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INTRODUCTION

Algebraic topology is now considered as a usual mathematical
tool for theoretical physics; its applications range from various aspects
of gauge theories to string theories and field theories.

The reader will find concepts of algebraic topology in almost all
lectures in this school.

Having in mind mainly the applications, we tried, in these lectures,
to give a short account of the most elementary aspects of algebraic
topology.

This notes should be considered only as a summary for a study of
algebraic topology using some of the available text books to which
we refer the reader. Among them we recommend:

1) R. Bott and L.W. Tu "Differential forms in algebraic topology"
GTM 82 Springer—Verlag 1982.

2) M.J. Greenberg "Lectures on algebraic topology" W.A.Benjamin
INC. 1967.

3) A.T. Fomenko, D.B. Fuchs, V.L. Gutenmacher "Homotopic
Topology" Akademiai Kiado Budapest 1986.

4) E.Spanier "Algebraic topology" McGraw-Hill 1966

We start with a review of homotopy theory and the De Rham
theory. After a brief summary of the concepts of algebra commonly
used, we present some aspects of singular homology and cohomology.
We conclude with an application to the classification of bundles and
to the problem of anomalies in gauge theories.

We thank all the friends that organized this School on
Mathematical Physics at Ferrara University,and the participants, for
the discussions we had on various arguments connected with the
applications of "geometry" in physics.
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ELEMENTS OF HOMOTOPY THEORY .

One of the most important point of algebraic topology is to
assign an algebraic object to a topological space. Hopefully in such a
way that homeomorphic spaces have isomorphic algebraic objects and
viceversa. This is not completely possible and one should be less
ambitious.

To a topological space X is assigned a group (or a module) F(X)
and to any continuos map f : X » Y a homomorphism F(f) : F(X)
> F(Y) or F(f) : F(Y) » F(X) such that

a) f =1id » F(f) = id id = identity
b) F(gf) = F(g) F(f).

(application of this: if f : X 5 Y is a homeomorphism then
F(f™') = F(f)™" so that F(X) = F(Y).We have a necessary (but not
sufficient) condition of homeomorphicity).

The first fundamental example of such a theory is homotopy of
paths

Let o and 7 paths in a space X (0,7 : [0,1] > X) with
o(0) = 7(0) = x4, ofl) = 7(1) = x, we say o is homotopic to
7 (0 = ) rel [0,1] with end points fixed if there is a map
F :Ix1- X such that

F(s,0) = o(s)
F(s,1) = 7(s)
F(O,t) = x
F(1,t) = x

0
1

F is called a homotopy from o to r relative to [0,1].

If ois a loop at x; (x, = X,) and r is the constant r (s) = X, if
o is homotopic to 7 (¢ =~ r) rel [0,1] then ¢ is homotopically
trivial.

We can consider the set of equivalence classes of paths from x o to
X, .

If1 o is a path from x; to x, and r from x, to X, Os7 is a path
from x; to x,.

o(2t) 0gtgl1n
o r(t) =
7(2t-1) 1/2 ¢t ¢ 1



————

It is verified that ¢ = ¢', 7 = 7' 5 or = ¢'r'. Thus we can
multiply classes.

Let =,(X, x,) the set of homotopy classes of loops at X,; then
™, (X, xg) is a group with 1 = the constant loop and
o (t) = o(1-t) 0 ¢t ¢ 1.

Is there a relation between = (X, Xy) and =, (X, x,)?

We have: .

if ais a path from x, to x, the map:

o : [0] » [@7" oa] is an isomorphisms of = (X, Xq) » (X, x,)
(the inverse is (ax™~')) so:

If X is pathwise connected, 7,(X) is defined and is called the
fundamental group of X.

Now let X and Y be topological spaces and f, and f, continuos
maps : X - Y; f, = f, if there exists F : X x I 5 Y such that

F(x, 0) = f (%) (homotopy between maps is an
F(x, 1) = f,(x) equivalence relation)

(example Y, X = R0 f = identity, g=20
F(x,t) = tx )

When X is such that the identity map is homotopic to a constant
map, we say that X is contractible. Proof that = is an equivalence
relation:

1) f~f : Fi1(Xx 1Y  F(x,t) = £(x)
2) f=g > g=f (G(x,t) = F(x, 1-t) is a homotopy)

F(x,2t) Ogtg1/2
3) f=g and g=h - f=h H(x,t) =
G(x,2t-1) 1/2t1

The only point is to show that H is continuos. This is a consequence
of the important "collating lemma". If X and Y are topological
spaces and X = AuB where A and B are closed (open). Let
f, tA-> Y, f, : B > Y such that f,(x) = f,(x) V x ¢ AnB,then
g : XY ,

F,(x) x €A
g(x) = is continuos.
f,(x) x B



+2
If X, Y, Z are topological spaces,

fy,, f, homotopic maps X > Y
and
8o+ &, homotopic maps Y » Z

then g, f, and g,f, are homotopic maps X -» Z.

Definition: Two spaces X, Y have the same homotopy type (or are
homotopically equivalent spaces) (X=Y) if there exist continuos maps
f:X->Yand g :Y > X such that gf~iy and fg'«viy (homeomorphic
spaces have the same homotopy type but not viceversa)

(example 1) S and S’ x R (the cylinder)

f:8" 58" xR f(P) = (P,0) gf = iy

g:S" xR st glq,r) =q fg : (q,r) > (q,0)

F:S'"xRx1-55s" xR
F(q,r,t) = (q,tr)
F(q,r,0) = (q,0) = fg(q,r)
F(q,r,1) = (q,r) = iy(q,r)

Theorem: X is contractible iff X have the same homotopy type of a
point.

Corollary: if X is contractible, =,(X) = 1. note that this is not so
obvious, because every loop ¢ at x, is homotopic as a map with the
constant loop but we must show they are homotopic relative to 0,1,
i.e. homotopic as loops.

We study now the behaviour of =,(X, x,) under maps.

Definition:

Let X,Y path connected spaces and f : X » Y continuos for x, € X
let fx @ 7, (X, x,) > 7, (Y, f(xy))

fu<e> = <fo>
This make sense because if o and ( are loops at X, and a = § is

also fo = fg (the homotopy is fF).f« is a homomorphism .
Observations: if f is a homeomorphism or a homotopic equivalence,



f« is an isomorphism. (This also prove that if X ~ [P] > 7,(X) = 1)
The fundamental group of S1

We will study #'(S') as an illustration of some important concepts
(covering spaces and the covering homotopy theorem) S' is the
group of z e C z1?2 = 1; we have a continuos homomorphism
®:R > S &x) = e?™X, ¢ is an open mapping and maps
(=%, +4) » S’ - {~1} homeomorphically; let ¢ be its inverse on that
set: then

1) If o is a path in S' with initial point 1, there is a unique path
o' in R with initial point 0, such that & ¢' = g.

O

SIS

A el

¢ 3

2) it 7 is a path in S' with initial point 1 such that
F : o= rel(0,1)
Then H unique F' : I x I - R such that

F' : ¢'=r' and ¢F' = F
rel (0,1)

Let Ybe IorIx1I f:Y o5 S'either ¢ or F, 0¢Y will be either
0 or (0,0).

Since Y is compact, f is uniformly continuos, and
3 e>0/ 1y-y'1<e > 1f(y) -f(y')1< 1 in particular

fF(y) # -f(y')  so ¢[§E%] is defined.

Now take N such that 1y1 < N ¢ Vy e Y. Set

SR [HOH(Y eb ()R 4 e



Then f'(0) = 0, &f'= f, f' is continuos. If f" has the same
properties, f'-f" would be a continuos map into the kernel of & that
is Z, since y is connected f'-f" is constant hence f'= f",

In the case y = I x I f =F, f' = F' and F':o'=7' in fact on
0xI ¢F'=F =1 hence F'(0 x I) € Z so by connectedness again
F'(0 x I) = 0 and similarly F'(1 x I) is constant. ’
Corollary: the end point of ¢' depends only on <g>.

Define x : #,(8'.1) » Z by x<o0> = ¢'(1) € Z (recall &' = 7). ¥
is well defined and is a homomorphism:

given [o], [r] € =,(8'1), let m = ¢'(1), n = r'(1) and
" (s) = 7'(s) + m is a path from m to n+m in R.

