(Mn|m) = H∗DR(M)⊗H0|j. (66)

Proof. The map ψ : H∗DR(M)⊗H −→ H∗DR(Mn|m) given by multiplication
is a map in cohomology. It is easy to show that, if γ is an element of H∗DR(M)
and ω is an element of H, then γω is an element of H∗DR(Mn|m). Moreover, if
γ and γ′ are cohomologous in H∗DR(M), then γω and γ′ω are cohomologous
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in H∗DR(Mn|m): if γ − γ′ = df , then γω − γ′ω = d(fω), since dω = 0. Now,
we proceed by induction on the number of open sets of the good cover of M .
Obviously, if this number is equal to 1, then M = Rn, and the thesis is true
for the study we have performed above. We have to prove the truth of the
thesis for an integer s, knowing that it is true for s−1. So, let M be covered
by s open sets forming a good cover. Then, we can call U one of them, and
V the union of the remaining ones. We know that the thesis is true on U ;
V and U ∩ V . We will call Um|n and V m|n the open sets U and V endowed
with the corresponding graded sheaves. Let k; p be two integers; by the usual
Mayer-Vietoris sequence,

... −→ Hp(U ∪ V ) −→ Hp(U)⊕Hp(V ) −→ Hp(U ∩ V ) −→ ... (67)

If Hq are the elements of H of degree ·|q, we have the following exact
sequence:

... −→ Hp(U∪V )⊗Hq −→ (Hp(U)⊗Hq)⊕(Hp(V )⊗Hq) −→ (Hp(U∩V )⊗Hq) −→ ...
(68)

Summing up, we find that the following sequence is exact:

... −→
⊕
p+q=k

Hp(U ∪ V )⊗Hq

−→
⊕
p+q=k

(Hp(U)⊗Hq)⊕ (Hp(V )⊗Hq)

−→
⊕
p+q=k

(Hp(U ∩ V )⊗Hq) −→ ...

where the sum is performed over p, q.
The following diagram is commutative:

⊕
p+q=k

Hp(U ∪ V )⊗Hq →
⊕
p+q=k

(Hp(U)⊗Hq)⊕ (Hp(V )⊗Hq)→
⊕
p+q=k

(Hp(U ∩ V )⊗Hq)

↓ ψ ↓ ψ ↓ ψ
Hk(Mn|m) → Hk(Un|m)⊕Hk(V n|m) → Hk((U ∩ V )n|m)

The commutativity is clear except possibly for the square:

⊕(Hp(U ∩ V )⊗Hq) −→d∗ ⊕Hp+1(U ∪ V )⊗Hq

↓ ψ ↓ ψ
Hk((U ∩ V )n|m) −→d∗ Hk+1(Mn|m)
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Let ω ⊗ φ be in (Hp(U ∩ V ) ⊗ Hq). Then, ψd∗(ω ⊗ φ) = (d∗ω) · φ and
d∗ψ(ω ⊗ φ) = d∗(ωφ).

If {ρU ; ρV } is a partition of unity subordinate to {U ;V }, then d∗ω =
−d(ρV ω) and d∗(ωφ) = −d(ρV ωφ) on U , while d∗ω = d(ρUω) and d∗(ωφ) =
d(ρUωφ) on V . Note that −d(ρUωφ) = d(ρV ωφ) on U ∩ V , since both ω and
φ are closed. So, d∗(ωφ) is a global section of the sheaf of Mn|m.

By these relations, it’s easy to see that the square is commutative:
d∗ψ(ω ⊗ φ) = d∗(ωφ) = d(ρUωφ) = (dρUω)φ = (d∗ω) · φ = ψd∗(ω ⊗ φ),

since φ is closed.
By the Five Lemma, if the theorem is true for Un|m, V n|m and (U ∩V )n|m

then it holds also for Mn|m, by induction.
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