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Abstract

This is the first of two papers in which we construct the Hodge dual for supermanifolds by

means of the Grassmannian Fourier transform of superforms. In this paper we introduce the

fundamental concepts and a method for computing Hodge duals in simple cases. We refer to

a subsequent publication [12] for a more general approach and the required mathematical de-

tails. In the case of supermanifolds it is known that superforms are not sufficient to construct

a consistent integration theory and that integral forms are needed. They are distribution-

like forms which can be integrated on supermanifolds as a top form can be integrated on a

conventional manifold. In our construction of the Hodge dual of superforms they arise natu-

rally. The compatibility between Hodge duality and supersymmetry is exploited and applied

to several examples. We define the irreducible representations of supersymmetry in terms of

integral and super forms in a new way which can be easily generalised to several models in

different dimensions. The construction of supersymmetric actions based on the Hodge duality

is presented and new supersymmetric actions with higher derivative terms are found. These

terms are required by the invertibility of the Hodge operator.
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1 Introduction

In a series of previous papers [1, 2, 3] we discussed several aspects of integral forms and their

applications [4, 5]. Nonetheless, some of the issues are still only partially understood and

clarified, for example the generalization of the usual Hodge dual was not clearly identified.

Therefore we decided to use a different point of view to study integral forms through the

introduction of an integral representation of integral forms. In this paper we face the problem

of constructing a generalization of the usual Hodge duality by means of an integral repre-

sentation of the Hodge operator. In this formalism the integral forms naturally arise. The

introduction of the Hodge operator is relevant for constructing actions and for defining self-

dual forms, and reveals new features we study in the present paper and that will be pursued

in forthcoming publications.

The superspace techniques are well understood and used in quantum field theory and

string theory (see [6, 7]). They provide a very powerful method to deal with supersymmetric

multiplets and to write supersymmetric quantities such as actions, currents, operators, vertex

operators, correlators and so on. This is based on the extension of the usual space Rn obtained

by adding to the bosonic coordinates xi some fermionic coordinates θα. One can take this

construction more seriously and extend the concept of superspace to a curved supermanifold

which is locally homeomorphic to superspace. Contextually, the many of the geometric struc-

tures which can be defined for a conventional bosonic manifold can be rephrased in the new

framework. For example, the supermanifolds have a tangent bundle (generated by commuting

and anticommuting vector fields) and an exterior bundle. Therefore, one expects that also

the geometric theory of integration on manifolds could be exported as it stands. Unfortu-

nately, this is not so straightforward since top superforms do not exist. Before clarifying this

point, we have to declare what we mean by a superform. Even though there is no unani-

mous agreement, we call superforms the sections of the exterior bundle constructed through

generalized wedge products of the basic 1-forms dxi and dθα (that reduces to the ordinary

wedge product when only the basic 1-forms dxi are involved). The sets of fixed degree su-

performs are modules over the ring of superfunctions f(x, θ). However, while for the bosonic
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1-forms dxi the usual rules are still valid, for the fermionic 1-forms dθα the graded Leibniz

rule for d (w.r.t. wedge product) has to be accompanied by the anticommuting properties of

fermionic variables, and this implies that a fermionic 1-form commutes with itself and with

all other forms. Thus, there is no upper bound on the length of the usual exterior d-complex.

To overcome this problem, one needs to extend the concept of superforms including also

distributional-like forms, known as integral forms [8, 9]. With a suitable extension of the d

differential they do form a complex with an upper bound, and they can be used to define

a meaningful geometric integration theory for forms on supermanifolds. Clearly, this does

not rely on any choice of additional structure on the supermanifold (i.e. complex structure,

Riemannian metric, connection, etc...) and it automatically gives a diffeomorphism invariant

theory of integration. This is important for guaranteering parametrization-independence of

the results, with the add-on of the invariance under local supersymmetry as a part of the

reparametrization invariance of the entire supermanifold. The details of this construction are

contained in several papers [1, 3] and we will give in the following only a short review of the

most important points.

In a supermanifoldM(n|m) with n bosonic dimensions and m fermionic dimensions, there

is a Poincaré type duality between forms of the differential complexes. In that respect, we

have to use the complete set of forms comprehending both superforms and integral forms.

It can be shown that (when finitely generated) there is a match between the dimensions of

the modules of forms involved in this duality. Then, as in the conventional framework, we

are motivated to establish a map between them, conventionally denoted as Hodge duality. In

order to be a proper generalization of the usual Hodge dual, this map has to be involutive,

which implies its invertibility (as discussed in the forthcoming section, the lack of invertibility

for a generic linear map leads to problems). We first show that the conventional Hodge duality

for a bosonic manifold can be constructed using a “partial” Fourier transform of differential

forms (for a “complete” Fourier transform see also [10, 11]). Then we extend it to superforms.

By “partial” we mean a Fourier transformation only of the differentials dx and dθ, leaving

untouched the coordinates x and θ and hence the components of the superform. To compute

the general form of the Hodge duality we start with the case of a standard constant diagonal
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metric. For a slightly more general metric, we consider a transformation of the basic 1-

forms that diagonalizes it and afterwards rewrite the standard Hodge dual in terms of the

original differentials. This is equivalent to passing from the holonomic to the anholonomic

basis with a Cartan super frame (supervielbein). Finally, we show that the compatibility

with supersymmetry constrains the form of the supervielbein and that the supersymmetric-

invariant variables are indeed those for which the Hodge operator is diagonal. As an example,

we work out completely a very simple one dimensional model.

The definition of the super Hodge dual can be extended to the general metrics needed in

physical applications. We refer to the paper [12] for the generalization and more mathematical

details.

With the definition of the Hodge operator we have a new way to build new Lagrangians and

the corresponding actions in terms of superforms and their differentials. For that purpose,

we first give some examples in the case of a three dimensional bosonic manifold with two

additional fermionic coordinates. This is one of the simplest supermanifolds, but displays

several features of higher dimensional models. In particular, there are different types of

supermultiplets such as the scalar superfield, the vector superfield and current superfield.

They can be formulated in the present new geometrical framework and their corresponding

actions can be built. The interesting result is that the action only partially coincides with

the conventional result, since there are additional higher derivative terms required by the

invertibility of the Hodge dual operation. Moving from three to four dimensions, we find

new examples of multiplets and for them we give a geometrical definition. We construct the

actions as integrals on the corresponding supermanifold.

1.1 Motivations and some old results

In this section we briefly outline the motivations of our study describing some old results

and observations regarding the problems encountered in building Lagrangians and actions

on supermanifolds. We anticipate some notations and concepts that will be described and

explained in the forthcoming sections.

In previous works (see for example [1]) we have seen that there is a Poincaré duality among
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forms Ω(p|q)(M(n|m)) on the supermanifold M(n|m) expressed by the relation

Ω(p|0) ←→ Ω(n−p|m) .

Here the numbers p and q respectively denote the form degree (the usual form degree, which

in the case of integral forms could also be negative) and the picture number (taking into

account the number of Dirac delta forms of type δ(dθα) where dθα is the fundamental 1-form

associated to the coordinates θα of the supermanifold M(n|m) with α = 1, . . . ,m).

Let us set the stage by considering the N=1 Wess-Zumino model in three dimensions. The

M(3|2) supermanifold is locally homeomorphic to R(3|2) parametrised by 3 bosonic coordinates

xm and 2 fermionic coordinates θα. A top form Ωtop is an integral form belonging to Ω(3|2)

(which is one dimensional)

Jtop = h(x, θ)d3xδ2(dθ) , (1.1)

where h(x, θ) is a superfield and δ2(dθ) = δ(dθα)εαβδ(dθβ). Such a form can be integrated

on the supermanifold as discussed in [3]. If h(x, θ) = h0(x) + hα(x)θα + h2(x)θ2/2 (where

θ2 = θαεαβθ
β ), the integral of Jtop on the supermanifold M is given by∫

M
Jtop =

∫
M

εαβDαDβ h(x, θ)|θ=0 d
3x =

∫
M

h2(x)d3x (1.2)

where M is the bosonic submanifold of M and Dα = ∂
∂θα

. There are three ways to build an

action using the forms Ω(p|q).

The first one is by considering a Lagrangian L(x, θ) belonging to Ω(0|0) (a function on the

supermanifold) and then map it to an integral form of the type Ω(3|2) by introducing a linear

application (which we “improperly” call Hodge operator)

L ∈ Ω(0|0) → ?L ∈ Ω(3|2) . (1.3)

For that we need to establish what is the Hodge dual of the generator of Ω(0|0), namely we

need to know what is ?1. We assume that

?1 = h(x, θ)d3xδ2(dθ) (1.4)
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so that
∫
M ?1 =

∫
M
h2(x)d3x. Then, we find

S =

∫
M
?L =

∫
M
L(x, θ)h(x, θ)d3xδ2(dθ) = (1.5)

=

∫
M

(
h0 D

2L(x, θ)
∣∣
θ=0

+ 2hα(x) DαL(x, θ)|θ=0 + h2(x) L(x, θ)|θ=0

)
d3x .

We immediately notice that the ? operation is singular if h0(x) and hα(x) vanish, since the

relevant part of action is only that for θ = 0 and we can shift it by any θ-dependent term

without modifying the action. This means that the equations of motion derived in this case

are the θ = 0 projected equations.

For the second way, we start from a superform L ∈ Ω(3|0), and then map it to the space

Ω(3|2), by means of the Picture Changing Operator Y 2 = θ2δ2(dθ). This operator has been

discussed in [1] where it is shown that it corresponds to a generator of a non-trivial cohomology

class and it can be used to relate differential forms of the type Ω(p|0) to differential forms of

the type Ω(p|2) with maximum number of Dirac delta’s. It is also shown that Y 2 maps the

cohomology class H
(p|0)
d onto H

(p|2)
d . So, given L, we can define an integral form of the type

(1.1) as follows

L ∈ Ω(3|0) −→ Y 2L ∈ Ω(3|2) . (1.6)

A 3-superform can be decomposed into pieces

L = L[mnp]dx
mdxndxp + Lα[mn]dθ

αdxmdxn + · · ·+ L(αβγ)dθ
αdθβdθγ , (1.7)

where the coefficients L[mnp] = εmnpL0,Lα[mn],L(αβ)m,L(αβγ) are superfields. Thus, the action

now reads

S =

∫
M
Y 2L =

∫
M
θ2δ2(dθ)L =

∫
M

L0(x, 0)d3x , (1.8)

where only the first coefficient of the superform survives and it is computed at θ = 0. In

the present computation the arbitrariness is even greater than before, L is defined up to any

superform which is proportional to θ or to a power of dθ.

A third way is to construct the action by writing an integral form of the type (1.1) in

terms of other forms. Given a supefield Φ ∈ Ω(0|0), its (super)differential dΦ ∈ Ω(1|0) and
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using the linear map as above we find ?dΦ ∈ Ω(2|2); then we can define the Lagrangian as

follows

L = dΦ ∧ ?dΦ ∈ Ω(3|2) . (1.9)

Then, the action is an integral form and it can be integrated on the supermanifold. To

compute the action, we must decompose the superfield Φ

Φ = A+ ψαθα + Fθ2/2 , (1.10)

where A,ψα, F are the component fields. Let us take the differential of Φ

dΦ = ∂mΦdxm + ∂αΦdθα , (1.11)

Now, we write the linear map dΦ −→ ?dΦ as follows

?dxm = Gmn(x, θ)εnpqdxpdxqδ2(dθ) +Gmα(x, θ)d3xιαδ
2(dθ) , (1.12)

? dθα = Gαn(x, θ)εnpqdxpdxqδ2(dθ) +Gαβ(x, θ)d3xιβδ
2(dθ) ,

where ιαδ
2(dθ) is the derivative of the Dirac delta forms with respect to the argument dθα and

it satisfies dθαιβδ
2(dθ) = −δαβ δ2(dθ). Notice that the 1-forms dxm, dθα belong to Ω(1|0) and

therefore the ”Hodge dual” should belong to Ω(2|2) and it is easy to check that this space is

generated by two elements. Therefore, it is natural that the Hodge dual of dΦ is a combination

of the two elements. The entries of the supermatrix

G =

(
Gmn(x, θ) Gmβ(x, θ)
Gαn(x, θ) Gαβ(x, θ)

)
(1.13)

are superfields. Then, we have

?dΦ = ∂mΦ
(
Gmnεnpqdx

pdxqδ2(dθ) +Gmβd3xιβδ
2(dθ)

)
+ ∂αΦ

(
Gαnεnpqdx

pdxqδ2(dθ) +Gαβd3xιβδ
2(dθ)

)
. (1.14)

Finally, we can compute

dΦ ∧ ? dΦ =

=
(
∂mΦGmn∂nΦ + ∂mΦGmβ∂βΦ + ∂αΦGαm∂mΦ + ∂αΦGαβ∂βΦ

)
d3xδ2(dθ) (1.15)
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and, hence, by integrating over dθ and over θ (by Berezin integral) we obtain∫
M
dΦ ∧ ?dΦ =

∫
M

d3x(∂mA∂
mA+ ψαγmαβ∂mψ

β + F 2) (1.16)

by choosing

G =

(
Gmn(x, θ) Gmα(x, θ)
Gβn(x, θ) Gαβ(x, θ)

)
=

(
ηmnθ2 γmαβθβ
γnαβθα εαβ

)
(1.17)

where γmαβ are the Dirac matrices in 3d.