Then & r" = 1 and o'r" is the lifting of ¢ r with initial point 0
and end point n+m. Hence x([c][r]) = x[o] + x[r] x is onto: given
n define ¢'(s) = ns. If ¢ = d¢' x[o] = ¢'(1) = n.

X s one to one:

suppose x[c] = 0 if o' is a loop in R at 0 (R is contractible)
o' = 0 hence, applying &, o=1, [o] = 1.

From this we have #,(8') = Z

The only property of S' wused is that S' = R/Z were R is a
topological group and Z a discrete subgroup of R.

Theorem : If G is a simply connected ie. (v ,(G) = 0, G pathwise
connected) topological group and H a discrete normal subgroup, then

x,(G/H,1) = H

We have only to find a neighborhood V of 1 in G which is mapped
homeomorphically onto a neighborhood of 1 in G/H by
® : G » G/H (so that we have ¢ as before).

But since H is dicrete 3 U/UnH = {1}.

By continuity of g,g,”" 8V 1/ g,,g, ¢ V> g.g,7" ¢ U.

In fact in this case let
4’(81) - Hg1
¢(g,) = Hg,

and if &(g,) = &(g,) » Hg,g,”" eH but g,g,”" U > g, =g,



Corollary =,(S'xS") =2 e Z

The following theorem is important and contrasts with the property
of homology or cohomology for product spaces.

Theorem: given spaces X, Y, X ex, y,ey we have

T (X XY, (X, ¥y9)) = 7, (X, Xg) ® 7, (Y, Y,)

sketch of proof: the isomorphism is obtained as follows: |

fﬁ:// \\ Py
X Y
They induce homomorphisms

(X xY, (X5, ¥g))

(Px) / \ (Py)

71(X1X0) L (Y»yo)

hence ((Px)+, (Py)+) is the homomorphism. This homomorphism has
the following inverse: given loops ¢ at x,, 7 t y, assign to the pair
[o],[7] the class of the loop (o,7) : (o,7) t = (a(t), 7 (t)).

Higher homotopy groups

If X is a topological space with a base point p, for n » 1 the n~th
homotopy group =,(X) is defined to be the homotopy classes of
maps from the n—cube I? to X that send the faces 5I% of IR to the
point p. From another point of view, if we identify §I% to a point
we get the sphere S% with a base point. Thus =,(X) can be
interpreted as the homotopy classes of maps (base point preserving)
from ST to X. The important point here is that, althought in general
the set of homotopy classes of maps [X,Y] from X to Y is not a
group, the sets [SM,X] (b.p.p.) are groups. The group operation is
defined as follows: if o and # : I® 5 X, representing the classes [q]
and [B], [a] [B] is the class of the map:

a2t,, t,....th) Ogt, g3
y(t,....ty) =
B(2t,-1, t,....ty) gt gl



(This generalizes the product of path).

The most important fact is that =4(X) is Abelian for g>I. It is
useful to introduce =,(X) that is (when X is a manifold) the set of
connected component of X (if X is a space = (X) is the set of path
connected component of X). It has a distinguished element *, the
component containing the base point of X. This observation is crucial
in defining exact sequences of homotopy groups.

The homotopy sequence of a fiber bundle (Steenrod).

If »r : E » B is a fiber bundle with fiber F then

wq(F) -i)*wq(E) f)*vrq(B) —a> rq_,(F§*+ wq_1(E‘§*—> wq_,(B) -

is exact (the kernel of any map is the image of the previous one).
The kernel of a set map between pointed sets is the inverse image
of the base point. We will assume that E and B have base points e
and b, and that F is identified with =~ '(b,) € E via a map:

i : F-> E giving the diagram F » E with =i = b,
v constant map
B

Then ix and =+ are defined as follows: (this generalizes the case of
7,). If fis a map (X, x;) > (Y, y,) and (M, m,) a space,
f« 1 [M, mg; X, x,) > [M, m; Y, f(x,)]

(faw) m = f(w(m)) where w ¢ [M, mg, X, Xg] and m ¢ M

O is harder to describe. We need the covering homotopy property (a
generalization of the lemma used in computing =, (S')).

Let (E,~,B) be a fiber bundle and let H : X x I - B be a
homotopy between maps f,g_: X - B. Suppose that f is covered by
a map f : X 5 E («f = f). Then there is a homotopy
H:X x 1> E such that

’ltll(x,O) = f(x) YV x e X and

~S
sH=H

X —> B3 XxT ~—H—-—> B a(x)=(x,0) Vx .
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We can now define 3. For simplicity consider first q=1. A loop
a : I > B representing [o] ¢ 7,(B) can be lifted to a path « in E,
then d[a] = 1) in = (F).

For q=2, let 1 - I? the inclusion t > (t,0). A map « : 12 5 B
representing [a] € 7,(B) can be considered a homotopy of
alf : I > B aif(t) = «(t,0) oftg) : I xI - B. :

Then the constant map ¢ : I » f;, ¢ E covers aij

e I

_L———-———>B
a<

—

.L.

then there is a homotopy & : 12 5 E which covers o and such that
QA = C,-
Finally, d[a] is the homotopy class of the map

¥ o1 > F
y(t) = a(t,1)

For q>2 4 is defined in the same way. An important property of
Ty is that if X is contractible then = (X) is trivial = (0) Vn. In
general if X and Y have the same homotopy type then = (X) and
m(X) are isomorphic groups. (For "reasonable" spaces the following
partial converse is true: if f : X -5 Y induces an isomorphisms
(X)) » 7(Y) V, then X<Y).

The homotopy sequence is the basic elementary tool for computing
homotopy groups.

Homotopy groups of classical groups

We assume the fact that = (ST) = 0 if q<n , Zif q
It is known that if H is a closed Lie Subgroup of a lie group G
then G » G/H is a fiber bundle with fiber H.

The case R/Z = sl gives

[
B

5> 7i(2) > ri(e) s 7Sl 5 7 (@) -
0 0
xi(S1) = 0 i>1



The case _g%%%f = S’ gives, for i » 2, 71 (SU(n))=7;(U(n));

for i =1 0 > =, (SU(n)) > 7,(U(n) - =, (S') > 0 ,

Z
0(n) . .

The case HIORS Z, gives, for i > 1, 7;(50(n) = =;(0(n)).
The case U?é?i) = si?é?;) = §20-1 gives that

for i ¢ 2n-1 ,  7;(U(n) = 7;(U(n+1)) and

i (SU(n) = 7;(SU(n+1))

The case 6%%2%) - §%%%g%7 gn-1

gives for i ¢ n-2 71(0(n)) = 7;(0(n-1))

7;(S0(n)) = 7;(S0(n+1)) .

we can then compute the low homotopy groups'o.f classical groups.

Ifi=20 J 0 ¢ 2n-1 ¥V nys 1, hence ;
To(Up) = 7,(SU(N) = x,(U,) = 0 and 0 ¢ n-2
T,(0(n)) = 7,(0(2)) = Z, Vns2
T,(S0(n)) = x,(S0(2)) = 0 YVny»2 .

ifi=1 1 ¢ 2n-1 Vns1 , hence

7, (U(n)) = 7, (U(1)) = Z
7,(SU(n)) = 7,(SU(1)) = 0

1 n-2 Vny3

A

so we must calculate =, (S0(3)) but it is known that SO(3) = S3/Z,
hence =,(S0(3)) =Z, = =,(S0(n)) = »,(0(n)) VY n 53

For S0(2) =~ U(1) , we have 1,(80(2)) = Z = 7,(0(2))
If i =2,

observe that 7,(U(1)) = 7,(SU(1)) =0 .

Moreover SU(2) = S3 and ,(SU(2)) = x,(U(2)) = 0

But forn » 2 2 ¢ 4-1 hence

7,(SU(N) = 7,(U(n)) = 7,(U(2) = 0 .



Moreover 7,(0(1)) = 0, and we know that
7,(0(n) = #,(S0(n)) VY n

since 2 ¢ n-1 for n » 3 7,(0(3)) = 7,(0(n)).
We must compute 7,(0(3)) = 7,(S0(3)) ;
we have S0(3) = s3/Z, and

7,(Z;) > 7,(8%) » 7,50(3) > T, (Z,)
0 0 0
so 71,(S0(3)) =0 .

