ARPHA: AN FDIR ARCHITECTURE FOR AUTONOMOUS SPACECRAFTS BASED ON
DYNAMIC PROBABILISTIC GRAPHICAL MODELS.

Luigi Portinale and Daniele Codetta-Raiteri

Dipartimento di Informatica, Universita del Piemonte Orientale,
Viale T. Michel 11, 15121 Alessandria, Italy
e-mail:{luigi.portinale, dcr} @di.unipmn.it

ABSTRACT

This paper introduces a formal architecture for on-
board diagnosis, prognosis and recovery called ARPHA.
ARPHA is designed as part of the ESA/ESTEC study
called VERIFIM (Verification of Failure Impact by
Model checking). The goal is to allow the design of an
innovative on-board FDIR (Fault Detection, Identifica-
tion and Recovery) process for autonomous systems, able
to deal with uncertain system/environment interactions,
uncertain dynamic system evolution, partial observabil-
ity and detection of recovery actions taking into account
imminent failures. We propose to base the inference en-
gine of ARPHA on Dynamic Decision Network (DDN),
a class of Probabilistic Graphical Models suitable to rea-
son about system evolution with control actions, over a
finite time horizon. The DDN model needed by ARPHA
is assumed to be derived from standard dependability
modeling exploiting an extension of the Dynamic Fault
Tree (DFT) language, called Extended DFT. We finally
discuss the software architecture of ARPHA, where on-
board FDIR is implemented.

Key words: Fault Diagnosis, Fault Recovery, Prognosis,
Probabilistic Graphical Models.

1. INTRODUCTION

Autonomous spacecraft operation relies on the adequate
and timely reaction of the system to changes in its op-
erational environment, as well as in the operational sta-
tus of the system. The operational status of the system
is dependent on the internal system dependability factors
(e.g. sub-system and component reliability models), on
the external environment factors affecting the system re-
liability and safety (e.g. thermal, radiation, illumination
conditions) and on system-environment interactions (e.g.
stress factors, resource utilization profiles, degradation
profiles, etc.). Combinations of these factors may cause
mission execution anomalies, including mission degra-
dations and system failures. To address possible system
faults and failures, the current state-of-the-art of the FDIR

(Fault Detection, Identification and Recovery) process is
based on the design-time analysis of the faults and failure
scenarios (e.g. Failure Mode Effect Analysis or FMEA,
Fault Tree Analysis or FTA) and run-time observation of
the system operational status (health monitoring). The
goal is a timely detection of faults and the initiation of the
corresponding recovery action (often using pre-compiled
look-up tables), that may also be the execution of the saf-
ing actions to put the spacecraft into a known safe con-
figuration and transfers control to the Ground operations.

The classical FDIR approach however, suffers from mul-
tiple shortcomings. In particular, the system, as well as
its environment, is only partially observable by the FDIR
monitoring; this introduces uncertainty in the interpreta-
tion of observations in terms of the actual system status.
Moreover, classical FDIR represents a reactive approach,
that cannot provide and utilise prognosis for the imminent
failures. Knowledge of the general operational capabili-
ties of the system (that should potentially be expressed
in terms of causal probabilistic relations) is not usually
represented on-board, making impossible to estimate the
impact of the occurred faults and failures on these capa-
bilities. Several studies have tried to address these prob-
lems, some by restricting attention to manned systems
[1] or to systems requiring heavy human intervention [2],
some others by emphasizing the prognostic phase and re-
lying on heuristics techniques to close the FDIR cycle
[3]. A more formal approach to on-board FDIR seems to
be needed, having the capability to reason about anoma-
lous observations in the presence of uncertainty, dynamic
evolution and partial observability. The main issue is to
define a unifying formal framework providing the system
with diagnosis and prognosis on the operational status to
be taken into account for autonomous preventive recov-
ery actions.

In this paper, a formal model integrating standard de-
pendability analysis with knowledge-based reasoning
based on Probabilistic Graphical Models is proposed,
with the aim of enabling on-board FDIR reasoning.
While the final goal of the study will be to develop
a demonstrator performing proof-of-concept case stud-
ies for the innovative FDIR element of an autonomous
spacecraft, the paper concentrates on the formal model-

ing, inference, specification and design of an on-board
FDIR architecture called ARPHA (Anomaly Resolution
and Prognostic Health management for Autonomy), de-
signed to address on-board reasoning about the impact of
system and environment state on spacecraft capabilities
and mission execution. The paper is organized as fol-
lows: Sec. 2 discusses issues concerning modeling causal
probabilistic knowledge, Sec. 3 introduces the DDN (Dy-
namic Decision Network) model to be used for the actual
FDIR analysis of ARPHA; finally, the design and the for-
mal software architecture of ARPHA are then discussed
in Sec. 4.