Notice that the matrix G has non-vanishing superdeterminant (by suitable choice of the

numerical factors), however it is proportional to θ2 and therefore it cannot be inverted. So,

in this way we have constructed an action principle which leads to the correct equations of

motion, but at the price of a non-invertible Hodge operator.

2 Super Fourier Transforms

In this section we present the theory of Fourier transforms in Grassmann algebras and its

generalizations to differential forms, super forms and integral forms. This formalism will be

used to define an invertible Hodge dual on supermanifolds.

The case of the Fourier transform of usual differential forms on differentiable manifolds

was described for example in [11]. We will rephrase the formalism in such a way that it will

allow us to extend the Fourier transform to super and integral forms on supermanifolds.

These generalizations are then applied to define a Hodge dual for super and integral forms.

Appendices A and B contain some preliminary observations about the use of Fourier

transforms in the cohomology of superforms. This matter will be expanded in a forthcoming

publication.

2.1 Fourier transform in Grassmann algebras

We start, as usual, from the case of the real superspace Rn|m with n bosonic (xi, i = 1, . . . , n)

and m fermionic (θα, α = 1, . . . ,m) coordinates. We take a function f(x, θ) in Rn|m with

values in the real algebra generated by 1 and by the anticommuting variables, and we expand
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f as a polynomial in the variables θ :

f(x, θ) = f0(x) + ...+ fm(x)θ1...θm . (2.1)

Recall that if the real function fm(x) is integrable in some sense in Rn, the Berezin integral

of f(x, θ) is defined as: ∫
Rn|m

f(x, θ)[dnxdmθ] =

∫
Rn .

fm(x)dnx (2.2)

Here and in the following we use the notations of [3].

To define super Fourier transforms we start from the complex vector space V spanned by

the θα:

V = SpanC{θα, α = 1, . . . ,m}

and we denote as usual by ∧
(V ) =

m∑
p=0

p∧
(V )

the corresponding complex Grassman algebra of dimension 2m.

If F (Rn) is some suitable functional space of real or complex valued functions in Rn, the

functions f(x, θ) in Rn|m are elements of F (Rn)⊗
∧

(V ).

Berezin integration restricted to
∧

(V ) is simply a linear map
∫

(·)[dmθ] from
∧

(V ) to C
that is zero on all elements other than the product θ1...θm ∈

∧m(V )∫
θ1...θm[dmθ] = 1 . (2.3)

This can be extended to a linear map
∫

(·)[dmθ] from
∧

(V ∗) ⊗
∧

(V ) to
∧

(V ∗) where V ∗ is

the dual space of V . If ψ ∈
∧

(V ∗) we simply define:∫
ψ ⊗ θ1...θm[dmθ] = ψ . (2.4)

Denoting with {ψα, α = 1, . . . ,m} the dual basis of the basis {θα, α = 1, . . . ,m}, for every

ω ∈
∧

(V ) the Fourier transform F is defined by:

F(ω)(ψ) =

∫
ω(θ)eiψα⊗θ

α

[dmθ] ∈
∧

(V ∗) . (2.5)
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We will denote also by F the (anti)transform of η ∈
∧

(V ∗):

F(η)(θ) =

∫
η(ψ)eiθ

α⊗ψα [dmψ] . (2.6)

Recall now that for Z2− graded algebras A and B, the tensor product must be defined in

such a way that the natural isomorphism A ⊗ B ' B ⊗ A holds with a sign: for a ∈ A and

b ∈ B we have:

a⊗ b −→ (−1)p(a)p(b)b⊗ a (2.7)

(where p(a) and p(b) denote the Z2-parity of the elements a and b). The exponential series

is defined recalling also that if A and B are two Z2-graded algebras with products ·Aand ·B,

the Z2-graded tensor product A ⊗ B is a Z2-graded algebra with the product given by (for

homogeneous elements);

(a⊗ b) ·A⊗B (a′ ⊗ b′) = (−1)|a
′||b|a ·A a′ ⊗ b ·B b′

In the following the tensor product symbol will be omitted.

Note that the exponential series stops at the mth power and that the factor i in the

exponential is here only for “aesthetic reasons” and it is of no importance for the existence

of the fermionic integral.

As a simple example let us consider a two dimensional V generated over C by {θ1, θ2} .
We take ω = a+ bθ1 + cθ2 + dθ1θ2 ∈

∧
(V ) and compute

ei(ψ1θ1+ψ2θ2) = 1 + iψ1θ
1 + iψ2θ

2 + ψ1ψ2θ
1θ2 .

We find:

F(ω) =

∫ (
a+ bθ1 + cθ2 + dθ1θ2

) (
1 + iψ1θ

1 + iψ2θ
2 + ψ1ψ2θ

1θ2
)

[d2θ] = d+icψ1−ibψ2+aψ1ψ2 .

Note that F maps
∧p(V ) in

∧m−p(V ∗).

This definition shares many important properties with the usual case, for example one has

(this will be proved in the following, see the formula (3.4)):

F2 = (i)m
2

1∧
(V ) (2.8)
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Hence, if m is even, as is usual in many physical applications:

F2 = 1∧
(V ) (2.9)

In
∧

(V ) there is a convolution product. For ω and η ∈
∧

(V ) one defines:

(ω ∗ η) (θ) =

∫
ω(θ′)η(θ − θ′)[dmθ′] (2.10)

This convolution in
∧

(V ) obeys the usual rules:

F(ω ∗ η) = F(ω)F(η) (2.11a)

F(ωη) = F(ω) ∗ F(η) (2.11b)

Taking for example, ω = 1 + θ1 and η = 1 + θ2, we have

ω ∗ η(θ) =

∫ (
1 + θ′1

) (
1 + θ2 − θ′2

)
[d2θ′] = −1 (2.11c)

and the (2.11a) and (2.11b) are immediately verified.

One can now combine the definition (2.5) with the usual Fourier transform in order to

obtain the Fourier transform of the functions f(x, θ) in Rn|m. We are not interested here in

analytic subtelties and we limit ourselves to some ”suitable” functional space (for example

the space of fast decreasing functions) for the ”component functions” of f(x, θ) = f0(x)+ ...+

f1...m(x)θ1...θm. In the following we will also consider its dual space of tempered distributions.

If the yi are variables dual to the xi one can define:

F(f) =

∫
Rn|m

f(x, θ)ei(yix
i+ψαθα)[dnxdmθ] (2.12)

As a simple example let us consider again R1|2. We have f(x, θ) = f0(x) + f1(x)θ1 + f2(x)θ2 +

f12(x)θ1θ2 and hence:

F(f) (y, ψ) = f̂12(y) + if̂2(y)ψ1 − if̂1(y)ψ2 + f̂0(y)ψ1ψ2

Where f̂(y) denotes the usual Fourier transform of the function f(x). In the following we will

denote g̃(x) the usual antitransform of the function g(y).
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Note that we can extend the definition (2.12) to more general f(x, θ) (with component

functions not rapidly decreasing). For example:∫
R1|1

ei(yx+ψθ)[dxdθ] = iδ(y)ψ (2.13)

Similar expressions hold in higher dimensions.

The convolution in
∧

(V ) described above can be extended to produce a convolution in

Rn|m :

(f ∗ g) (x, θ) =

∫
Rn|m

f(x′, θ′)g(x− x′, θ − θ′)[dnxdmθ] (2.14)

2.2 Fourier transform of differential forms

The formalism described above can be used to define the Fourier transform of a differential

form. For this we exploit the similarity between the Berezin integral and the usual integral

of a differential form, that we now briefly recall.

Denoting by M a differentiable manifold with dimension n, we define the exterior bundle

Ω•(M) =
∑n

p=0

∧p(M) as the direct sum of
∧p(M) (sometimes denoted also by Ωp(M)). A

section ω of Ω•(M) can be written locally as

ω =
n∑
p=0

ωi1...ip(x)dxi1 ∧ · · · ∧ dxip (2.15)

where the coefficients ωi1...ip(x) (i1 < ... < ip) are functions on M and repeated indices are

summed. The integral of ω is defined as:

I[ω] =

∫
M

ω =

∫
M

ω1...n(x) dnx , (2.16)

suggesting a relation between the integration theory of forms and the Berezin integral, that

can be exploited by considering every 1-form dxi as an abstract Grassmann variable. A section

ω of Ω•(M) is viewed locally as a function on a supermanifoldM of dimension n|n with local

coordinates (xi, dxi) :

ω(x, dx) =
n∑
p=0

ωi1...ip(x)dxi1 . . . dxip ; (2.17)
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such functions are polynomials in dxi. Supposing now that the form ω is integrable we see

that the Berezin integral “selects” the top degree component of the form:∫
M
ω(x, dx)[dnxdn (dx)] =

∫
M

ω (2.18)

With this interpretation (and denoting y and dy the dual variables) we can directly apply

to (2.18) to define the Fourier transform of a differential form in Rn :

F(ω) (y, dy) =

∫
Rn|n

ω(x, dx)ei(yix
i+dyidx

i)[dnxdn (dx)] (2.19)

As an example consider a two-form ω in R3, that is ω =
∑

i1i2
ωi1i2(x)dxi1 ∧ dxi2 . Its Fourier

transform is given by

F(ω) =

∫
R3|3

ωi1i2(x)dxi1 ∧ dxi2ei(yixi+dyidxi)[dnxdn (dx)] (2.20)

= i (ω̂12dy3 − ω̂13dy2 + ω̂23dy1)

where ω̂i1i2 is the usual Fourier transform of the functions ωi1i2(x).

2.3 Fourier transform of super and integral forms

We denote now by M a supermanifold of dimension n|m with coordinates (xi, θα) (with

i = 1, . . . , n and α = 1, . . . ,m) and we consider the “exterior” bundle Ω•(M) as the formal

direct sum of bundles of fixed degree forms. The local coordinates in the total space of this

bundle are (xi, dθα, dxj, θβ), where (xi, dθα) are bosonic and
(
dxj, θβ

)
fermionic. In contrast

to the pure bosonic case, a top form does not exist because the 1− forms of the type dθα

commute among themselves dθα ∧ dθβ = dθβ ∧ dθα. Then we can consider superforms of any

degree (the formal infinite sum is written here just to remind that we can have homogeneous

superforms of any fixed degree):

ω(x, θ, dx, dθ) =
n∑
p=0

∞∑
l=0

ω[i1...ip](α1...αl)(x, θ)dx
i1 ...dxipdθα1 . . . dθαl (2.21)

where the coefficients ω[i1...ip](α1...αl)(x, θ) are functions on the supermanifold M with the

first 1 . . . p indices antisymmetrized and the last 1 . . . l symmetrized. The component functions
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ω[i1...ip](α1...αl)(x, θ) are polynomial expressions in the θα and their coefficients are functions of

xi only.

It is clear now that we cannot integrate a generic ω (x, θ, dx, dθ) mainly because we do

not have yet a general definition of integration with respect to the dθ variables (we shall

return to this crucial point at the end of this paragraph). Moreover, suppose that some

integrability conditions are satisfied with respect to the x variables; the integrals over dx and

θ (being Berezin integrals) pose no further problem but, if ω (x, θ, dx, dθ) has a polynomial

dependence in the (bosonic) variables dθ, the integral, however defined, ”diverges”. We need

a sort of formal algebraic integration also for the dθ variables.