Ifi=23 7,(0(2)) = 1r3(SU(2) = 71,(83) =27

since 3 ¢ 2n-1 YVns?2 we have

75,(U(n)) = 7,(SU(n)) = Z ¥V on2 and 74(U(1)) =0

0
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DE RHAM THEORY

The de Rham th'eory is the prototype of all cohomology
theories. As we shall see, it is defined in terms of the differentiable
structure of a manifold and one of its important features will be its
topological nature.

Manifolds are locally homeomorphic to RR and we start with RR
itself. Let Q*(RR) be the Grassman algebra of differential forms on
R0 ie. Q*(R®) = (C® functions on RN) &Q* where Q* is the algebra
generated by products dx,.....dx, with the relations dx;2 =0
dx; dx; =-dx; dx;.

i &5 =% Rl“ i

If o ¢ Q(RY) then w = T fi1..iq dxir"dxiq and fi1"iq
functions. We write w = Ifjdxy.

The algebra can be splitted: Q*(RR) = €Bnp=0 QP(RM) where QP is
generated by the products of p generators.

There is a differential operator (exterior differentiation)

are C<®

d: Q4(RM) » Q4+1(RM)

defined as follows

of
if £ e QRN : df = L dx;
o i
if w = Z fIdXI D dw = T dedXI
It is known that
d2 = 0 and d(7w) = drw + (-1)9e8 T rdu.

The following object

aoRny $ @1 Rmy $ Q2(Rmy ¢

is called the de Rham complex and is an example of a cochain
complex (see later).

We observe that (OP(R?) is a module over the C® function and a
vector space over R.

Definition

The q—de Rham cohomology of R0 is the vector space over R:



Ker d
Im d

It is a measure of the deviation from exactness of the de Rham
complex. Note that we may also speak of Q*(U) and HApR(U) for
U open in RD. ‘
examples: n=1 Hopr(R) = R- because

Hipg (RM) =

H°pr(R) = Kerd = constant functions

and

H'pr(R) = 0  because Kerd = Q'(R) and

if w = g(x)dx then g(x)dx = df where f = [X  g(t)dt

In general H*(RD) = {0 *=p#0
(Poincare' lemma) R * =0

We now extend this theory to an arbitrary differentiable manifold. It
is known that for a differentiable manifold the operator d can be
defined independently of the coordinate system. A differential g—form
is a C*® section of the bundle AP(M) or, locally,

W =271 fIdXI'

A smooth map of differential manifolds f : M - N induces a map
0N - Q*(M) which commutes with d. We recall the definition
of . If we@P(N) and v,..wv are  vector fields on
M : fo(v,..vp) = w(fsv,,...fav,) where fo : TM > TN
fxv (g) = v(gf).

In local coordinates xi on M and yk on N we have

?

£k
f¥dyk = gil' dx1
We define again: x

Kerd Za(M)
HIppM) = =5 - BA(M)
example: H1DR(S‘) = R [HODR(S1) = R]

Kerd = Q7(S")
Imd = (df, feC®(S1))



If 6 is a polar coordinate, /36 is a non null vector field on S' and
dé is a non null 1-form.

Given any form w = g(8)dé¢ with g(0) = g(2r) we have that
(w = 1727 [,27 g(t)dt)dé is exact.

Hence Hpp'(S') = {cdf) R =R

If ¢y : X 5 Y is smooth, y* Z4Y) -» Z94X) and
¢* ¢ BAY) » BYX). In fact d(y*w) = y*(dw) = ¢*0) = 0 and if
w=dr, fo=1fdr = d(f*r). We have then a homomorphisms

v* © HKpR(Y) » HKRR(X)

which is an isomorphisms if ¢ is a diffeo.

We recall now a few results from the theory of differentiable
manifold. (A differentiable manifold will be assumed paracompact and
Hausdorff).

A partition of unity on M is a collection of non negative C%
functions {py}ye1 such that:

Vp IV /Yy pgly is a finite sum, and Y, .1 py = 1

We have that:

i) Given an open cover U, of M (ael) there is {p,}ye such that
supppy € Uy

if) There is also {95}66 J such that suppeg is compact and contained
in some U,.

A good cover is an open cover such that all finite intersections are
diffeo to RT.

We have that any manifold has a good cover, if the manifold is
compact, the good cover is finite and moreover any open cover has
a good refinement,

Examples: @ good @ not good

We come now to one of the most important tecnical point: The
Mayer—Vietoris Sequence.
Suppose M = U v V with U, V open; then we have the inclusions

Uav__Jd0spg,y_U sy, va=wm
Jy “disjoint iy



This gives a sequence on 0Q¥:

Kk ook T T
0 ooy TV grpyenr(vy I TITUTITY grigayy o

where, if o is a form on M
i*aq = (w,7) where w = aly and T = aly
and  j*¥(w,7) = jFpo - jFyr

The important goint is that this sequence is exact.

Im i* ¢ Ker j° because (v,8) € Im i" if y = Wiy, 6 = wly and
hence y-s1y,y = 0. Viceversa if y—51yy,v = 0 there exists w on
M and Ker j ¢ Im i*. The last step is to verify that j is sujective.
We start from (0.

Let f be a function on UaV we must write f as g — h where g is
on U and h on V we take a partition p,, py and consider p f and
ovf.

pzf is a function on U and pf is a function on V and
pyuf = (pyf) = f.

In general, if weQP(UnaV), (-pyw,pyw)ecQP(U)eQP(V) maps onto w.

As we shall see later (when treating homological algebra) the
Mayer-Vietoris— sequence induces an exact sequence in cohomology:

i* sk d*
> HApp(M) > Hdpp(U)e HApp(V) 4 HApp(UaV) S HIH pp(M) -

[-d py @] on U
'[d py @] on V

Example: M= S @V UaV = { }

J*
HODR(S1 )—)HUDR(U)$ HODR(V)—)HODR(U}\V)—)HIDR<S1 )->H!' (U)e H'(V)

difference
HODR(S1) > ReR - R & R - H1DR<S1) -0

(a,8) —> (-, a-f) "
Ker j* Cokernel j*
difference : ReR - ReR
(e, 8) = (=B, a-08)

In this particular case d*[w] - {

in fact j* sends the classes @ on U and g on V into the difference
of the classes on UaV.



Hence Ker j* = R and Coker j* = @ - R
so Hopp(S') = R and
H1DR(S1) =R .

Homotopy properties of H*DR(M)

We shall describe now one of the relations between homotopy and
the de Rham cohomology. The first property is that if two manifolds
have the same homotopy type then they have the same cohomology.

Consider M x R —=M

—

So
where = is the projection and s is the zero section s (p) = (p,0).
We have = : 0"(M) » 0°(M x R) and s, : O"M x R) > QM)
since 7s; = 1 we have 5*07"* =1 but w*s*o # 1.
If {Uy} is an atlas for M, then {U, x R) is an atlas for M x R.
Every form on M x R is locally a linear combination of forms of

the following type: (a local basis for the cotangent bundle of M x R
. x 1
is = dx!, dt).

a) (%) f(p,t)
b) (r*w) f(p,t)dt where w is a form on M

we define an operator K : QP(M x R) » OP-'(M x R)
by

K(a) = 0
K(b) = («*w) St  f

It can be checked that «'s® = 1 - (-1)47(dK - Kd), hence

s =1 in cohomology because dK - Kd maps closed forms exact
forms:

if w is such that dw = 0
(dK - Kd)w = d(K(w)).

It  follows that H*DR(M x R) = H*D (M). (In particular, by
induction we have the Poincare' lemma :'HB(Rn) = H*(R)).
Now if f and g are homotopic maps f,g : M 5> N

o



e,

we have f=Fs,, g=Fs, and
f*=-s*1F*, g*=-s*0F* where s, (x)=(x,1),s,(x)=(x,0)

and since all s*, and s*0 both invert #* in cohomology they are
equal, and f* = g* in cohomology.

Now if the two manifolds have the same homotopy type in the C®
sense, since any C° map between manifolds is C? homotopic to a
C® map, they also have the same homotopy type in the usual sense.
Hence if f : M 5 N and g : N > M and both fg and gf are
homotopic to 1, it follows that f* and g* are isomorphisms in
cohomology.