2. MODELING
KNOWLEDGE

CAUSAL PROBABILISTIC

Modeling probabilistic causal dependencies is one of
the main capabilities of Probabilistic Graphical Models
(PGM) [4] like Bayesian Networks (BN), Decision Net-
works (DN) and their dynamic counterparts as Dynamic
Bayesian Networks (DBN) and Dynamic Decision Net-
works (DDN) [5]. From an FDIR perspective, this class
of models naturally captures dependencies and evolutions
under partial observability; moreover, in decision mod-
els also the effect of autonomous actions can be mod-
eled and utility functions can be exploited in order to se-
lect most useful actions. For this reason, we propose a
formal architecture called ARPHA (Anomaly Resolution
and Prognostic Health management for Autonomy) based
on the model of DDNs. DDNSs are essentially DBNs aug-
mented with decision nodes and utility functions. DBNs
are, in turn, a factored representation of a discrete time
Markov process, where the global system state is deter-
mined by the Cartesian product of a set of discrete vari-
ables obeying to Markovian state transitions (see [4, 5, 6]
for more details). Solving a DDN means finding a se-
quence of decisions maximizing the total expected util-
ity over a specified horizon; this means that, in principle
every algorithm for solving a Markov Decision Process
(MDP) [7] can be adopted. However, from an on-board
FDIR perspective, globally optimal sequences can be too
hard to be obtained, both in terms of time and computa-
tional resources. For these reasons, DDNs are proposed
as the suitable target model for ARPHA, by adopting
an on-line inference strategy [7], where observations on
monitored parameters are processed as soon as they be-
come available to the system. This allows for the choice
of alocally (i.e. at the current time) best recovery action,
given the current stream of observations and the future
possible states of the modeled system, providing a tight
connection between diagnosis, recovery and prognosis.
Furthermore, by taking into account both the current “be-
lief state” of the system (summarizing the history of the
system uncertain evolution) and the effects of the recov-
ery actions on future system states, the task of preventive
recovery can be addressed.

Even if the ARPHA architecture is designed as an on-
board inference engine, it has to rely on a suitable off-
board modeling phase, producing the model on which

on-board inference has to take place. As mentioned
before, the target model on which ARPHA works is a
DDN, which is however a class of models unfamiliar to
most reliability engineers; they are usually more familiar
with other formalisms and techniques supporting classi-
cal FDIR task like Fault Tree Analysis (FTA) [8]. How-
ever, Fault Trees (FT) are limited to model systems with
independent binary components (i.e. characterized by
the “ok-faulty” dual behavioral modes, failing indepen-
dently from other components in the system). For this
reason, several extensions have been proposed, either to
address specific stochastic dependencies as in Dynamic
Fault Tree (DFT) [9] or to allow the modeling of “multi-
state” components [10, 11], or both [12]. Concerning the
off-board process of ARPHA (having the goal of produc-
ing a suitable DDN for on-board inference), we have pro-
posed to extend the formalism of DFTs to another for-
mal modeling language called Extended Dynamic Fault
Tree (EDFT) [13]; in this extension, a generalization of
both Boolean components to multi-state components, as
well as a generalization of the stochastic dependencies
allowed by the DFT formalism are introduced. The idea
is to provide the modeler with a formal language able to
express, in a FT-based style, a set of complex component
interactions, while being at the same time, suitable for a
general FDIR analysis. The proposed approach is then to
compile a DDN from the input EDFT model, and then us-
ing a suitable algorithm for on-line inference to perform
the FDIR task. Details about the EDFT formalism and
the modeling features can be found in [13].

In the next sections, we provide the details about the re-
sulting DDN model and the components of the ARPHA
architecture.

3. A DDN MODEL CHARACTERIZATION FOR
ON-BOARD FDIR

As introduced in Sec. 2, DDN models are good can-
didates for addressing the innovative FDIR issues men-
tioned in Sec. 1. For this reason, ARPHA assumes a par-
ticular DDN model as the operational model on which
to implement the whole FDIR algorithm. ARPHA is in-
tended to provide FDIR capabilities to an autonomous
device, interacting with an Autonomy Building Block
(ABB) setting and executing a given mission plan. We
assume the following characterization concerning DDN
nodes:

e Observable nodes:

— Plan nodes whose values are the possible ac-
tions the planner can execute: these nodes are
assumed to be always set by the ABB;

— a decision node Recovery whose value are
the possible recovery and control actions the
autonomous device can execute';

IFor the sake of simplicity, we assume that all possible recoveries

Time: t Time: t'#&+

Recovery(t) Recovery(t')

H dden
State(t)

H dden
e(IV)

Figure 1. The DDN scheme for ARPHA FDIR.

— a set of Sensor Nodes representing possible
measurements from the devices sensors which
in turn can be:

x Context Nodes representing contextual or
environmental conditions;

x Finding Nodes representing monitored
device parameters such as measurements
of specific system variables.

e Hidden Nodes: representing internal state conditions
of the system which are not directly measurable. A
subset of hidden nodes are identified as Diagnostic
Nodes and represent variables target of the diagnos-
tic process (see in the following).