In order to do so one introduces the Dirac’s “distributions” δ (dθα). The distributions

δ(dθα) have most of the usual properties of the Dirac delta function δ(x), but, as described

at the end of this paragraph, one must impose:

δ(dθα)δ(dθβ) = −δ(dθβ)δ(dθα) (2.22)

Therefore, the product δm(dθ) ≡
∏m

α=1 δ(dθ
α) of all Dirac’s delta functions (that we will call

also delta forms) serves as a “top form”.

One can then integrate the objects ω (x, θ, dx, dθ) provided that they depend on the dθ

only through the product of all the distributions δ (dθα). This solves the problem of the

divergences in the dθα variables because
∫
δ (dθα) [d (dθα)] = 1.

A pseudoform ω(p|q) belonging to Ω(p|q)(M) is characterised by two indices (p|q): the first

index is the usual form degree and the second one is the picture number which counts the

number of delta forms (and derivatives of delta forms, see below).

A pseudoform reads:

ω(p|q) =

p∑
r=0

ω[i1...ir](αr+1...αp)[β1...βq ](x, θ)dx
i1 . . . dxirdθαr+1 . . . dθαpδ(dθβ1) . . . δ(dθβq) (2.23)

with ω[i1...ir](αr+1...αp)[β1...βq ](x, θ) superfields.

An integral form is a pseudoform without dθ components . Note however that in the

literature there is no complete agreement on these definitions.
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The dθα appearing in the product and those appearing in the delta functions are reor-

ganised respecting the rule dθαδ(dθβ) = 0 if α = β. We see that if the number of delta’s is

equal to the fermionic dimension of the space no dθ can appear; if moreover the number of

the dx is equal to the bosonic dimension the form (of type ω(n|m)) is an integral top form,

the only objects we can integrate on M. It would seem that integrals on supermanifolds

the dθ-components of the integrands are ruled out. However, ω(p|q) as written above is not

yet the most generic pseudoform, since we could have added the derivatives of delta forms

(and they indeed turn out to be unavoidable and play an important role). They act by re-

ducing the form degree (so we can have negative degree pseudoforms) according to the rule

dθαδ′(dθα) = −δ(dθα), where δ′(x) is the first derivative of the delta function with respect to

its variable. (We denote also by δ(p)(x) the p-derivative). This observation is fundamental to

establish the isomorphism between the space of superforms (at a given form degree) and the

space of integral forms, namely Ω(p|0)(M) and Ω(n−p|m)(M).

In general, if ω is an integral form in Ω•(M), its integral on the supermanifold is defined

(in analogy with the Berezin integral for bosonic forms) as follows:∫
M
ω ≡

∫
M
ω[1...n][1...m](x, θ)[d

nx dmθ] (2.24)

where the last integral over M is the usual Riemann-Lebesgue integral over the coordi-

nates xi (if it exists) and the Berezin integral over the coordinates θα. The expressions

ω[i1...in][β1...βm](x, θ) denote those components of the pseudoform (2.23) with no symmetric

indices.

For the Fourier transforms we introduce dual variables as follows:

y ←→ x (bosonic)

ψ ←→ θ (fermionic)

b←→ dθ (bosonic)

η ←→ dx (fermionic)

We define the Fourier transform of a superform ω in Rn|m as:

F(ω) =

∫
Rn+m|n+m

ω(x, θ, dx, dθ)ei(yx+ψθ+ηdx+bdθ)[dnxdmθdn (dx) dm (dθ)] (2.25)
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where the functional dependence for the ω(x, θ, dx, dθ) that we will consider is, for example,

rapidly decreasing in the x variables or, more generally, tempered distributions in x; polyno-

mial in θ and dx, and depending on the dθ variables only through a product of Dirac’s delta

forms and/or their derivatives (which gives a tempered distribution). Obviously we will never

consider products of delta forms localized on the same variables.

Sometimes we will also consider more general dependence as f(dθ) with f a formal power

series in the dθ variables. The integral over dnx is the Lebesgue integral, the integrals over

dmθ and dn (dx) are the Berezin integrals and the integral over dm (dθ) is a formal operation,

denoted again with
∫
Rm , with many (but not all) of the usual rules of Dirac’s deltas and of

ordinary integration in Rm.

The integration with respect to the dm (dθ) ”volume form” must be interpreted in a way

consistent with the crucial property δ(dθα)δ(dθβ) = −δ(dθβ)δ(dθα). This implies that d [dθ]

must be considered as a form-like object in order to satisfy the natural property:∫
R2

δ (dθ) δ (dθ′) d (dθ) d (dθ′) = 1 (2.26)

In the following we will need to represent δ (dθ) and δ′(dθ) as an integral of this kind. A

natural choice is: ∫
Rm

eidθ·bdmb = δm(dθ) (2.27a)∫
Rm

b1...bme
idθ·bdmb = (−i)m (δ′(dθ))

m
(2.27b)

where the products δm(dθ) and (δ′(dθ))m (m here denotes the number of factors) are wedge

products ordered as in dmb. In other words this kind of integrals depends on the choice of an

oriented basis. For example, we must have:

δ(dθ)δ (dθ′) =

∫
R2

ei(dθb+dθ
′b′)dbdb′ = −

∫
R2

ei(dθb+dθ
′b′)db′db = − δ(dθ′)δ (dθ) (2.28)

Note: we emphasise that F maps Ω(p|q) in Ω(n−p|m−q), and that the spaces Ω(p|0) and Ω(p|m)

are finite dimensional in the sense that as modules over the algebra of superfunctions they

are generated by a finite number of monomial-type super and integral forms.
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3 Integral representation of the Hodge dual

Although most of the usual theory of differential forms can be extended without difficulty to

superforms, the extension of the Hodge dual has proved to be problematic. This extension

clearly would be very relevant in the study of supersymmetric theories.

The formalism of the Grassmannian integral transforms can be used in the search of this

generalization. We will describe in this first paper a simple formal procedure for defining

and computing the super Hodge dual. The “dual” variables entering the computations are

considered only as auxiliary integration variables that disappear in the final result; a more

rigorous treatment with all mathematical details will be given in the forthcoming paper [12]

We begin with the case of the Hodge dual for a standard basis in the appropriate exterior

modules. The next paragraph will be devoted to some generalizations.

We start with the simple example of ordinary differential forms in R2 viewed as functions

in R2|2, and we compute a sort of partial Fourier transform T on the anticommuting variables

only:

T (ω) (x, dx) =

∫
R0|2

ω(x, η)ei(dx
1η1+dx2η2)[d2η] (3.1)

Taking ω(x, dx) = f0(x) + f1(x)dx1 + f2(x)dx2 + f12(x)dx1dx2, one obtains:

T (ω) (x, dx) = f12(x) + if2(x)dx1 − if1(x)dx2 + f0(x)dx1dx2 .

It is evident that in order to reproduce the usual Hodge dual for the standard inner product,

a normalization factor dependent on the form degree must be introduced. To be precise, in

presence of a metric gij on R2, the integrand of the Fourier transform in (3.1) is obtained from

the original differential form ω(x, dxi) substituting dxi with the dual variable dxi → gijηj in

order to preserve the transformation properties of the differential form. For more details we

refer to [12]. In the present work we use only diagonal metrics for which these details are

unimportant.

For ω a k-form in Rn we have:

?ω = i(k
2−n2)T (ω) = i(k

2−n2)
∫
R0|n

ω(x, η)eidx·η[dnη] (3.2)
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This factor can be obtained computing the transformation of the monomial dx1dx2...dxk.

Noting that only the higher degree term in the η variables is involved, and that the monomials

dxiηi are commuting objects, we have:

T
(
dx1...dxk

)
=

∫
R0|n

η1...ηke
idx·η[dnη] =

=

∫
R0|n

η1...ηke
i(
∑k
i=1 dx

iηi+
∑n
i=k+1 dx

iηi)[dnη] =

=

∫
R0|n

η1...ηke
i
∑k
i=1 dx

iηiei
∑n
i=k+1 dx

iηi [dnη] =

=

∫
R0|n

η1...ηke
i
∑n
i=k+1 dx

iηi [dnη] =

=

∫
R0|n

in−k

(n− k)!
η1...ηk

(
n∑

i=k+1

dxiηi

)n−k

[dnη]

Rearranging the monomials dxiηi one obtains:(
n∑

i=k+1

dxiηi

)n−k

= (n− k)!
(
dxk+1ηk+1)(dxk+2ηk+2)...(dxnηn

)
=

= (n− k)!(−1)
1
2

(n−k)(n−k−1)
(
dxk+1dxk+2...dxn)(ηk+1ηk+2...ηn

)
Finally we have:

T
(
dx1...dxk

)
=

=

∫
R0|n

in−k

(n− k)!
η1...ηk (n− k)!(−1)

1
2

(n−k)(n−k−1)
(
dxk+1dxk+2...dxn)(ηk+1ηk+2...ηn

)
[dnη] =

=

∫
R0|n

in−k(−1)
1
2

(n−k)(n−k−1)(−1)k(n−k)
(
dxk+1dxk+2...dxn)(η1...ηk)(ηk+1ηk+2...ηn

)
[dnη] =

= i(n
2−k2)(dxk+1dxk+2...dxn)

The computation above gives immediately:

i(k
2−n2)T

(
dx1...dxk

)
= ?

(
dx1...dxk

)
(3.3)

and

T 2 (ω) = i(n
2−k2)i(k

2) (ω) = in
2

(ω) (3.4)
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that confirm the usual formula:

? ? ω = i((n−k)2−n2)i(k
2−n2)in

2

(ω) = (−1)k(k−n)(ω) (3.5)

We can generalize this procedure to superforms of zero picture (note that the spaces of

zero picture superforms or maximal picture integral forms are all finite dimensional) where we

have two types of differentials, dθ and dx. As before, the integral transform must be performed

only on the differentials:

T (ω)(x, θ, dx, dθ) =

∫
Rm|n

ω(x, θ, η, b)ei(dx·η+dθ·b)[dnηdmb] (3.6)

A zero picture p−superform ω is a combination of a finite number of monomial elements

of the form:

ρ(r,l) (x, θ, dx, dθ) = f(x, θ)dxi1dxi2 ...dxir
(
dθ1
)l1 (dθ2

)l2 ... (dθs)ls (3.7)

of total degree equal to p = r + l1 + l2 + ... + ls. We denote by l the sum of the li. We have

also r ≤ n.

The super Hodge dual on the monomials can be defined as:

?ρ(r,l) = (i)r
2−n2

(i)l T (ρ(r,l)) = (i)r
2−n2

(i)l
∫
Rm|n

ρ(r,l)(x, θ, η, b)e
i(dx·η+dθ·b)[dnηdmb] (3.8)

where we denote again by η and b the dual variables to dx and dθ respectively and the integral

over dmb is understood as explained in the definitions (2.27a) and (2.27b) .

The coefficient (i)l is introduced in order to avoid imaginary factors in the duals. However

this choice of the coefficient is not unique and has important consequences on the properties

of the double dual.

As a simple example we take in R2|2 the form ρ(1,2) = dx1dθ1dθ1 ∈ Ω(3|0); we have:

?ρ(1,2) = (i)−3 (i)2

∫
R2|2

η1 (b1)2 ei(dx·η+dθ·b)[dη1dη2db1db2] = dx2δ(2)(dθ1)δ(dθ2) ∈ Ω(−1|2)

where δ(2)(dθ1) is the second derivative and we use the natural result (the index α is fixed):∫
R

(bα)k eidθ
αbαdbα = −i δ(k)(dθα) (3.9)
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The ? operator on monomials can be extended by linearity to generic forms in Ω(p|0) :

? : Ω(p|0) −→ Ω(n−p|m)

Both spaces are finite dimensional and ? is an isomorphism.

An important example in Rn|m is 1 ∈ Ω(0|0):

?1 = dnxδm(dθ) ∈ Ω(n|m)

In the case of Ω(p|m), a m− picture p−integral form ω is a combination of a finite number

of monomial elements as follows:

ρ(r|j) (x, θ, dx, dθ) = f(x, θ)dxi1dxi2 ...dxirδ(j1)
(
dθ1
)
δ(j2)

(
dθ2
)
...δ(jm) (dθm) (3.10)

where p = r − (j1 + j2 + ...+ jm) . We denote by j the sum of the ji. We have also r ≤ n.

The Hodge dual is:

?ρ(r|j) = (i)r
2−n2

(i)j
∫
Rm|n

ρ(r|j)(x, θ, η, b)e
i(dx·η+dθ·b)[dnηdmb] (3.11)

which extends the zero picture case to the maximal picture case in which all delta forms (or

their derivatives) are present.