Remark: the formula H*DR(M x R) = H*DR(M) is a particular case
of the so called Ktinneth formula:

H*DR(M X N) = H*DR(M) ® H*DR(N)

i.e. HnDR(M x N) = ep_l_q:n HPDR(M) ® HqDR(N)
We only describe the isomorphism.
The two projections Mx N _TT__‘,M

: —325N

give rise to a map ¢ on forms

o @ Q¥M) @ OF(N) > OFM x N)
p(wdp) = r*1wA7r*2,u .

This map descends to cohomology and give the isomorphism.
Application: H¥pR(S! x S') = H¥pR(S') ® H*pp(S')  so

HO(S' x S') = H9(S') =R
H'(S' x S') = HO(S') @ H'(S') ® H'(S') ® H9(S') = ReR
H2(S' x S') = H'(S') ® H'(S') = ReR = R

Finite dimensionality of de Rham cohomology

If the manifold M has a finite good cover (in particular if M is

compact) then its cohomology spaces are finite dimension. Infact from

the sequence
* *

5 H3-1 (UaV) S HA(uovy 3 HA(U) @ mA(V) o



we have HA(UuV) = Ker i*®Im i¥ = im d%eIm i*
Infact HA(UuV) = imd*®B  where BCHA(UuV).

Now let h = i*|p, since Ker i* = Imd* and Imd*~B = 0 it follows
that Ker h 0 and B = Imh.

Now let z ¢ Im i*, then there exists y ¢ HYUuV) such that
z = i*(y). Since HA(UuV) = Ker i*eImh,

y=a+b where a ¢ Ker i*, b e Imh, hence
z = i*(y) = i®(a+b) = i*(b) = h(b)

This implies Im i¥ = Im h.
Thus if HYU), HYV) and HI"1(UnV) are finite dimensional, so is
HY(UuV).
Suppose now the cohomology of any manifold with a good cover
with at most p open sets is finite dimensional. Consider a manifold
having a good cover with p+l open sets {UO...Up}. Now
(U U, . Up_1)nU has a good cover with p open sets
p—1 p} by  hypothesis the  g—cohomology  of
-.RJ Up__1 » Ups and (U ,uU,)~U, as finite dimensional and so
1s the q-cogomology of U,uU, Up_ BuUp. The initial step of the
induction is Poincare' Iemma

Poincare’ duality

If M is compact and orientable (i.e. it admits an atlas with
det(ax l/E)x61)>0) the integral of a top form r (a form of degree
= dim. M) is defined:

[ = %l e

M

where I Pe T Mmeans j' (@"a)*(pa 7) where
Uy Rn

by is some trivialization and {p,} a partition of unity. It can be
shown that the integral is independent of the oriented atlas and the
partition. If M is not compact we take 7 with compact support.

The fundamental theorem is Stokes' theorem:

If wis an (n-1) form with compact support on an oriented manifold
M with boundary of dim n and if M (boundary of M) is given the



induced orientation:
J dw = j. w
M oM

We consider now compact orientable manifolds. The exterior product
and the integration descends to cohomology and so is defined a
pairing:

J : HApp(M) @ H'-9pp(M) » R
if [a] e Hipg(M), [B] e HR-9pp(M), <[a],[B]> = Iy[aAB]
Poincare' duality says that this pairing is not degenerate i.e.
HApp (M) = (HP-9pp)™*

(Poincare' duality holds also when M is not compact but has a finite
good covering:

Hipg(M) = (HP-d(M))*

where H; is the cohomology of compactly supported forms).

We recall that given two finite dimensional vector spaces V,W a
pairing <,> : V8W 5 R is not degenerated if v - <v,> is an
isomorphism V » W* (equivalently <v,w> =0 V w > v = 0).

In particular it follows from Poincare' duality that if M is compact
oriented and connected H'pp(M) = R.



ELEMENTS OF ALGEBRA

Homological algebra is, in some sense, the abstract support of
algebraic topology and is now invading many chapters of mathematics
just as group theory or linear algebra.

So, before continuing the study of the various cohomology theories,
we recall some of the most important concepts, namely the functors
®, Hom, Tor and Ext.

Let R denote a commutative ring with identity 1 # 0. (We have in
mind Z, R, Z,). An R-module is an additive abelian group X
together with a multiplication (a, x) - ax aeR, xeX that satisfies:

(a+b)x=ax+bx, a(x+y)=ax+ay, 1x=x, a(bx)=(ab)x.

example 1. (this is the typical example we have in mind) take R = Z
(integers) and X an abelian group and define

ax=x+x+....+X
a-times

Just as for vector spaces we have 0x=0 and (~1)x=-x and the
notions of submodule and quotient module; if A is a submodule of x,
to the quotient group Q=X/A can be given the structure of a
module: if x+A denotes an element of X/p we have
X+A+y+A = x+y+A and ox+A) = ox+A.

If S is a subset of X we call (S) the submodule of X given by all
finite linear combinations of elements in S. (S) is also called the
module generated by S. An element x is said to be a torsion element
of X if there is X # 0 such that Ax = 0 (this cannot happen if R is
a field as in the case of vector spaces).

The torsion elements of X form a submodule 7(X) of X; X is
torsion—free if 7(X) = 0.When R=Z, X/r(X) is torsion free.

Let now X, Y modules over R and f an homomorphism X > Y : as
usual we define

Kerf = {f71(0)} and Coker f = Y/[page(f)-
An exact sequence is
.= A -f; B b) C- ..

where A,B,C modules and f,h homomorphisms such that Imf=Kerh.

20



Any exact sequence of the form

i f g o i = inclusion
0-XaY>52Z-50 0 = O-homomorphism

is called short-exact.

Examples: 1) 0 - X £ Yy § Y/x > 0 is short-exact

where X is a submodule of Y, f is the inclusion and g the
projection.

2) 0 » Kerf 5 X 5 ¥ 3 cokerf » 0

where X,Y modules, f an homomorphism, i the inclusion and = the
projection, is exact.

As for vector spaces we have the concept of direct sum of modules
X Y; X and Y can be considered as submodules of X®Y and in this
case XaY = 0. A sudmodule A of X is a direct summand of X if
there exists a submodule B such that X = A&B.

We say that an exact sequence - X —-f; Y % Z - splits at 'Y if
Im(f) = Ker(g) is a direct summand of Y. It is an easy exercise to
prove that in this case Y = Im(f)®Im(g), so,if a short exact sequence

0>5A>B-5C-0 splits, then
B = ABC (where = means isomorphic)

Semi—exact sequences

A sequence - X f) Y é- Z - is called semi—exact if Imf < Kerg.
Example: ACX  but AzX

0s-alxso
is semi-exact but not exact. The quotient Q = X/, serves as a
measure of the deviation from exactness. This suggests that Kerg/1mf>
the so called derived module at Y should be important.
The modules of a semi-exact sequence will be indexed by integers; if
we use decreasing integers the sequence

. 3 3 3
> .

C:>5Chyy »Ch > Ch,



with 32 = 0 is called a chain complex and the homomorphisms 3
the boundary operators.

The Kernel of 3 in C, is denoted by Z,(C) and is called the
module of the n—cycles of C, the image of 3 in C, is called the
module of the n-—boundaries of C and finally H,(C) = Zn(c)/B,,, (C)
the n—homology module of C.

For "upper sequences" or cochain complex

C:gCn“gCnng"é) with §2 =0
we have the n—cocycles, the n—coboundaries and H®C) = Z“(C)/B"EC)
the n—cohomology module of C.
Consider now two chain complexes (all the following can be repeated
for cochain complexes) C and D, a chain transformation is a family
f = {fy : C4 » Dy} of homomorphisms such that

2
dofpy = f_,° 0 CM _ CM—4

T |, L

"0
D’V’ —_— Dy\_4

fn, carries Zu(C) into Zp(D) and By(C) into Bp(D), hence
Hp(f) : Hy(C) » Hp(D) is defined.

Two homomorphisms f,g : C » D are said homotopic (f=g) if there
exists h = {hy : C, - Dp4,} such that

o hp (%) hpoy 8 = f, - g

in >CM ___,__;:_————) mt A
CM—4 hm~1 ~ D""

we have that if f=g then Hp(f) = Hp(g). Infact if x ¢ Hy(C), take
p(z) = x for z € Z,(C) then

fn(z) - gn(z) = 3 hp(z) € BL(D)
and hence H,(f)(x) = Ho(g)(x) V x.



Let us now consider a short exact sequence of chain complexes

0-5cC g D& ES c

where we mean that,

V n O—)CngnDngnEn->0

is exact. We have the following lemma:

Hyo) M8y py Bnl®) 4 (£)  is exact
Obviously Im HL(f) < Ker H,(g) because

H,(g) Hn(f) = Hp(gef) = 0 since gof =0

We prove that Ker((H,(g)) < Im(H, f).

If o e HyD) and o e Ker Hp(g). We can choose a
z € o © Zy(D) < Dy; we have gu(z) e Bp(E) because Hp(g) o = 0.
Hence there exists y e¢ Ep4, such that 3 y = gp(z). Since g4, is
onto y = gu4,(x) x € Dpy,.

Then  gn(z - 3(x))=gn(z) - gr(d(x))=gn(z) - 9(gn4, (x))=
=gn(z) - 3(y)=0,

and Z - 0(x) € Ker gp = Im f .

Hence z = 9(x) = fu(w) w € Cp,, moreover
fn—,(Ow) = 3 fy w = 9(z-3x) = oz = 0 but f,_, is injective and
hence dw = 0 and w e Z,(C).

Let now § = p(w) € Hy(C); since z ¢ o« and 3 x ¢ By(D)

fa(w) =z -0 x € @ and hence

Ha(£)(B) = a .
We construct now the connecting homomorphisms 9: V n
0 : Hp(E) - H,_,(O)
in order to obtain an exact sequence called the homology sequence of

the sequence 0 - C > D > E -0 ;

...... - HL(C) - HLp(D) - HL(E) - Hp_,(C) » H,_, (D) »
(for cohomology we have

(o
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- HP(C) > H(D) » HM(E) » HM1(C) » H*H (D) 5 ) |
¥We first define a function
® : Zy(E) » Hy_, (C)

Let z ¢ Zy(E). Since gy : Dy » Ej is onto,z = gp(u) for u ¢ Dy
Consider d u ¢ Dy_,. Since g,_,(du) = 3 g, u = 3 z = 0 we have
0 u e Ker gy, = Im f,_,. Since f,_, is injective, there exists a
unique v € Cn—; with fa—,(v) = du and
fp—, Ov = 0 f_, v = 0%u = 0, and this implies dv = 0. Hence
v € Zy—,(C) and w = p(v) ¢ H,_,(C).

It can be shown that:

1) w is independent of u ¢ D, and depends only on z ¢ Z,(E)
2) & is a homomorphism
3) Bp(E) < Ker ¢.

This last observation says that ¢ induces a homomorphism
d : HL(E) » Hy_,(C) and we obtain the sequence.

Free Modules

Let R be our ring and S any set.
We will construct a module F(S) called the free module over R on
S

Let F(S) = {® : S » R/ &(s) = 0 except for a finite number of s}.

(® + ¥)(s) = &(s) + ¥(s)
ad(s) = a(d(s))

Next define a function f : S = F(S):

f(s) (t) =1 if t ==
VtesSs
= _if t #s

f is injective and we may identify S with f(S) in F(S).
Hence f(S) becomes a subset of F(S) which generates F(S)

d = Yoeg P(s)f(s)
Now let us consider a family of modules {Xgis ¢ S} where Xs =R
Y s.



A

By definition of direct sum we have that the direct sum of {X} is
isomorphic to F(S).

A module X is said free if it is isomorphic to F(S) for some S.
Theorem: any X is isomorphic to a quotient of a free module.

Let X be any module and consider F(X).

Then h : F(X) » X is an onto homomorphisms. Let K = Ker h.
Then X = F(X)/K by the isomorphism theorem.

It can be shown that a module X is free if it admit a basis. A basis
is a linearly independent subset S of X which generates X.If the ring
is Z and X is finitely generated,X is free iff is torsion—free.

Tensor products

Let A and B modules over R. Consider F(A x B) and G the
submodule generated by the elements

(a a2, + a,a,, b) - o,(a,, b) - a,(a,, b)
(a: 61b1 + szz) - ﬁ1(a: b1) - ﬁz(aa bz)

F(A x B)
G

x(a, b) = a ® b

We define A ey B and denote

we have by definition

(aya,; + a,a,) ® = o, (a; ®) + c,(a, ®b)
(y a) ® = y(a ® b) = a®(y b)
a®(f,b, + B,b,) = B,(a ®.b,) + B,(a ® b,) so

A ®B >t - a: ® b:
fi%ite 1 1

Example: Z,®7Z,=0 infact

11 =(3-2)(181) =
- (-2)1®3(1) =00 etc.

Tensor product of homomorphisms:
f:A->A", g : B> B

fog : A®B - A'®B'
(feg) (a®b) = f(a) ef(b) and extended by linearity.



Properties of the tensor product

It can be shown that:

1) if A= e, A#, B=e, B,
A®B =5, Au®B

2) A®B~=B®A

3) (A® B C=~A®B®OC

Properties of the tensor product of homomorphisms

If f: A> A'and g : B 5 B' are onto then f®g is also onto and
Ker h = {module generated by a®b with a ¢ Ker f or b ¢ Ker g}.
(The proof is a long exercise; it should be noted that if f and g
were not onto both conclusions would be false). It follows that if f
and g are isomomorphisms, also f®g is.

Theorem: If M is a module and A - B 5 C > 0 is exact then

AeM f?;l BaoM ggl CeM > O is exact.
Proof': denote f' = f®i and g' = g®i
Since g and i are onto, g' is also onto and Ker g' = {generated by

yew with y ¢ Ker g}.

Since Im f = Ker g, then is x ¢ A and f(x) = y.
Hence y®w = f(x)® i(w) = f'(x®w) ¢ Im f'.
Viceversa, since

g' f' = (gei) (f®i) = (g f) @ (i i) =081 =0

we have that Im f' € Ker g'.

Modules of homomorphisms

If A and B are given modules over R, the set Hom(A, B) of R
linear mappings is a module over R with sum (d+I)x = &(x) + ¥(x)
and product (cd)(x) = @ ¢(x). Now let f : A' > A and g : B » B’
denote homomorphisms.

=



We can define a function

h : Hom(A, B) - Hom(A', B')

h(d) = gedof .
h is a homomorphism of Hom(A, B) into Hom(A', B') and is
denoted by the symbol Hom(f, g). As for tensor product, it can be
proved the following theorem:

Theorem: If M is an arbitrary module over R and if

A —f> B8c5o0 is exact, then also
*

*
0 - Hom(C, M) g Hom(B, M) -f> Hom(A, M) is exact.

Where f* = Hom(f, i), g* = Hom(g, i) and i : M 5 M is the
identity.
Moreover if 0 5 A - B » C is exact, then also

0 - Hom(M, A) —f;*Hom(M, B) —g;*Hom(C, M) is exact
where fy = Hom(i, f), g% = Hom.(i, g)

Tor and Ext
Let A be a module, a free resolution of A is an exact sequence
SAK A ;2 ... A A 5 A0

such that Ay is free, Free resolutions always exist. For any A we
know that there exists an exact sequence

0 5 Ker h 5 F(A) > A~ 0,
(If A is an abelian group, i.e. a Z-module, also Ker h is free).

Let now F(A) = A,, Ker h = T,, F(T,) = A, we have

0-)T1->A0—>A—>0 and also

O—>T2—>A,->T,->0



0->T,->A,>T,->0 etc.
where A; = F(Ti); we obtain

SN\ /

_A%ﬁ-——e.ﬁ.—-—éﬁﬁpt

_/ \/

3
/! / X.

The resolution of A is not uniquely determined, nevertheless the
further constructions will not depend on the choice.

Let us return to the case of Abelian groups.

let 0 5 B> F 5 A 5 0 a free resolution of A and let G be a Z
module.

We know that the two sequences

*

0 - Hom(A, G) - Hom(F, G) —f> Hom(B, G)
fe1
and B®G » F®G - AG - O are exacts.

Tor and Ext measure the failure of this two sequences to be short
exact.

Tor(A, G) = Ker(f®1l)
Ext (A, G) = Coker f* = Hom(B, G)/ip f

It can be shown that these definitions are independent of the free
resolution used.
Note that

Tor(A, G) = Tor(G, A) (this follows from X®Y = Y®X)
and that

Tor(A'@B', G) = Tor(A', G)® Tor(B', G).