As a simple example we take in R2|2 the form ?ρ(1,2) computed in the example above:

?ρ(1,2) = ρ(1|2) = dx2δ(2)(dθ1)δ(dθ2) ∈ Ω(−1|2).

We have:

?ρ(1|2) = (i)12−22 (i)2

∫
R2|2

η2δ
(2)(b1)δ(b2)ei(dx·η+dθ·b)[dη1dη2db1db2] = −dx1(dθ1)2 = −ρ(1,2) ∈ Ω(3|0)

In this particular case ?? = −1.

The iterated transformation is, in this generalized case (note that the transformation does

not change the number l):

T 2
(
ρ(r,l)

)
= in

2

(−i)2lρ(r,l) (3.12)
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The double dual on monomials is then given by:

? ? ρ(r,l) = (i)((n−r)2−n2) (i)l (i)(r
2−n2) (i)lin

2

(−i)2l = (−1)r(r−n) ρ(r,l) (3.13)

This means that if n is odd ?? is the identity in Ω(p|0), because (−1)r(n−r) = 1 for every r,

but for n even this is not true because (−1)r(n−r) depends on r and not on p. One can avoid

this unpleasant behaviour by changing the coefficient (i)l in the definitions (3.8) and (3.11):

(i)l → (i)α(l)

Taking into account the formula (3.12) we have:

? ? ρ(r,p−r) = (i)((n−r)2−n2) (i)α(l) (i)(r
2−n2) (i)α(l)in

2

(−i)2lρ(r,l) = (−1)r(r−n)+α(l)+l ρ(r,l)

Finally choosing α(l) = 2pl − l2 − nl − l (with l = p− r) we obtain:

? ? ρ(r,p−r) = (−1)r(r−n)+2pl−l2−nl ρ(r,p−r) = (−1)p(p−n)ρ(r,p−r) (3.14)

With this choice we have, in Ω(p|0):

?? = (−1)p(p−n) (3.15)

We have obtained a nice duality but the price is the possible appearance of some imaginary

factor in the duals of monomials with l 6= 0.

Note that the modules Ω(p|q) for 0 < q < m are not finitely generated and hence for them

the definition of a Hodge dual is more problematic.

3.1 Hodge duals for (super)manifolds

The Hodge dual depends on the choice of a bilinear form (that in the usual bosonic case is a

scalar product or a metric) that gives an identification between the module of one-forms and

its dual. The same is true for the partial Fourier transform. In this paragraph we provide a

mild generalization of the integral transform, allowing for a change of the basis and the dual

basis that is necessary for the applications to supersymmetry and supersymmetric theories.
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We start with the trivial example of R.
If we denote by {1, dx} the basis of the 0−forms and 1− forms respectively, a metric g−1

on
∧1 is simply a positive rescaling dx → g11dx. As usual, we denote by g11 = (g11)

−1
, the

rescaling of vector fields and of the dual variable η (the double dual of vectors).

For this metric the Hodge dual is:

?1 =
√
g11dx and ? dx =

1
√
g11

(3.16)

The one form
√
g11dx is the volume form of the metric.

We can recover this through a small modification of the integral transform T procedure.

We introduce a change of basis in
∧1 : dx → dx′ = Adx; this rescaling affects also the

dual variable: η → η′ = 1
A
η. In this new basis we compute the transform T

?1 = (−i)T (1) = (−i)
∫
R0|1

eidx
′·η′ [dη′] = dx′ (3.17)

?dx′ = T (dx′) =

∫
R0|1

η′eidx
′·η′ [dη′] = 1 (3.18)

We have now obtained the Hodge dual for the metric g′11 = 1. Reverting to the old variable

we get the Hodge dual for the metric g11 = A2.

?1 = Adx and ? dx =
1

A
(3.19)

The same procedure can be applied to Rn, using instead an invertible matrix A to produce

the change of basis, and the product AtA to represent the metric.

For differential forms on curved manifolds we can also use the Cartan frames (vielbeins)

dxieai (x) = dx′a, where i and a denotes here respectively the curved and the flat indices, both

running from 1 to n. The Hodge dual is then obtained by the following integral transform on

k− forms:

?ω = i(k
2−n2)

∫
R0|n

ω(x, η′)eidx
′aη′a [dnη′] (3.20)

Where again η′ is the dual basis of the basis dx′.

For example, we have:

?1 = dnx′ = det(e)dnx

?dnx′ = 1⇒ ?dnx = det(e)−1
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This Hodge dual is clearly the one determined by the metric g with δab = gije
i
ae
j
b and δab =

gijeai e
b
j , where eia is the inverse vielbein and δab the flat metric.

For a supermanifold we will denote collectively by ZM = (xm, θµ) and dZM = (dxm, dθµ)

(with M = (m,µ), m = 1...n, µ = 1...m) respectively the coordinates and the differentials,

and by YA (with A = (a, α), a = 1...n, α = 1...m) the variables dual to the differentials.

As before we introduce the super vielbeins EA
M(Z) and we define dZ ′A = dZMEA

M(Z) (with

dual basis Y ′A) the transformed differential.

In matrix form we have:

EA
M(Z) =

(
Ea
m(Z) Eα

m(Z)
Ea
µ(Z) Eα

µ (Z)

)
The partial Fourier transform (recall that we transform only the “differentials”) is

T (ω) =

∫
Rm|n

ω(Z, Y ′)eidZ
′AY ′A [dY ′] (3.21)

and the super Hodge dual is defined as above, inserting also the suitable normalization factors

of the previous section. This procedure gives the Hodge dual for the flat basis. We can

compute the Hodge dual in the curved basis writing the duals of the differentials dZ ′A in

terms of the old ones dZM . We obtain, for example, ?1 = dnx′δm(dθ′) = Sdet(E)dnxδm(dθ),

the integral top form (”volume form”) of the supermanifold.

3.2 A Simple Example for M(1|1)

In generic supermanifolds the calculations are very long and often the abstract formulae are

not very illuminating.

We will consider in this paragraph a simple and exhaustive example. We consider an ori-

entable supermanifoldM(1|1), locally modelled on R(1|1), parametrized by a bosonic coordinate

x and a fermionic one θ.

We take a Z2− ordered (the first element is odd and the second is even) basis {dx, dθ}
of Ω(1|0) and a non singular superbilinear form Φ on Ω(1|0) represented, in this basis, by an

even invertible supermatrix B(1,0). The general form of the matrix B(1,0) can be written, with
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a certain amount of foresight (we want to keep as simple as possible the form of the matrix

A below):

B(1,0) =

(
A−2 (AB)−1 ( β

B
− α

A

)
θ

(AB)−1 ( β
B

+ α
A

)
θ −B−2

)
where α, β,A 6= 0, B 6= 0 are real numbers and SdetB(1,0) = −B2/A2. It is always possible

to find an even non singular supermatrix A (that gives an even automorphism of Ω(1|0) that

preserves the Z2− order) in such a way that B(1,0) is transformed in the standard (normalized

and diagonal) form:

AtB(1,0)A =

(
1 0
0 −1

)
This formula suggests that A can be viewed as the supervielbein mapping the flat metric to

the curved one. We have:

A =

(
A αθ
βθ B

)
with A−1 =

(
A−1 − (AB)−1 αθ

− (AB)−1 βθ B−1

)
and At =

(
A βθ
−αθ B

)
(3.22)

We recall that an even matrix is invertible if and only if the even blocks on the diagonal are

invertible, that the transpose is a duality of period 4, and that SdetA = A/B. The new basis

of one-forms is: {dx′, dθ′} = {dx, dθ}A. The corresponding new dual basis of
(
Ω(1|0)

)∗
will

be denoted by

{
η′

b′

}
= A−1

{
η
b

}
. In addition, the entries of the matrix could in principle

become x-dependent (if B(1,0) is x-dependent). We have:

dx′ = Adx+ θβdθ and dθ′ = Bdθ − αθdx (3.23)

The partial transform is:

T (ω)(x, θ, dx′, dθ′) =

∫
ω(x, θ, η′, b′)ei(dx

′·η′+dθ′·b′)[dη′db′] (3.24)

For example:

?1 = (−i)
∫
ei(dx

′η′+dθ′b′)[dη′db′] = dx′δ(dθ′) = (SdetA) dxδ(dθ) =

√∣∣∣SdetB−1
(1,0)

∣∣∣dxδ(dθ)
(3.25)

which is a Ω(1|1) integral top form (that is a ”volume form”) for the supermanifold1.

1We started with an inverse metric, that is a metric on the 1− forms, and hence the ”usual” factor
√
|g|

must be substituted here by
√
|g−1|.
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For the Hodge dual of dxδ(dθ) we can compute as follows:

?dx′δ(dθ′) =

∫
η′δ(b′)ei(dx

′η′+dθ′b′)[dη′db′] = 1 =⇒ ?dxδ(dθ) = (SdetA)−1 (3.26)

The equations (3.25) and (3.26) imply ?? = 1 in Ω(0|0).

Let us consider now the Hodge duals of the (1|0)-forms dx′ and dθ′ and of the (0|1)-forms

δ(1) (dθ′) dx′ and δ (dθ′) .The Hodge dual is computed using the partial Fourier transform T
as follows:

?dx′ = ?ρ(1,0) = (i)12−12 (i)0 T (dx′) =

∫
η′ei(dx

′η′+dθ′b′)[dη′db′] = δ (dθ′)

?dθ′ = ?ρ(0,1) = (i)02−12 (i)1 T (dθ′) =

∫
b′ei(dx

′η′+dθ′b′)[dη′db′] = dx′δ(1) (dθ′)

?δ (dθ′) = ?ρ(0|1) = (i)02−12 (i)0 T (δ (dθ′)) = −i
∫
δ (b′) ei(dx

′η′+dθ′b′)[dη′db′] = dx′

?dx′δ(1) (dθ′) = ?ρ(1|1) = (i)12−12 (i)1 T (dx′δ(1) (dθ′)) = i

∫
η′δ(1) (b′) ei(dx

′η′+dθ′b′)[dη′db′] = dθ′

This is the Hodge dual that corresponds to the bilinear form in Ω(1|0) given, in the ordered

basis {dx′, dθ′} , by the matrix

(
1 0
0 −1

)
. Note that the −1 on the diagonal is due to the

choice of the normalization factor i(r
2−n2)(i)l in the definition of the Hodge dual. The other

choice i(r
2−n2)(i)a(l) (discussed in section 3) gives as diagonal form:

(
1 0
0 1

)
.

In the original variables we get2:

?dx =
1

AB
δ(dθ)− 1

B2
(
α

A
+
β

B
)θdxδ′(dθ),

?dθ = − 1

B2
(
β

B
− α

A
)θδ(dθ) +

A

B3
dxδ′(dθ)

?δ(dθ) = ABdx+B2(
α

A
+
β

B
)θdθ,

?dxδ′(dθ) = B2(
β

B
− α

A
)θdx+

B3

A
dθ . (3.27)

2We need to compute the delta form δ (dθ′) in terms of δ (dθ). This can be done using the formal series

(where we denote by u and v bosonic variables) δ (u+ v) =
∑
j

1
j!δ

(j)(u) (v)
j
. If u = Bdθ and v = −αθdx

(that is nilpotent), the infinite formal sum reduces to a finite number of terms.

25



This is the Hodge dual that corresponds to the bilinear form in Ω(1|0) given, in the ordered

basis {dx, dθ} , by the matrix B(1,0). We have, for φ, ψ ∈ Ω(1|0), the standard property

φ ∧ ?ψ = Φ(φ, ψ) ? 1. (3.28)

Note that our super Hodge dual is indeed a duality, and it is an even operator because it

respects the Z2 parity. The set of equations (3.27) provides an explicit isomorphism between

Ω(1|0) and Ω(0|1) that can be represented (in the choosen basis) by a two-by-two supermatrix

G(1|0). The present example can be exported to Ω(p|0) and Ω(1−p|1), since these modules

are generated by two monomial forms and therefore the derivation is analogous to that just

presented. Nonetheless, it illustrates the construction of the supermatrix G(p|0) that represents

the Hodge dual for the module of (p|0) superforms. In the following we will adopt the above

calculations as a model to discuss also higher dimensional cases and their relations with

physical models.

3.2.1 Supersymmetry

Before discussing higher dimensional models, we study the compatibility of the Hodge dual

with supersymmetry. This is important since the present formalism is adapted to construct

supersymmetric Lagrangians. Following the explicit computations of the previous paragraph

we will discuss the case of R(1|1).