We will need the cases in which the modules involved are Z or Z
or R. We have as a free resolution



O—)Z-f-;Z—>Zn->O

where f is the multiplication by n.
Tensoring with Z, gives

Tor(Zy, Zy) - Zy 8V z. o Ziamy - O

where (n, m) is the G.C.D of n and m.

The Kernel of the multiplication by n in Z is Z(n,m)-
So Tor(Z,, Zp) = Z(n,m)

Now, if A is free we can take as a free resolution

0—>O->A1>A—>O

and Tor(A, G) = Ker 181 = 0 = Tor(G, A)
We have then

Tor | Z ZM
Z |0 O
Z% O @M, M)

note that if A = e; Z,;, G = ®; ij then
Tor(A, G) = Qi,j Zdij where dij = G.C.D.(ai,bj)

We will need also Tor(Z, R) =0 , Tor(Z,, R) =0
Tor(R, R) = 0. This follows from the following result:
consider two Abelian groups X and Y.

Let S =((x,y,n) eXxYxZ/nx=0, ny=0)

Let F the free group generated by S and G the subgroup containing
elements of the form

(X1 + xz’ M) n) - (X1r Y, l'i) = (Xza M) n) ’
(x, Y + Y2, n) - (x, Yi» n) - (x, Yas n)
(Xr Yy, m n) - (mx, Y, n)

(X, y’ m n) - (X) my: n) 7



Then Tor(X, Y) = F/G. It follows that if X or Y is torsion free
then Tor(X, Y) = 0.

Moreover if T and N are (finitely generated abelian group,
Tor(T, N) = 7(T) ® 7 (N) where r means the torsion part.

As for Ext we have that if A is free Ext(A, G) = 0. Moreover
Ext(Zy,, Z) = Z, infact

07 g Z-5272,-0
£* : Hom(Z, Z) » Hom(Z, Z)
z 5 7
Im f¥ = m Z and
Ext(Zy, Z) = 2/p7 = 2,

Also we will use Ext (Z;, R) =0

£f* : Hom(Z, R) » Hom(Z, R)

Im f* : Hom(Z, R)

Ext(Z;, R) = 0

For any abelian group Ext(Z, G) = 0 and Ext(Z,, G) = G/yqG; for
finitely generated T and N, Ext(T, N) = 7(T) @ N.



ELEMENTS OF SINGULAR HOMOLOGY AND COHOMOLOGY

If we denote with R® the space UoRn, let P; = (0....1....0..) the
i-th basis vector and P, = (0 0 0 0 ...... ) :
The q-simplex Aq is the set:

Ta !
Aq = { L t; Py, L t; =1 } Ogt ikl
0 0
A, = o F
BLRT R

The i-th face map. aiq : Aq_1 > Aq

. %—1 i-1 %
alq[é ey Py =) eyRye) ey

j=o j=i+1
transforms the Aq_1 simplex into the faces of Aq.
T
4 | &)
o) 2 802(A )=80,(t Py+t P )=t P4+t P, C A,
Z 2(A )=t P+t P C A
a (A1)-tUP0+t1P1 < A2
8?1(A0> =P, c 4
0',(4,) = P, A,

If X is a topological space, a singular g—simplex is a continuos map.
s -» X and a singular g—-chain is a finite linear combination
with coefficient in Z of singular gq-simplices. S (X Z) is the Abelian
group (free Z-module) of singular g—chains.

There is a boundary operator 9 such that 92 = 0

d : Sq(X, 2) » Sq-1(X, Z)

and we have a chain complex.



T4 . .
aSnL (- 1)1 salq
0

P
&y ‘
Example: X = R? s = identity s : """"> m

Foer
e R h
2
3s = 39, - 31, + 97, = B - a +a, +a,
Po Fj‘ A Py
where a :4,» ——
A Fi\
a,:A>
YR TR
hence da, = a, 0%, - a, ', a,:A;> I
A A
Ga, : P, » P, - P,
da, : P, » P, - P, so /bli e
da, : P, » P, - P,
R

and we have 82 = 0.
The g-homology module of this complex is denoted by

Hq(X, 2) = 52%-%72; and Hi(X, 2) = gy, Hy(X, 2)

Example: if X is a connected manifold Hy (X, Z) = Z.

Example: Hq(*, 2) * a point.
There is a unique g-simplex aq Vq (the constant map); we have:

for g =20 L, =S, and By =0 hence Hy(*, Z) =12

for g > 0

or, =g, 0, -0, 3,7 =0 » o, 1 A 5> ¥
do0, = 0, 0,° -0, 3," + 0, 0,2 =g, 3,2 0, 1 A, » %
but

0, 0,2 A) = a,(4,) =% =0,(4,)

53



0q-; Q4 even > 0

in general: doq =
0 q odd

0 g even>0
so Zg = loq / aoq =0) =
Sq q odd

Sq q odd

0 q even>20

Hence Hq(*, Z) =0
Example: Hq(Rn) q>0 (Ho(RM) = 2)
- Sq(Rn, Z) > Sq_,(Rn, Z) »
tll lo tll lo
- Sq(Rn, Z) - Sq_1(Rn1 2) -
we have a map K : Sq - Sq+1 such that
9K - Ko = (- 1)a+
so #1 and O are homotopic (as chain homomorphisms) and
Hp( 1) = H (0) 0 but H ( 1) is an isomorphisms and so

(Rn, 2) = 0 K is said the cone map.
The formula is complicated:

q+l q
ke[ ) e5p) = [t eqn] s [E-=o =t Pl

j=0 g1
this is the cone in R with vertex in 0 and base s.
P
VA
Example s: A, » \P = t, P, + t,P,
1
t,P, t,P,
Ks(t Py, + t,P; + t,P,) = (1 - t,) s +
1-t, 1-t,



7
Ks(4,) = % when t, = 0 the cone start from s
F Py when t, = 1 the cone ends up to 0

We "verify" that JOK - K8 = 1 in this case

K —e =3B- DN

KO +— ==K(°v)==/\ andA"/\:'_'

Topological invariance

Let f : M > N a continuos map, if ¢ ¢ Sq(M, Z), f o e SN, 2)
and we obtain a homomorphism Hq(f) : Sq(M, Z) > Sq(N, Z) by
Hq(f)(S, 740) = 3 v4(f 0)

Now 3 Hg(f) = Hg—,(f) 3 infact recall that 3s = J(-1)l s 3¢l so
3 Hg(£)(s) = J(-DI(f s) 3t
Hq(£)3s = J(-1If (s 351,

Moreover, Hg(gf) = Hq(g)-Hq(‘f).

Hence Hq(f) : HqM, 2) > Hg(N, 2)

and if f : M » N is a2 homomeorphism, Hq(f) is an isomorphism.

Homotopical invariance. As for the de Rham modules, also
H,(M, Z) are homotopy invariants:

if f and g are homotopic maps M - N then Hq(f) = Hq(g). In
particular if M and N have the same homotopy type then
Ho(M, 2) = Hy(N, Z). Infact if f : M > N and g : N 5 M and
both f«g and g-f are homotopic to an identity, it follows that Hq(f)
and Hg(g) are isomorphisms in homology.

The homotopical invariance is proved along the same way used for
de Rham.

Consider the maps S¢ : MaMxI se(x) = s(x, t)

Sqg ® s;. Let now F : X x I » X' the homotopy from f to g.

Fesy, = f, Fos, = g.

It is sufficient to prove the theorem for s, and s,: infact

3



Hq(f) = Hq(Fso) = Hq (F) Hq(sq) = Hq(F)Hq(51) = Hq(g).
To prove it for s, and o, we construct an operator:
P : Sq(X, 2 > Sq+1 Xx1, 2D such that
OP + PO = Sq(s,) - Sq(so)

P gives a chain homotopy between Sq(s1) and Sq(s-o) .

where 6, : A, » A

P(0) = Sq4, (0 x 1d) (P(5¢)) g ¢ 8q > 4q

(note that Sq(O')(Bq) = )
P is a generalization of the cone operator and is said the prism

operator. To explain the definition of P, first note that really
P(o) : g+, » X x I infact

bq € Sq(Aq, 7y, P(aq)e Sq+1(Aq x 1, 2)
Uxid:AqxIaXxI
Sqeq(oxid) : Sqy,(8g x 1, Z) »'Sqy, (X x I, Z)

The definition of P(aq) is the following:
Denote Aq = (P, P,....Pq) where P,, P, Pq are the vertices of

4q-

AqxI has vertices (PO','O), (Pl','O), (Pq,'O), (Pg,D)oont

A A, Aq B, B, Bq
e .
P(5q) - Ll (-1)1(AD....Ai Bj..... Bq)
= 1 = P_ P [- S
q 6, 0 ©1 2, P4
2, g,
ot - ]

A
I



B, B
P(5,) = (A, By, B;) - (A, A, B,) =

Po A4
It is left as exercise to verify the chain homotopy property.