Unfortunately this case is simple with respect to computations, but it is not at all simple

from the mathematical point of view because the naive interpretation of the supermanifold

R(1|1) we have adopted since now, that is a space in which there are ”points” with commuting

and anticommuting coordinates (x, θ) is not adequate. The main reason is that in the naive

interpretation of R(1|1) there is only one real coordinate x and only one fermionic coordi-

nate θ so for supersymmetry we are forced to introduce transformations of coordinates that

apparently are not allowed or meaningful.

Note however that the naive and usual interpretation of supermanifolds is perfectly valid

in all our previous discussions.

Let us first review a few formal ingredients for supersymmetry in R(1|1). The variations of
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the coordinates, the super derivative and the supersymmetry generators are given by

δεx =
1

2
εθ , δεθ = ε , D = ∂θ −

1

2
θ∂x , Q = ∂θ +

1

2
θ∂x . (3.29)

with the algebra

{D,D} = −∂x , {Q,Q} = ∂x , {Q,D} = 0 . (3.30)

where ε is the “infinitesimal” constant Grassmannian supersymmetry parameter. If, as usual,

we want to consider δεθ = ε as a translation in the (unique) fermionic direction θ we must

conclude that εθ = 0. So, if we want to give the geometrical meaning of a ”translation” to

δεx = 1
2
εθ we must introduce an auxiliary Grassmann algebra with at least two nilpotents

generators ε1 and ε2. In this way ε and θ are both interpreted as linear combinations of ε1 and

ε2, and hence ε and θ are as usual fermionic and nilpotents, and εθ is not a real number but

it is bosonic and different from zero.

This procedure can be formalized rigorously defining the supermanifolds of the type we are

considering as super ringed spaces. In this theory the so called ”functor of points” provides

a description of the naive ”local coordinates” (xi, θα) as even and odd sections of the sheaves

of the graded rings entering into the definitions. It is not necessary here to give the details of

these constructions and we refer to [13] for the general theory and to [2] for simple examples.

The vector εQ is an even vector (both ε and Q are odd quantities) and generates the

supersymmetry transformations on the form fields via the usual Lie derivative

δεω = LεQω = (ιεQd+ dιεQ)ω (3.31)

for any form ω. We study the compatibility of the supersymmetry with the Hodge dual

directly on the (1|0)-forms and on (0|1)-forms. We have

δε(?dx) = δε

(
1

AB
δ(dθ)− 1

B2

(
α

A
+
β

B

)
θdxδ′(dθ)

)
(3.32)

=

(
− 1

B2

(
α

A
+
β

B

)
εdxδ′(dθ)− 1

B2

(
α

A
+
β

B

)
θ(−1

2
εdθ)δ′(dθ)

)
= − 1

B2

(
α

A
+
β

B

)(
− 1

2
εθδ(dθ) + εdxδ′(dθ)

)
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On the other side we have

?(δεdx) = ?(−1

2
εdθ) = ε

1

2B2

( β
B
− α

A

)
θδ(dθ) +

A

2B3
εdxδ′(dθ) (3.33)

Thus, imposing δε(?dx) = ?(δεdx) we find A = 2β and α = 0. Therefore, the matrix A has

a triangular form and the corresponding metric B is symmetric. This is expected for rigid

supersymmetry and it is interesting to recover here the same result.

We notice that there is also another solution: β = A = 0. This solution gives a non

invertible Hodge operator. Nonetheless, we can proceed to build actions and supersymmetry

representations. This particular solution corresponds to the conventional superspace con-

struction of supersymmetric actions without making use of the Hodge dual construction.

On the (0|1)-forms we find

δε(?dθ) = δε

( A
B3

(dxδ′(dθ)− 1

2
θδ(dθ)

)
=

A

B3
δε

(
Πδ′(dθ)

)
= 0 . (3.34)

and, on the other side, we have ?δεdθ = 0. This implies that the only conditions A = 2β and

α = 0 are sufficient to guarantee compatibility with supersymmetry.

Let us check also the compatibility conditions for the inverse transformations which are

the last two eqs. of (3.27). By using A = 2β and α = 0, we observe that

?δ(dθ) = B(Adx+ βθdθ) = AB(dx+
1

2
θdθ) = ABΠ (3.35)

where Π ≡ (dx + 1
2
θdθ) is the supersymmetric-invariant (1|0)-fundamental form. Then, we

immediately get δε

(
? δ(dθ)

)
= 0. On the other hand, we have ?δεδ(dθ) = 0 since dθ is also

invariant.

Finally, let consider

δε(?dxδ
′(dθ)) = δε

[
AB
(B2

A2
dθ +

1

2
θdx
)]

= ε
AB

2
Π . (3.36)

To be compared with

?δε(dxδ
′(dθ)) = ?

(
−1

2
εdθδ′(dθ)

)
= ?(

1

2
εδ(dθ)) = ε

AB

2
Π . (3.37)
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Again, the conditions A = 2β and α = 0 imply compatibility of the supersymmetry with the

star operation.

We can summarise the complete set of Hodge dualities for the supersymmetric variables

?Π =
1

AB
δ(dθ) , ? dθ =

A

B3
Π δ′(dθ) ,

?δ(dθ) = ABΠ , ? Πδ′(dθ) =
B3

A
dθ . (3.38)

We conclude that the supersymmetric variables Π, dθ and δ(dθ),Πδ′(dθ) are exactly the

variables in which the metric is diagonal as discussed in the previous sections. Therefore,

compatibility of Hodge duality with supersymmetry implies the “diagonal” variables.

3.2.2 The Lagrangian

We consider a superfield Φ(0|0) in the present framework. The general decomposition is

Φ(0|0) ≡ Φ(x, θ) = ϕ(x) + ψ(x)θ . (3.39)

where ϕ(x) and ψ(x) are the component fields and they are bosonic and fermionic, respectively.

The supersymmetry transformations are easily derived:

δεΦ = εQΦ = ε(−ψ(x) +
1

2
θ∂xϕ) −→ δεϕ(x) = −εψ(x) , δεψ(x) =

1

2
ε∂xφ(x) . (3.40)

We can also compute the differential of Φ to get

dΦ = (dx+
1

2
θdθ)∂xΦ + dθ(∂θ −

1

2
θ∂x)Φ = Π∂xΦ + dθDΦ . (3.41)

Then we can finally compute its Hodge dual

?dΦ = ?Π∂xΦ + ?dθDΦ =
1

AB
δ(dθ)∂xΦ +

A

B3
Π δ′(dθ)DΦ . (3.42)

One way to construct a Lagrangian that gives a supersymmetric action is:

L = dΦ ∧ ?dΦ =
(

Π∂xΦ + dθDΦ
)
∧
(

1

AB
δ(dθ)∂xΦ +

A

B3
Π δ′(dθ)DΦ

)
=

=
( 1

AB
(∂xΦ)2 +

A

B3
(DΦ)2

)
Πδ(dθ) .
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In the (1|1)-dimensional case, Π ∧ Π = 0 and the second term (DΦ)2 vanishes. This La-

grangian3 has a peculiarity: the Berezin integral is one-dimensional and therefore, the con-

tribution from the Lagrangian must be odd. In the forthcoming sections we present higher

dimensional models.

4 Supersymmetric Theories

Having discussed the definition of the star operation and how it can be used in the space of

integral forms, we construct examples of supersymmetric theories. For that we first define

the irreducible representations (for some of them the role of the star operator is important)

in terms of integral- and super-forms. The way how this is done here is new and it can be

easily generalized to several models in different dimensions.

In particular we define the vector multiplet in 3d N=1 which requires a constraint in order

to describe the off-shell multiplet.4 This constraint is known in the literature (see for example

[7]), and we translate it into the present geometric language. In the same way, we discuss the

multiplet of a conserved current in 3d N=1, which has the same d.o.f.’s of the vector multiplet,

but has a different realisation and, when translated in the present formalism, needs the star

operation.

Afterwards, we present chiral and anti-chiral superfields for 4d N=1 superspace, again in

terms of integral forms. These are written in a way that can be generalised to other models.

In addition, we discuss the case of the linear superfield, which again requires the use of the

star operator.

Finally, in terms of these superfields we construct the corresponding actions.

4.1 3d N=1 alias M(3|2)

We recall that in 3d N=1, the supermanifold M3|2 (homeomorphic to R3|2) is described

locally by the coordinates (xm, θα), and in terms of these coordinates, we have the following

3A more usual Lagrangian for the (1|1) - dimensional case is instead: −∂xΦDΦdxδ(dθ)
4We recall that the Wess-Zumino multiplet in 3d N=1, represented by a (0|0)-form Φ(0|0) does not require

any constraint.

30



two differential operators

Dα = ∂α −
1

2
(γmθ)α∂m , Qα = ∂α +

1

2
(γmθ)α∂m , (4.1)

a.k.a. superderivative and supersymmetry generator, respectively, with the properties 5

{Dα, Dβ} = −γmαβ∂m , {Qα, Qβ} = γmαβ∂m , {Dα, Qβ} = 0 . (4.2)

Given a (0|0) form Φ(0|0), to compute its supersymmetry variation we apply the Lie deriva-

tive Lε with ε = εαQα + εm∂m (εm are the infinitesimal parameters of the translations and εα

are the supersymmetry parameters) and we have

δεΦ
(0|0) = LεΦ(0|0) = ιεdΦ(0|0) = ιε

(
dxm∂mΦ(0|0) + dθα∂αΦ(0|0)

)
= (4.3)

= (εm +
1

2
εγmθ)∂mΦ(0|0) + εα∂αΦ(0|0) = εm∂mΦ(0|0) + εαQαΦ(0|0)

In the same way, acting on (p|q) forms, we use the usual Cartan formula Lε = ιεd+ dιε.

For computing the differential of Φ(0|0), we can use a set of invariant (1|0)-forms

dΦ(0|0) = dxm∂mΦ(0|0) + dθα∂αΦ(0|0) = (4.4)

=
(
dxm +

1

2
θγmdθ

)
∂mΦ(0|0) + dθαDαΦ(0|0) ≡ Πm∂mΦ(0|0) + ΠαDαΦ(0|0)

with the property δεΠ
m = δεΠ

α = 0. This is relevant for having δεdΦ(0|0) = dδεΦ
(0|0).

The top form is represented by the current

ω(3|2) = εmnpΠ
m ∧ Πn ∧ Πp ∧ εαβδ(dθα) ∧ δ(dθβ) , (4.5)

which has the properties:

dω(3|2) = 0 , Lεω(3|2) = 0 . (4.6)

According to the previous sections, we can compute the Hodge dual for the superman-

ifold M3|2 with a given supermetric. We recall that if we define A = g
(
∂
∂xi
, ∂
∂xj

)
to be a

5In 3d, we use real and symmetric Dirac matrices γmαβ . The conjugation matrix is εαβ and a bi-spinor is
decomposed as follows Rαβ = Rεαβ + Rmγ

m
αβ where R and Rm are a scalar and a vector, respectively. In

addition, it is easy to show that γmnαβ = iεmnpγpαβ .
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(pseudo)riemannian metric and B = γ( ∂
∂θα

, ∂
∂θβ

) to be a symplectic form, the even matrix

G =

(
A 0
0 B

)
is a supermetric in Rn|m (with obviously m even). A and B are, respectively,

n× n and m×m invertible matrices with real entries and detA 6= 0, detB 6= 0. We have to

compute the integral transform, and then we must impose compatibility with supersymmetry.

By simple computations (see also [12]) we obtain (the wedge symbol is omitted)

?1 =

√∣∣∣∣det(A)

det(B)

∣∣∣∣εmnpdxmdxndxpδ2(dθ) , ∈ Ω(3|2)

?dxm =

√∣∣∣∣detB

detA

∣∣∣∣Amnεnpqdxpdxqδ2(dθ) , ∈ Ω(2|2)

?dθα =

√∣∣∣∣detB

detA

∣∣∣∣Bαβεmnpdx
mdxndxpιβδ

2(dθ) ∈ Ω(2|2) ,

?dxmdxn =

√∣∣∣∣detB

detA

∣∣∣∣AmpAnqεpqrdxrδ2(dθ) ∈ Ω(1|2) ,

?dxmdθα =

√∣∣∣∣detB

detA

∣∣∣∣AmpBαβεpqrdx
qdxrιβδ

2(dθ) ∈ Ω(1|2) ,

?dθαdθβ =

√∣∣∣∣detB

detA

∣∣∣∣BαγBβδεpqrdx
pdxqdxrιγιδδ

2(dθ) ∈ Ω(1|2) , (4.7)

where Amn and Bαβ are the components of the inverse matrices of A and B introduced above.