We obtain also as corollary that

Hp(M x R) = Hp(M).

Mayer Vietoris for homology

We quote the exact sequence of Mayer—Vietoris.
If X = UuV,U,V open sets, the exact sequence is :

1) ..QHq(UnV)Hqsf)Hq(U)e Hq(V)HQSg)Hq(X) % Hgoy (UaV)>. .

where Hq(f) is induced by a > (-a, a)
and Hq(g) is induced by (a, b) - (a + b) .

1) is induced by
0 5 S.(U~V) 5 s (e s.(V) B 5,0 = 0
- q( (a} ) - q( q( ) q( ) -

A
Sq(X) are the small chains i.e. chains made up.of simplices each of
which lies in U or in V. It can be shown that Hq = Hq.

Application to S = Og

0 H,(S', 2) »2eZ 5 262 & 1 (5", D)

Z
f(a, b) = (a - b, b -~ a)
and H,(S', Z) = Ker f = Z
and Hp(S1) =0 p =2
U
Application to §2 and S" Sz = v UaV = 87" x R

We have: H,(52) = Z



H,(U)® H,(V) = 0 » H,(S2?) » H,(S" x R) » H,(D)e H, (V)
, 0
H,(S2) = Z

H,(U)e H, (V) > H,(52) » Hy(S' x R) 5 H (e H (V) » H,(5?)

"

0 Z yL:y4 0

a (-a,a)

H,(S2) = Ker f = 0

HP(SZ)=0 Yps3
£v
by inducti sn - UaV = SN-1 x R
Yy induction §E7Kf n
H (S™) = Hy(s™) =727 Hp(sn) =0

Finite "dimensionality” of H p(M ), (M compact)

In the case M compact, Mayer-Vietoris (as for de Rham) says that
the "dimension" of H,j(M) is finite. In this context the word
dimension is wrong because H,(M) is a Z module and not a vector
space. We must speak of rank. The rank of a Z module A is the
minimal number of generators of A/, A) Examples Z has rank = 1,
ZeZ has rank = 2, ZeZ, has rank = {

Homology with coef ficients

If A is any abelian group, we can define also Sq(X, A) the free Z
module of chains with coefficients in A.

Accordingly we have Hy(X, A).

We quote the wuniversal coefficient theorem, which comes from
homological algebra:

Hq(X, A) = Hq(X, e A e Tor'(Hq_,(X), A)
we have also

Hq(X, R) Hq(X, Z) o R

3
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Remark: rank of Hq(x, Z) = dim of'Hq(X, R)

if dim Hy(X, R) = g Bq are called Betti's numbers
and (if < o) %((X) = Zq (El)cmq is the Euler characteristic.

Relations between homotopy groups and homology groups

The relation between r, and H, is easy to describe.
a) There is a homomorphism x : = (X, x,) » H,(X, Z) which
sends [y] € =, into the homology class of the singular simplex .

b) If X is path connected, x is surjective and Ker x = [r,, r,]
the subgroup of commutators.

No statement can be made in general when q > 1. The following
theorem of Hurewicz gives some informations. We give a weak
version of it.

If X is a simply connected compact manifold

then V rs2 if T(x) = 0 for 1 ¢q<r then
Hq(X)=O for 1 ¢qg<r and Hp(X)=7,.(X) and viceversa.
The first non trivial = or H; occur in the same dimension and are
equal. (This theorem holds also when X is path connected, simply
connected and is homotopy equivalent to a space with a good cover).

Application: 74(S") = 0 for 0<g<n and 7,(SM) =Z
because we know that Hq(Sn) = 0 for 0<q<n and Hy(S®) = Z.

Singular cohomology

A singular gq—cochain on X is a linear functional on the Z module
SqX, 2);

SA(X, Z) = Hom(Sq(X), 2)

sacx, 2) 3 satix, o 3 ...

{s a cochain complex with w(c) = w(dc), §2 =0 and
Kers§ Z9(x, 2) cocycles
we have HA(X, Z) = - =
Imé BA(X, Z) coboundaries
Example: HO(X, Z) = Z if X is path connected; infact §w = 0
(w on X) if w(@) = 0 Y ¢ and w is constant on each

path—component.



We now compute
HA(R", 2) q s 1

Define L: SAR1, Z) > S977(R1, Z) to be the adjoint of the cone
map K : Sq(Rn, Z) » Sq+,(Rn, Z) defined before

Lo(c) = o(K(c))
Then we have:
(6L - Lé)a(c) = o((K3 - 3K)c) = ((-1)dt1g)ec
hence
5L - Ls is a homotopy operator between *1 and 0

and hence HP(RN, Z2) =0 p > 1.

Cohomology with coef ficients

If A is any abelian group we can also define HP(X, A) by
considering S4(X, A) i.e. cochains with coefficients in A (Z-linear
functionals on S4(X, A)).

The universal coefficient theorem gives:

HA(X, A) = Hom(Hg(X, Z), A) @ Ext(Hg_,(X, Z), A).

In particular if Hg(X, Z) and Hg-, (X, Z) are finitely generated Z
modules, putting A Z:

HA(X, Z) = Hom(Hq (X, Z), 2) © torsion part of Hq_1(X, )

We have also:
HA (X, R)=Hom(Hq(X, 2), R)=Hq(X, R) as dual vector spaces.

(Note that if Hg(X, Z) = Ze7e...0 ©; Z

i fai

Hom(ZeZe...®;Z,;, R) = Hom(ZeZe...Z, R) = ReR....eR
Hq(X, R) = (Z@...eiZai)e R = ReR...eR).

«



We have also:

HA(X, R) = HA(X, Z)eR

De Rham Theorem

We quote the result: if X is a compact orientable manifold without
boundary

HI(X, R) = Hpra(X)

The isomorphism is given by:
given a q-form o representing a class in HIpR(X) we obtain a
q-cochain w representing a class in HY(X, R) by

w(c) = o w where ¢ is a g-chain.

Note dw(c) = w(dc) = fge w = [, dw = 0.
This result,via the Chech cohomology (see the lectures of C.Reina)
can be proved also for general manifolds.

Remark on integer classes

An integer class in Hpp™X) is a class such that gives an integer
. when integrated on an integer c.

Note that {integer classes in HpRrMX)}HMX, Z) because
Hpr™X) = HYX, R) = HXX, Z)® R and torsion elements are lost
during the embedding HY(X, Z) » H}{X, Z)® R (a - a®l).

We give now an example of this fact.

S0(3) = %2—) we know that:
2

7,(S0(3)) = 0 and =x,(S0(3)) =2, so Hy(S0(3), Z) =2
H,(S0(3), Z) = Z,; we have also H,(50(3), Z) 0.

So H2(S0(3), Z) = 2Z, while Hpgp2(S0(3)) = 0.

This is a general consequence of the fact that =, is cyclic. If, for

example, =,(M) = Z, where M is a manifold, H,(M, Z) has torsion
and also H2(M, Z) has torsion.



TWO APPLICATIONS
Classification of Bundles

It is known that in physics fields are to be regarded as_ sections
of suitable bundles associated to the principal bundle on which the
gauge field is a connection. So the problem of the topological
classification of bundles is crucial, because it shows the nature of the
topological charges in the theory.

Recall that a fiber bundle (E, =, M) with fiber F, base space M and
group G acting on F on the left is required to be locally trivial i.e.
Vx eM ZUcMand hy : U x F » 7' (U) omeomorphically
such that w(hy(x, v) =x Vx e U, VV eF.

If V is another open containing x such that hy : V. x F > «7(V),
then there exists gVy : b4 - G such that
hy(x, v) = hy(x, gyuxv).