If, in addition to supersymmetry, we also impose Lorentz covariance, then Amn = A0η
mn

and Bαβ = B0ε
αβ. Notice that in order to respect the correct scaling behaviour, assuming that

θ scales with half of the dimension of x’s, A0 has a additional power in scale dimensions w.r.t.

B0. The quantities A0 and B0 are constant. defined here respects the involutive property

?2 = 1.

Scalar Superfield

Let us consider now the simplest superfield, i.e. the scalar superfield, for the N = 1 case.

This is a (0|0) form

Φ(0|0) = A(x) + θαψα(x) +
θ2

2
F (x) ≡ Φ ∈ Ω(0|0) , (4.8)
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containing 2 bosonic degrees of freedom A,F and 2 fermionic ones ψα. It forms an irreducible

representation of the N=1 supersymmetry algebra and the supersymmetry transformations

can be computed by δεΦ = LεΦ = εαQαΦ.

Then, we have

dΦ = dxm∂mΦ + dθα∂αΦ = Πm∂mΦ + dθαDαΦ ∈ Ω(1|0) , (4.9)

and, in terms of these variables, it is easy to compute the Hodge dual

?dΦ = (?Πm)∂mΦ + (?dθα)DαΦ = (4.10)

= Amn

(
εnpqΠ

pΠqδ2(dθ)
)
∂mΦ +Bα

β

(
Π3ιβδ2(dθ)

)
DαΦ ∈ Ω(2|2) ,

where Π3 ≡ εmnpΠ
m ∧ Πn ∧ Πp and δ2(dθ) ≡ εαβδ(dθα)δ(dθβ).

The Lagrangian is

L3d WZ = dΦ ∧ ?dΦ =
(

Πm∂mΦ + dθαDαΦ
)
∧
(

(?Πm)∂mΦ + (?dθα)DαΦ
)

= (4.11)

=
(
Amn∂mΦ∂nΦ +BαβDαΦDβΦ

)
Π3δ2(dθ) ∈ Ω(3|2) .

As it can be noticed, the expression for L3d WZ represents the generalisation of the usual

bosonic expression. The first term is the usual expression with the bosonic partial derivatives,

the second term is a new term, which implements correctly the fermionic part. To compute

the action, we have to integrate L3d WZ over the supermanifold M(3|2) and this gives

S3d WZ =

∫
M(3|2)

(
Amn∂mΦ∂nΦ +BαβDαΦDβΦ

)
Π3δ2(dθ) = (4.12)

=

∫
(x,θ)

(
Amn∂mΦ∂nΦ +BαβDαΦDβΦ

)
.

Therefore, we must expand the expression in the bracket in terms of θ up to second order.

Notice that the functions Amn and Bαβ are superfields. Thus, we must expand them as well.

First we notice that Amn(x, θ) = Amn0 (x) + Amn1 (x)θ2 , and in the same way Bαβ(x, θ) =

Bαβ
0 (x) + Bαβ

1 (x)θ2 , where the coefficients are functions of x only. If we impose the rigid

supersymmetry, the coefficients A0 and B0 are constant, while A1 and B1 are zero. Then,
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the second term reproduces the correct WZ action. The first term, on the other hand, is

a supersymmetric higher derivative contribution. It is easy to check its invariance under

supersymmetry. The equations of motion are affected, without spoiling the stability of the

path integral. A mass term can be easily added. Explicitly, we have

S3d WZ =

∫
d3x
[
B0

(1

2
(∂A)2 + ψ 6∂ψ +

1

2
F 2
)

+ A0

(
∂mA∂

mF + ψ∂2ψ
)]

(4.13)

where the A0 parameter is dimensionful to respect the total dimension of the action. Thus,

in 3d the theory is still renormalizable, even with these higher derivative terms.

Vector Superfield

The next representation is the vector superfield and we start from a superform A(1|0). Then,

we construct its field strength F (2|0) = dA(1|0), invariant under the supergauge transformation

A(1|0) → A(1|0) + dΛ(0|0) where Λ(0|0) is a superfield. However, the number of component

fields of A(1|0) exceeds the number of physical degrees of freedom for a vector field (and its

superpartner) and therefore we must impose a constraint to reduce them. For that, we observe

that the field strength naturally satisfies the Bianchi identities

dF (2|0) = 0

and with an additional constraint on the field strength one can find the irreducible repre-

sentation (see [7]). We impose Fαβ = 0, namely the spinorial components are set to zero.

To traslate it into a more geometrical setting we consider the contraction of ω(3|2) along two

spinorial directions with tangent vector λ = λαDα, namely

ι2λω
(3|2) = λαλβεmnpΠ

mΠnΠpιαιβδ
2(dθ) ,

(which becomes a (1|2) integral form) and we can set the constraint as

ι2λω
(3|2) ∧ F (2|0) ∝ (λαλβFαβ)ω(3|2) = 0 (4.14)

which implies the conventional constraint. Having imposed the constraint, together with the

Bianchi identities, we get

F (2|0) = FmnΠm ∧ Πn + (Wγm)αΠm ∧ dθα . (4.15)
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where Fmn = (γmn)αβDαW
β and Wα is the superfield known as gluino field strength. It

satisfies the additional constraint DαW
α = 0 which follows from the Bianchi identities.

Now, we can compute the Hodge dual of F (2|0) to get

(?F )(1|2) = Fmn ? (Πm ∧ Πn) + (Wγm)α ? (Πm ∧ dθα) = (4.16)

= Fmnε
mn

pΠ
p ∧ δ2(dθ) + (Wγm)αε

m
npΠ

n ∧ Πp ∧ ιαδ2(dθ)

and therefore we can build an integral top form as usual

?F ∧ F =
(
AmpAnq FmnFpq + AmnBαβ(Wγm)α(γnW )β

)
ω(3|2) = (4.17)

=
(
A2

0DαW
βDαWβ + A0B0WαW

α
)
ω(3|2)

Finally, we can compute the action

S3dYM =

∫
(x,θ)

(
A2

0DαW
βDαWβ + A0B0WαW

α
)

(4.18)

where A0 and B0 are constant parameters to be related to coupling constants. Notice that

the second term is the correct abelian SYM 3d Lagrangian (this can be easily verified by

expanding the superfield Wα in components and using the constraint DαW
α = 0 to reduce

the number of independent components). That term is rescaled with the parameter A0B0

which can be used to normalise correctly the kinetic term. The second term however is a

novelty since it gives a higher derivative term (scaled with A2
0). As we already noticed the

parameters A0 and B0 have different mass dimensions providing the correct scaling behaviour

of the action.

In terms of the present ingredients, we can build a new term as follows. Considering the

vector superfield A(1|0), (subject to the constraints (4.14)), and computing its Hodge dual we

get

(?A)(2|2) = Amε
m
npΠ

n ∧ Πpδ2(dθ) + AαΠ3ιαδ2(dθ) . (4.19)

With that we can construct the following integral form

?A ∧ A =
(
A0η

mnAmAn +B0ε
αβAαAβ

)
ω(3|2) (4.20)
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By using the gauge symmetry, we can set A(1|0) into the form A(1|0) = AmΠm +Aαdθ
α, where

Aα = (γmθ)αam(x) + ψα(x)θ2/2 and Am = am + (ψ(x)γmθ) + ε np
m fnp(x) where am(x), ψα(x)

and fmn(x) are the gauge field, the gluino and the field strength, respectively. It can be shown

that

S3dCS =

∫
(x,θ)

(
A0η

mnAmAn +B0ε
αβAαAβ

)
∝ A0

∫
d3x
(
εmnpam∂nap + εαβψαψβ

)
(4.21)

by expanding Aα, Am in components. The result coincides with the super Chern-Simons

action in 3d.

Current Superfield

The third example we consider is the conserved current superfield J (1|0). The current

superfield contains a conserved current and a spinor (notice that a conserved current in 3d

has two independent degrees of freedom which match those of a spinor in 3d).

Again, we need to impose a constraint in order to reduce the amount of independent

component fields of the superfield J (1|0) and for that we mimic what is done in the case of

pure bosonic manifolds d ? J ∝ ∂mJmVol (where Vol is the top form of the manifold). For a

supermanifold, we consider again the (1|0)-form J (1|0) = JmΠm + Jαdθ
α and we compute its

Hodge dual

?J = Jmε
m
npΠ

n ∧ Πpδ2(dθ) + JαΠ3ιαδ2(dθ) (4.22)

which turns out to be a (2|2)-integral form. Then we can compute its differential to get an

expression proportional to the top integral form Ω(3|2)

d ? J ∝
(
A0η

mn∂mJn +B0ε
αβDαJβ)

)
Ω(3|2) = 0 (4.23)

In the present case, the role of the star operator is fundamental to obtain the divergence of

the superfield and to impose the conservation of the (1|0) superfield. Using the usual relation

between the super derivatives and the partial derivative ∂m: {Dα, Dβ} = −γmαβ∂m, we can

express the first term as −ηmnγαβm DαDβJn and thus we have(
− 1

2
A0η

mnγαβm DαDβJn +B0ε
αβDαJβ)

)
= (4.24)
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= Dα

(
− 1

2
A0γ

αβ
m DβJ

m +B0ε
αβJα

)
= DαJ̃

α = 0 ,

implying that, once the superfield Jα is redefined as J̃α = Jα− A0

2B0
γαβm DβJ

m, the constraints

are the same as in the usual framework. Therefore, the structure of the current superfield is

exactly as in the usual case.

4.2 4d N=1 alias M(4|4)

Let us recall some basic elements of supersymmetric representations in 4d. We consider a

supermanifold locally homeomorphic to R(4|4), parametrised by (xm, θα, θ̄α̇). We define the

following differential operators

Dα = ∂α −
1

2
θ̄β̇∂αβ̇ , D̄α̇ = ∂α̇ −

1

2
θβ∂α̇β , (4.25)

Qα = ∂α +
1

2
θ̄β̇∂αβ̇ , Q̄α̇ = ∂α̇ +

1

2
θβ∂α̇β ,

with the algebra

{Dα, Dβ} = 0 , {Dα, D̄β̇} = −∂αβ̇ , {Qα, Qβ} = 0 , (4.26)

{Qα, Q̄β̇} = ∂αβ̇ , {Dα, Q̄α̇} = 0 , {D̄α̇, Qα} = 0 .

with all other possible anticommutation relations equal to zero. The partial derivative is

∂αα̇ = iσmαα̇∂m where σmαα̇ are the Pauli matrices {σm, σn} = 2ηmnI. The main property is

∂αβ̇∂
β̇β = δ β

α ∂
2.

A superfield Φ is a function of these coordinates. It can be expanded into polynomials

of fermionic coordinates and the coefficients are called the “component fields”. In the same

way, a (1|0)-superform ω(1|0) can be expanded in fundamental 1-superforms (dxm, dθα, dθ̄α̇)

as follows

ω(1|0) = dxmωm(xm, θα, θ̄α̇) + dθαωα(xm, θα, θ̄α̇) + dθ̄αωα̇(xm, θα, θ̄α̇) = (4.27)

= Πmω′m(xm, θα, θ̄α̇) + dθαω′α(xm, θα, θ̄α̇) + dθ̄αω′α̇(xm, θα, θ̄α̇)

where (ωm, ωα, ωα̇) and (ω′m, ω
′
α, ω

′
α̇) are the component fields and the two expressions are

written in two different bases: (dxm, dθα, dθ̄α̇) and (Πm, dθα, dθ̄α̇) with Πm = dxm + (θσmdθ̄+
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θ̄σ̄mdθ). The latter is manifestly supersymmetric and is therefore more suitable to study

the irreducible representations. Notice that dΠm = 2dθσmdθ̄. Using the above differential

operators, the supersymmetry transformations are given by

δεx
αα̇ =

1

2
εαθ̄α̇ +

1

2
ε̄α̇θα , δεθ

α = εα , δεθ̄
α̇ = εα̇ , (4.28)

Following the previous sections, the Hodge dual (compatible with supersymmetry) is

?1 =
detAmn

detBαβdetBα̇β̇
Π4δ2(dθ)δ2(dθ̄) ∈ Ω(4|4)

?Πm = AmnεnpqrΠ
p ∧ Πq ∧ Πrδ2(dθ)δ2(dθ̄) , ∈ Ω(3|4)

?dθα = BαβΠ4ιβδ
2(dθ)δ2(dθ̄) , ∈ Ω(3|4)

?dθ̄α̇ = Bα̇β̇Π4ιβ̇δ
2(dθ)δ2(dθ̄) , ∈ Ω(3|4) (4.29)

where Π4 = εmnpqΠ
m ∧ · · · ∧Πq and it turns out that the supersymmetric variables are those

in which the Hodge operator is diagonal. The contractions ιβ̇ and ιβ act on the product of

delta functions.

Chiral Superfield

In 4d with 4 fermionic coordinates θα, θ̄α̇, we can define two chiral currents

J (4|2) = εm1...m4Π
m1 ∧ · · · ∧ Πm4 ∧ εαβδ(dθα) ∧ δ(dθβ)

J
(4|2)

= εm1...m4Π
m1 ∧ · · · ∧ Πm4 ∧ εα̇β̇δ(dθ̄

α̇) ∧ δ(dθ̄β̇) (4.30)

Notice that the differential of Παα̇ is dΠαα̇ = 2dθα∧dθ̄α̇, and therefore it is easy to check that

both currents are closed: dJ (4|2) = 0 and dJ̄ (4|2) = 0. In terms of these currents we can define

a chiral and an anti-chiral field by setting

J (4|2) ∧ dΦ = 0 , J
(4|2) ∧ dΦ̄ = 0 (4.31)

To see this, we compute the differential dΦ = dθαDαΦ + dθ̄α̇Dα̇Φ + Παα̇∂αα̇Φ and we have

εm1...m4Π
m1 ∧ · · · ∧ Πm4 ∧ εαβδ(dθα) ∧ δ(dθβ) ∧ (dθαDαΦ + dθ̄α̇Dα̇Φ + Παα̇∂αα̇Φ)

= εm1...m4Π
m1 ∧ · · · ∧ Πm4 ∧ εαβδ(dθα) ∧ δ(dθβ)dθ̄α̇Dα̇Φ = 0 (4.32)
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from this Dα̇Φ = 0 follows, since the other terms are automatically set to zero. Analogously,

considering the other equation in (4.31) we obtain DαΦ̄ = 0.

Since there are chiral currents, we can define a chiral integral on the reduced supermanifold

M(4|2) parametrised by the coordinates (xαα̇, θα).6 The above conditions (4.31) are needed to

define a chiral integral invariant under variations

δ

∫
M(4|2)

ΦJ (4|2) =

∫
LX
(

ΦJ (4|2)
)

=

∫
M(4|2)

(ιXd+ dιX)
(

ΦJ (4|2)
)

= (4.33)

=

∫
M(4|2)

ιXd
(

ΦJ (4|2)
)

=

∫
M(4|2)

ιX

(
dΦ ∧ J (4|2)

)
= 0

where the conditions (4.31) and the closure of J (4|2) are used, and boundary terms are ne-

glected. Then, we can define the integrals of chiral integral forms. Of course, if Φ is chiral,

any function of it is also chiral and therefore we can write a general action for a chiral field as

SV =

∫
M(4|2)

V (Φ)J (4|2) . (4.34)

For a chiral supermanifold, we can introduce a chiral Hodge dual operator ?C , by restricting

the Fourier transforms to the differentials dxαα̇ and dθα, leaving aside the differentials dθ̄α̇

since they do not enter the chiral superfield and superforms (notice that if A(1|0) ∈ Ω(1|0) can

be expanded as (4.27), the condition J (4|2) ∧ A(1|0) = 0 implies that the component Aα̇ must

vanish).

An additional term for a 4d action for a superfield is the usual kinetic term

SK =

∫
M(4|4)

?(Φ̄Φ) , (4.35)

Notice that the product Φ̄Φ is not chiral (i.e. d(Φ̄Φ)∧ J (4|2) 6= 0 and d(Φ̄Φ)∧ J̄ (4|2) 6= 0) and

therefore it must be integrated on the complete supermanifold. Therefore the Hodge dual is

the complete Hodge dual of the manifold.

There is another possibility to build a supersymmetric action starting from chiral super-

fields:

SdK =

∫
M(4|4)

dΦ̄ ∧ ?dΦ , (4.36)

6The relation between these coordinates and the original ones is as usual xαα̇ → xαα̇ + θαθ̄α̇ for chiral and
xαα̇ → xαα̇ − θαθ̄α̇ for antichiral supermanifold.

39



which however produces higher derivative terms in the action. Notice that if the Hodge

dual has θ-dependent terms, the component expansion of (4.35) and (4.36) share some terms.

Nonetheless the latter has higher derivative terms.

If we use the following parametrisation of the Hodge dual for the fundamental 1-forms

dθα, dθ̄α̇, dxµ

? dθα = Gα
β ιβδ

4(dθ)d4x+Gα
β̇
ιβ̇δ

4(dθ)d4x+Gα
ν δ

4(dθ)(d3x)ν

? dθ̄α̇ = Gα̇
β ιβδ

4(dθ)d4x+Gα̇
β̇
ιβ̇δ

4(dθ)d4x+Gα̇
µ δ

4(dθ)(d3x)µ

? dxµ = Gµ
β ιβδ

4(dθ)d4x+Gµ

β̇
ιβ̇δ

4(dθ)d4x+Gµ
ν δ

4(dθ)(d3x)ν (4.37)

where δ4(dθ)d4x = εαβδ(dθα)δ(dθβ)εα̇β̇δ(dθ̄α̇)δ(dθ̄β̇)εµνρσdx
µ∧· · ·∧dxσ and (d3x)µ = εµνρσdx

ν∧
dxρ ∧ dxσ, the computation of dΦ ∧ ?dΦ proceeds as follows.

Given the chiral superfield Φ, discussed above, we decompose it into its components

Φ(yαα̇, θα) = A(yαα̇) + ψα(yαα̇)θα + F (yαα̇)θ2

=

(
A(x) + ∂ββ̇A(x)θβ θ̄β̇ +

1

2
∂2A(x)θ2θ̄2

)
+

(
ψα(x) + ∂ββ̇ψα(x)θβ θ̄β̇

)
θα + F (x)θ2 . (4.38)

where yαα̇ = xαα̇ + θαθ̄α̇ and we compute its differential:

(dΦ)(1|0) =

(
∂mĀ+ ∂ββ̇∂mĀθ

β θ̄β̇ +
1

2
∂2∂mĀθ

2θ̄2

)
dxm

+
(
∂mψ̄α̇ + ∂ββ̇∂mψ̄α̇θ

β θ̄β̇
)
θ̄α̇dxm + ∂mF̄ θ̄

2dxm

+ ∂ββ̇Ā(dθβ θ̄β̇ + θβdθ̄β̇) + ∂2Ā(θαdθαθ̄
2 + θ2θ̄α̇dθ̄α̇)

+ ψ̄α̇dθ̄
α̇ + ∂ α̇

β ψ̄α̇(θ̄γ̇dθ̄γ̇θ
β + θ̄2dθβ) + F̄ 2θ̄α̇dθ̄α̇ ; (4.39)

Then we have

L = (∂αα̇Φ, ∂αΦ, ∂α̇Φ)

 Gαα̇ββ̇ Gαα̇β Gαα̇β̇

• Gαβ Gαβ̇

• • Gα̇β̇


 ∂ββ̇Φ̄

∂βΦ̄
∂β̇Φ̄

 (4.40)
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where • denotes the transposed element of the supermatrix. However, the components of that

super matrix could in principle be proportional to θ2 or θ̄2 such as εαβεα̇β̇θ2θ̄2 εαβεα̇β̇θ2θ̄β̇ εαβεα̇β̇θβ θ̄
2

• εαβ θ̄2 θαθ̄β̇

• • εα̇β̇θ2

 (4.41)

and the corresponding terms in (4.40) renormalize the kinetic term in (4.35).

Linear Superfield

There exists another multiplet which can be defined in terms of an integral form. The

linear multiplet is defined in terms of the (0|0)-superform Φ(0|0). We start by considering the

total differential dΦ(0|0), which is a (1|0) superform. Then we have the sequence of operations

Φ → dΦ ∈ Ω(1|0)

→ J (4|2) ∧ dΦ ∈ Ω(5|2)

→ ?(J (4|2) ∧ dΦ) ∈ Ω(−1|2)

→ J̄ (4|2) ∧ ?(J (4|2) ∧ dΦ) ∈ Ω(3|4)

→ d(J̄ (4|2) ∧ ?(J (4|2) ∧ dΦ)) ∈ Ω(4|4)

= (εα̇β̇D̄α̇D̄β̇Φ)J (4|4) (4.42)

So, by setting to zero the last expression, one recovers the usual definition, namely εαβDαDβΦ =

0, of the linear multiplet. It is interesting that we had to pass to negative form degree to

define the correct equation. Obviously, the same equation can be constructed also for the com-

plex conjugate and one can thus define either the linear real superfield or the linear complex

superfield.

Vector Superfield

We consider now another multiplet, the gauge multiplet which is described by a gauge field

(with the corresponding gauge symmetry), the gaugino and an auxiliary field. Let us consider
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the connection A = Aαdθ
α + Aα̇dθ̄

α̇ + Aαα̇Παα̇. We apply the differential

F = dA = (DαAβ) dθα ∧ dθβ +
(
Dα̇Aβ̇

)
dθ̄α̇ ∧ dθ̄β̇ +

+
(
DαAβ̇ +Dβ̇Aα + Aαβ̇

)
dθα ∧ dθ̄β̇ +

(
DαAββ̇ − ∂ββ̇Aα

)
dθα ∧ Πββ̇ +

+
(
Dα̇Aββ̇ − ∂ββ̇Aα̇

)
dθ̄α̇ ∧ Πββ̇ +

(
∂αα̇Aββ̇ − ∂ββ̇Aαα̇

)
Παα̇ ∧ Πββ̇ (4.43)

Now, if we impose the conditions

J (4|2) ∧ F = 0 , J
(4|2) ∧ F = 0 (4.44)

we find the constraints D(αAβ) = 0 and D(α̇Aβ̇) = 0. In this way, we still miss the constraint(
DαAβ̇ +Dβ̇Aα + Aαβ̇

)
= 0.

We can consider however a different approach, taking into account the volume density

J (4|4) given by

J (4|4) = εmnrsΠ
m ∧ . . .Πs ∧ δ2(dθ)δ2(dθ̄) , (4.45)

which is not chiral. Note that, by using the properties of the Dirac delta forms, this can

be written by substituting Πm → dxm in the bosonic factor. Now, we can consider the

contraction with respect to a commuting 1-form dθα defined as ια (notice that this operator

commutes as ιαιβ = ιβια). Formally,

ια =
∂

∂(dθα)
, ια̇ =

∂

∂(dθ̄α̇)
(4.46)

Then, we can impose the constraints as follows(
ιαιβJ

(4|4)
)
∧ F = 0 ,(

ιαιβ̇J
(4|4)
)
∧ F = 0 ,(

ια̇ιβ̇J
(4|4)
)
∧ F = 0 (4.47)

implying F(αβ) = Fα̇β̇ = Fαβ̇ = 0 which are the usual vector superfield constraints.

There is another way to do it. The vector superfield can also be constructed out of a

spinorial superfield Wα (and its conjugate W̄ α̇). For that we have the chirality conditions

J (4|2) ∧ dWα = 0 , J
(4|2) ∧ dW α̇

= 0 , (4.48)
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This implies the constraints DαW β̇ = 0 and Dα̇Wβ = 0. The additional constraint DαW
α +

D
α̇
W α̇ = 0 is obtained as follows(

ιαJ
(4|4)
)
∧ dWα +

(
ια̇J

(4|4)
)
∧ dW α̇

= 0 (4.49)

It is easy to see that this indeed produces the correct constraints. The equations for the

constraints are very geometrical since they tell us that the field strengths have non vanishing

components only in the bosonic directions.

Imposing the constraints, we can rewrite the field strength F (2|0) as follows

F (2|0) = FmnΠm ∧ Πn + W̄ α̇Πm(γmdθ)α̇ +WαΠm(γmdθ̄)α (4.50)

and then compute its Hodge dual. We thus obtain the action

SSYM =

∫
M(4|4)

F ∧ ?F =

∫
(x,θ,θ̄)

(
A2

0F
mnFmn + A0B0W

αWα + A0B̄0W̄
α̇Wα̇

)
. (4.51)

Here we denote A0, B0 and B̄0 as the constant overall normalizations of Amn = A0η
mn, Bαβ =

B0ε
αβ and B̄α̇β̇ = B̄0ε

α̇β̇. The second and the third terms reproduce the correct vector

supefield action (with the θ-term and the coupling constant as a combination of the two

parameters B0 and B̄0). The first term, however, is a higher derivative term (with the

dimensionful parameter A0), and it can be expressed in terms of covariant derivatives of

Wα and W̄ α̇.