For vector bundles the fiber F is a vector space and G is required
to act linearly. For principal bundles the fiber F is = G and G acts
on itself by the group law.

We will consider all objects as topological manifold or topological
groups.

{gyu} satisfying gyy = guv™ ! and gyy guz &zv = 1 is called a
system of transition function associated to the covering U, V, Z...
Two systems are called equivalent if there exist a set of functions
ry : U » G such that

g'vu = ry~'gvury -

It is known that a bundle is given (modulo isomorphisms) by a
system of transition functions and, viceversa, a system of transition
functions (modulo equivalence) gives a bundle.

In simple cases, this observation allows a classification of bundles.
Example: line bundles over S' (Fiber R, group R*) cover

S' with two open sets AuB = UnV

we have two bundles: :

The trivial one is given by gyy(x) = 1 and a non trivial
. . 1 x €A

one is given by g'yy(x) = {_1 < ¢B

We want to show that any other is isomorphic to one of this two.

If we have any bundle given by ¥{yy(x) ¢ R* if ¥yv!i A and ¥yuyip

have the same sign (e.g.+), we can find an equivalent system ¥'{yy

such that ¥yyy(p) = ¥'yy(b) =1 where p ¢ A and q ¢ B:

41
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Now we can find an equivalent system ¥"yy putting:
V'gy in (c, q] 1/\1/"” in (a, p]
r'y = 41 in [q, p] r'y = 1 in [p, q]
¥'yy in [p, b) 1/\11"N in [q, d)

so ¥'yy =1y ¥'yy r'y =1 = gyy and’ the bundle is trivial.
If the sign is different, an analogous procedure will give that
\Il“UV = g.UV-
The general case, for arbitrary M (base) and G (group) is a
formidable task and we will limit to a few cases. We call Bg(M) the
set of isomorphism classes of G-bundles over M.
Before proceeding it is useful to note that with the tensor product
the line bundles form a group (identity is the trivial bundle and the
inverse is the bundle given by the inverse of the transition function)
(recall that the transition function of the tensor product of line
bundle is the product of the transition functions of the two line
bundles). We have just shown that (line bundles over S') = Z
Note that also ‘A’O(R*) =27,
This is a general fact: BG(S™) = =p—,(G) (Do not worry here about
the group structure of Bg(SD)).
Recall that if f is a map M - N and E a bundle over N,
f'E = {(x, p) ¢ M x E / f(x) = «(p)} is the pull-back bundle on
M. An important result is that if f =~ g then f E = g*E, thus we
have a "map" from [M, N] into the set of G-bundles over M.
(If] » fE). :
Definition: A n-universal G bundle (EG, =, BG) is a principal G
bundle such that the map

2

(M, BG] > Bg M

13



is one to one and onto for any n-dimensional manifold.
n—Universal bundles exist for any n and any G and it can be shown
that a bundle (E, T, M) is n—unijversal if
1,(E) = 7,(E) =....my(E) = 0

There exist also «—universal bundles called simply universal -bundles.
We do not enter into the construction of EG and BG but only give
examples.

1-Universal bundle for G = Z,. We have RP2 = 52/7_so S2 is the
total space of a principal Z, bundle over RP2  Since
Tm,(8%) = »,(8?) = 0 this bundle is 1-universal S0
[S', RP?] = Bz (S‘l ie. Bz (8') = #,(RP?) = Z, as we already
knew. (The group R* can be always reduced to Z,).

2-Universal bundle for G = U(1): the Hopf bundle is 2-universal

S o fa so Bu(1)(52) - [S2, §S2] = Z
2

The long exact homotopy sequence for the universal bundle
(EG, ~ ,BG) gives (recall =p(EG) = 0 Vn)

0 » x(BG) » 7, (G) » 0 ns>1
and so *n(BG) = x_, (G)
Hence, since for spheres [SP, BG] = x,(BG), we have
Bg(SM) = 7n_,(G)

To know that universal bundles exist in general is interesting but the
structure of BG is usually so complicated that [M, BG] cannot be
computed. An important exception is the case in which BG is an
Eilemberg—-Maclane space.
An Eilemberg-Maclane space is K(A, n) which satisfy:
1) K is a path—connected topological space, n an integer > 1, A an

abelian group.
2) =w,(K(A, n)) = A if i=mn, =20 if i # n.
It can be shown that

(M, K(A, n)] = H(M, A)

Examples: Consider the fiber bundle Z, - SJ'[n

RP,

4



The exact homotopy sequence gives

wl(RPn)
Ty (RPM)

’ R

22
0 if 1<i<n

Now to the sets S® = U®,=,S%, RP® = U®,=, RP?, can be given a
topology and it can be shown that =;(S) = 0  Vi. From the
homotopy sequence we have «,(RP®) = Z,, m(RP®) = 0 i#l.

So S® is a universal Z,-bundle, and RP® = K(Z,, 1) and
Bz(M) = [M, BZ,] = [M,(Z,, 1)] = H'(M, Z,).

On the other hand U(1) » §%

¥

Ccp®
is a universal U(1)-bundle and moreover CP® = K(Z, 2).
(This follows from the bundle §2n-1 , cpn-1

So By(,)(M) = [M, BU(1)] = [M, K(Z, 2)] = H2(M, Z)

The element in H2(M, Z) corresponding to a particular bundle is
said the first (topological) Chern class. Note that the Chern class
usually obtained by means of the curvarture form of a connection is
an integer class in Hpr?(M) and in general does not classifies U(1)
bundles (see the remark on integer classes).

Cohomology and Anomalies in Gauge Theories

In this section we briefly describe an application of algebraic topology
to the problem of anomalies in gauge theories (for details see R.
Catenacci, G.P Pirola, C. Reina and M. Martellini Phys. Lett. 172B
1986).

We recall that the main object of study is the vacuum functional
W(A) for chiral fermions in an external gauge potential A.

W(A) is a smooth complex valued functional W : A 5 C defined on
the space A of all gauge potentials. A carries a principal action of
the group G of pointed gauge transformation; the map
A->A g=g"Ag + g7'dg is free and the projection
m : A 5> Alg = 6 over the space of orbits is a principal bundle. We
say that an anomaly is present if W is not invariant under the action
A - Ag. Algebraic topology allows a general study of the possible
transformation properties of W. We can consider W as a section of
a trivial line bundle over A and when G acts on A, the

{5



corresponding actions on thé bundle are of the form
(A, W) > (Ag, (A, 20 W)
where f(A, g) ¢ c*.

Associativity requires f(A, g,g,) = f(Ag,, g,)f(A, g,).
Moreover two actions f(A, ), f'(A, g) can be considered as
equivalent if there exists a vertical automorphism of the bundle
H: A5 C" such that

£'(A, g) = H(Ag) f(A, g) H(A)™

We see that the problem of the classification of the functions f
admits a cohomological interpretation: we define a O-cochain a map
f:A->C and a l—cochain a map f : A x G » C* (and a
n—cochain ¥(A, g,,..g;). The coboundary operator 5 is

(sh)(A, g) = h(Ag) h(A)~!
6f(A, g,, 8;) = f(Ag,, g,) f(A, g,) f(A, g,g8,)7"

It is obvious that §2 = 1 (multiplicative notation!) and the trivial
actions are the 1-coboundary; while the actions are the 1-—cocycles.
We have a cohomology group denoted by H'(G, C).

It is not difficult to show that this group is isomorphic to H 28, Z).
Infact to any equivalent class of f one can associate a line bundle
over 6 and viceversa.

We recall now that line bundles over a space X are classified by
H2(X, Z) (the topological chern classes).

It is known that for the interesting case of a SU(n) gauge theory on
S4, H?(8, Z) = Z and so the anomalies are integer multiplies of a
fundamental class. As a further example we will consider the
fermionic vacuum functional in gauge theories with parity preserving
fermionic content.

The vacuum functional W is now real and can be considered as a
section of a real line bundle. Anomalies are now of the form
f:AxG > R* where f is a class in H'(G, R"). This group
classifies real line bundles and is isomorphic to H'(8, Z3).

It is known that on S* with gauge group SU(2) =,(G) = Z, and we
get 7,(8) = 7x,(G) = Z, (recall that A is contractible). Thus:

H'(8,Z,)=Hom(H, (8,2) ,Z,)®Ext (H,(8,Z) ,Z,)=Hom(Z,,Z,)=Z,.
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