5 Summary

We summarise in a table the 3d and 4d results discussed in the previous sections.

This symbol ?C denotes the Hodge dual in the chiral supermanifoldM(4|2,0) orM(4|0,2) (in

the table we used the notation (4|2) for readability). In 4d, the superfield Φ is chiral according

to the previous section. The integrals, both in 3d and in 4d are on the entire supermanifold,

without taking into account possible boundary contributions.
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Table 1: Summary of models

Case 3d 4d

Potential
∫
M3|2 ?V (Φ)

∫
M4|2

C
?CV (Φ) + c.c.

Kinetic term
∫
M3|2 dΦ ∧ ?dΦ

∫
M4|4 ?ΦΦ̄

Cosm. Cons
∫
M3|2 ?1

∫
M4|2

C
?C1 + c.c.

Hilbert-Einstein
∫
M3|2 ?R

∫
M4|4 ?1

“diagonal”
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Appendices

A Fourier transform and cohomology

We will discuss in this appendix A and in the following appendix B some relations between

Fourier transforms and cohomology. Here we limit ourselves to some preliminary observations,

leaving more insights and applications to subsequent publications.

Recall that if M is a bosonic manifold with cotangent bundle Ω•(M), a section ω of Ω•(M)

is viewed locally as a function on a supermanifoldM of dimension n|n with local coordinates

(xi, dxi). We introduce now new fermionic coordinates θi and their bosonic differentials dθi

that we will consider as (dual) coordinates (dθi, θi) on a supermanifold M?. With this nota-

tions, if ω(x, dx) is a differential form, its Fourier image is written locally (see 2.19) as:

F(ω) (dθ, θ) =

∫
ω(x, dx)ei(dθix

i+θidx
i) (A.1)

Here and in the following, in order to shorten the notations, we will often omit the “inte-

gration measure” and the space on which the integration is performed.

As an example we consider the cohomology of the circle S1 and we will map it into a

cohomology of integral forms. We consider S1 ⊂ R2 given by x2 + y2 = 1 and xdx+ ydy = 0.

(The nontrivial cohomologies in this example arise from both relations). The generators of

the d− cohomology are given locally by:

H0(S1) = {1} , H1(S1) = {xdy − ydx} (A.2)

We take ω = 1+xdy−ydx and we compute locally its Fourier transform F(ω) by introducing

the coordinates θi and their differentials dθi to get:

F(ω) (dθ, θ) =

∫
(1 + xdy − ydx)ei(dθ1x+dθ2y+θ1dx+θ2dy) = (A.3)

= θ1θ2 δ(dθ1)δ(dθ2) + θ1 δ
′(dθ1)δ(dθ2) + θ2 δ(dθ1)δ′(dθ2) (A.4)

The result spans the following cohomology spaces:

H(0|2)(S1?) = {θ1θ2 δ(dθ1)δ(dθ2)} (A.5)

H(−1|2)(S1?) = {θ1 δ
′(dθ1)δ(dθ2) + θ2 δ(dθ1)δ′(dθ2)} (A.6)
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It is easy to check that θ1θ2 δ(dθ1)δ(dθ2) and θ1 δ
′(dθ1)δ(dθ2) + θ2 δ(dθ1)δ′(dθ2) are closed but

not exact and belong to the cohomology of the differential d of the “dual supermanifold”

S1?. For more details on the cohomology of superforms and integral forms see [1]. The first

generator θ1θ2 δ(dθ1)δ(dθ2) corresponds to a picture changing operator for the supermanifold

S1?. We will differ to the appendix C some observations on the picture changing operators

with integral forms.

Let us consider now the representation of the cohomology classes using the angular variable

ϕ, its differential dϕ, and the dual variables (dθ, θ). Then, we have

H0(S1) = {1} , H1(S1) = {dϕ} (A.7)

and we set ω = α + βdϕ. We perform the Fourier transform as follows

F(ω) =

∫
ω(ϕ, dϕ)ei(dϕθ+ϕdθ) =

∫
(1 + idϕθ)ωeiϕdθ =

∫
(iαdϕθ + βdϕ)eiϕdθ =

=

∫
(iαθ + β)eiϕdθ =

∞∑
n=−∞

∫ 2π(n+1)

2πn

(iαθ + β)eiϕdθ =
∞∑

n=−∞

e2π(n+1)dθ − e2π(n)dθ

idθ
(iαθ + β) =

= (iαθ + β)
ei2πdθ − 1

idθ

∞∑
n=−∞

e2πndθ = (iαθ + β)
ei2πdθ − 1

idθ

∞∑
n=−∞

δ(dθ − n)

Where formal notations like f(dθ)
dθ

must be interpreted in the contest of formal power series in

dθ.

To check the closure of the class ω̃ = iθ e
i2πdθ−1
idθ

∑∞
n=−∞ δ(dθ−n) (for the other differential

form, the closure is trivial) we observe that:

dω̃ = idθ
ei2πdθ − 1

idθ

∞∑
n=−∞

δ(dθ − n) =
(
ei2πdθ − 1

) ∞∑
n=−∞

δ(dθ − n) = 0 . (A.8)

If we take into account the radius R of the circle:

ω̃ = iRθ
ei2πRdθ − 1

iRdθ

∞∑
n=−∞

δ(Rdθ − n) = (A.9)

= iθ
1 + i2πRdθ − (2πRdθ)2 +O(dθ2)− 1

iRdθ

∞∑
n=−∞

δ(dθ − n/R) =
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= iθ(2π +O(dθ))
∞∑

n=−∞

δ(dθ − n/R)

In the limit R →∞ (flat limit) the series
∑∞

n=−∞ δ(dθ − n/R) gives δ(dθ) and therefore the

limit R→∞ leads to

lim
R→∞

ω̃ = 2πiθδ(dθ) . (A.10)

which is the correct Fourier transform of the cohomological class of the flat limit.

B d and k differentials

We now study the image under Fourier transform of the de Rham differential d acting on the

complex of differential forms.

If we consider the following diagram:∧p(Rn)
F←−

∧n−p(Rn∗)
d ↓ k ↓∧p+1(Rn)

F−→
∧n−p−1(Rn∗)

the operator k that we want to compute is such that:

k = F ◦ d ◦ F (B.1)

Note that this definition gives k2 = 0, since F2 = I and d2 = 0.

We start again with the simple example of R2. We take x, y as coordinates in R2 and u, v

as dual coordinates in R2∗ . We start with the 0− forms. In this case d◦F is trivially zero and

hence we have that the action of k on functions is trivial:

k (f(u, v)) = 0 (B.2)

A one form in R2∗ is f(u, v)du+ g(u, v)dv and its Fourier transform is given by:

F (f(u, v)du+ g(u, v)dv) = −if̃dy + ig̃dx

The differential is:

d
(
−if̃dy + ig̃dx

)
= −i

(
∂f̃

∂x
+
∂g̃

∂y

)
dxdy = −

(
˜uf + vg

)
dxdy
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Hence we have:

k (f(u, v)du+ g(u, v)dv) = F
(
−
(

˜uf + vg
)
dxdy

)
= − (uf + vg) (B.3)

For the 2− forms, written as f(u, v)dudv, we have:

F (f(u, v)dudv) = f̃

The differential is:

df̃ =
∂f̃

∂x
dx+

∂f̃

∂y
dy = −iũfdx− iṽfdy

Hence:

k (f(u, v)dudv) = F
(
−iũfdx− iṽfdy

)
= − (udv + vdu) f (B.4)

The Leibnitz rule is verified:

k (fdudv) = k (fdu) dv + fdu k (dv)

The k differential can be computed for generic n and its action on the functions f and the

degree 1 generators of Ω•(Rn∗) is:

k(f) = 0

k(fdui) = −uif

The differential k was defined here through Fourier transforms but, for general forms (not

only the forms that can be Fourier transformed in some sense), the (B.2) and (B.3) could be

taken as definitions of the action of a differential operator k on the degree 1 generators of

Ω•(Rn∗). The operator is then extended to Ω•(Rn∗) using the Leibnitz rule and is a derivation

of degree −1. In this broader context the operator just described is known in mathematics

as “Koszul differential”. The formalism of Fourier transforms can also be used for extending

the Koszul differential to the complexes of super and integral forms.
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C Picture Changing Operators in QFT

The Picture Changing Operators (PCO) where introduced in [14] in string theory. This is due

to the fact that in the quantization of the Ramond-Neveu-Schwarz model for the fermionic

string the sector of superghosts associated to local supersymmetry has an Hilbert space with

infinite replicas. Therefore, the vacuum is defined once the picture is defined and in terms

of the vacuum, one can build the vertex operators. However, in amplitude computations

one needs to saturate a certain picture number (depending upon the moduli of the Riemann

surface) and therefore one needs to have vertex operators in different pictures. The picture

number countd the number of Dirac delta functions of the superghosts and the PCO can

increase or decrease that number at wish. Notice that the picture number indicates the

degree of the form that can be integrated on a particular Riemann surface.

These operators can also be constructed in our context and they act transversally in the

complexes of integral forms. Given a constant commuting vector v we define the following

object

Yv = vαθ
αδ(vαdθ

α) , (C.1)

which has the properties

dYv = 0 , Yv 6= dH , Yv+δv = Yv + d (vαθ
αδαθ

αδ′(vαdθ
α)) , (C.2)

where H is an integral form. Notice that Yv belongs to Ω(0|1) and by choosing different vectors

v(α), we have
m∏
α=1

Yv(α) = det(v
(α)
β )θα1 . . . θαmδ(dθα1) . . . δ(dθαm) , (C.3)

where v
(α)
β is the β-component of the α-vector. We can apply the PCO operator on a given

integral form by taking the wedge product of the two integral forms. For example, given ω in

Ω(p|r) we have

ω −→ ω ∧ Yv ∈ Ωp|r+1 , (C.4)

Notice that if r = m, then ω∧Yv = 0; on the other hand, if v does not depend on the arguments

of the delta funtions in ω, then we have a non-vanishing integral form. In addition, if dω = 0
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then d(ω ∧ Yv) = 0 (by applying the Leibniz rule), and if ω 6= dη then it follows that also

ω ∧ Yv 6= dU where U is an integral form of Ω(p−1|r+1). In [1], it has been proved that Yv are

elements of the de Rham cohomology and that they are also globally defined. So, given an

element of the cohomogy H
(p|r)
d , the new integral form ω ∧ Yv is an element of H

(p|r+1)
d .

Let us consider again the example of M(2|2) and the 2-form F = dA ∈ Ω(2|0) where

A = Aidx
i + Aαdθ

α ∈ Ω(1|0). Then, we can produce

F −→ F ∧ Y1 ∧ Y2 (C.5)

where we have chosen the vector v(1) along the direction of the first Grassmanian coordinate

and v(2) along the other direction. Therefore we have

F ∧ Y1 ∧ Y2 =
(
∂iAjdx

i ∧ dxj + . . . ∂αAβdθ
αdθβ

)
∧ Y1 ∧ Y2 (C.6)

= (∂iAjθ
2) dxi ∧ dxj ∧ δ2(dθ) = (∂iA

(0)
j θ2) dxi ∧ dxj ∧ δ2(dθ)

where A
(0)
j is the lowest component of the superfield Ai appearing in the superconnection Ai.

The result can be easily integrated in the supermanifoldM(2|2) yielding the well-known result∫
M(2|2)

F ∧ Y1 ∧ Y2 =

∫
∂iA

(0)
j dxi ∧ dxj (C.7)

Since the curvature F (2|2) = F ∧ Y1 ∧ Y2 can be also written as dA(1|0) ∧ Y1 ∧ Y2, using that

dYi = 0, we have

d
(
A(1|0) ∧ Y1 ∧ Y2

)
= dA(1|2) ,

where A(1|2) is the gauge connection at picture number 2. Notice that performing a gauge

transformation on A, we have

δA(1|2) = dλ ∧ Y1 ∧ Y2 = d (λ ∧ Y1 ∧ Y2)

and therefore we can consider λ(0|0) ∧ Y1 ∧ Y2 as the gauge parameter at picture number 2.
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