The network high-level scheme of the DDN model used
by ARPHA is shown in Fig. 1 and an actual instantiation
of this scheme is shown in Fig. 3. The scheme encodes
the following general assumptions: time is assumed to be
discrete with a discretization step of A time units; contex-
tual information influences system internal state within
the same time slice; both plan as well as recovery actions
have influence on the future system state (i.e. on system
variables at the next time slice); system state transition
model is then determined by actions (plan and recovery)
and the current state?; the utility function to be optimized,
in order to choose the best recovery action, depends on
the chosen action and the system state determined by the
action.

4. DESIGNING ARPHA

The ARPHA architecture puts emphasis on the on-board
software capabilities; however, as we mentioned be-
fore, an off-board processing phase is necessary, in or-

are the values (states) of a single decision node. Actually, such states
can represent recovery policies, that is set of atomic actions. So, setting
a value (or state) of the decision node, means setting a specific recovery
policy, which means in turn to set values to every model’s variable in-
volved in the policy. In the following we will indicate as recovery action
or policy the possible values or states of the decision node Recovery.
2This is the standard assumption about state transition in MDP.

der to provide it with the inputs and the needed opera-
tional model. Fig. 2 summarizes the basic scheme of the
ARPHA on-board reasoning process, involving the inter-
actions with the off-board processing phase.

4.1. The role of the off-board process

The off-board process starts with a fault analysis phase
concerning some basic knowledge about the system faults
and failures, together with some knowledge about envi-
ronmental/contextual conditions and their effects and im-
pacts on the system behavior (possibly either nominal or
faulty). This phase is aimed at constructing (by standard
and well-known dependability analysis procedures) a first
dependability model that we assume to be a DFT. Start-
ing from this first analysis, the DFT model is enriched
with knowledge about more specific system capabilities
and failures, with particular attention to the identification
of multi-state components and stochastic dependencies
not captured at the DFT language level. The aim is to
generate an EDFT representing all the needed knowledge
about failure impacts. During this phase, both knowl-
edge about external actions (like plan actions) or control
actions (useful to perform recovery) can be incorporated
into the EDFT model.

The EDFT produced can then be compiled into a DDN:
the compilation process is essentially based on the com-
pilation of a DFT into a DBN (whose details can be found
in [14]), with the addition of the compilation of stochas-
tic dependencies not captured at the DFT modeling level
(that can be mapped into suitable conditional probabil-
ity entries of the variables concerning inputs and output
of the gate), of external actions (that can be mapped into
plan nodes, assumed to be always observed as evidence)
and of control actions/policies (that can be mapped into
states of the decision node). To complete the DDN, the
analyst specifies the utility function by identifying the set
of relevant variables, and by building the corresponding
utility table taking into account such variables and the
control actions available. Fig. 3 shows a simplified ver-
sion of a DDN obtained after a fault analysis and model-
ing phase, concerning the power management subsystem
of an autonomous Mars rover, and in particular, some
simplified version of the possible faults and behaviors
that may influence the absence of power from rover’s bat-

evidence
| evidence_pLan

OFF-BOARD Dynamic (Junction T

PROCESS Bayesian Network Tree ‘_d\SENSORS
Diagnosis, Recovery, Prognosis [€VI¢€nce

utility functions—— Dynamic i t i

knowledge on system capabilitie: Decision Network

Diagnostic Recovery Prognosis ON-BOARD
indices actions measures -
knowiedge on failure impacts | Ao R PROCESS

Fault Tree

knowledge on plan actions—"
knowledge on recovery action: Bynamic
system analysis———— Fault Tree

on
environment conditionS™~—, Fault Analysis
_— (FMEA/FMECA)

knowledge on faults

Figure 2. ARPHA on-board reasoning process plus off-
board process.

tery. The EDFT originating the DDN in Fig. 3 is available
in [13]. Fig. 3 is a modified screenshot of the editor of
the Radyban tool [14], highlighting the set of observable
parameters; numbers inside the nodes show the node’s
cardinality, the number below a node is the time slice (0
for the so-called anterior layer and 1 for the so-called ul-
terior layer), while thick temporal arcs connect node X
at slice 0 with its copy X # at slice 1.

The example captures the following knowledge about the
problem. There is no power coming from the rover’s
battery (NoPWRBatt) when either the battery is perma-
nently damaged (BattDamaged) or when it is com-
pletely discharged (BattCharge=Flat see below).
Battery damages may occur in case of exposition to either
over-temperature or under-temperature, or because of a
mechanical shock. The latter has some prior probability
of occurrence, that is increased if the rover is executing a
Drill action; over-temperature and under-temperature
are caused by the actual external temperature (which is
monitored through a sensor) and by failures of the TCS
component (Temperature Control System) that may “fail
to keep warm” (FKW) or “fail to keep cold” (FKC), hav-
ing in this way three possible states or behavioral modes:
OK, FKW, FKC. Also Battery charge is discretized on
3 levels: OK, Reduced and Flat. Battery charge level
is a sensored parameter (with a possible uncertain read-
ing as any real sensor). Battery charging occurs through
power supply from a solar array subsystem composed by
a main solar array SA1 and a warm spare solar array SA2.
There is no power supply (NoPWRSA event true) when
either the solar array subsystem is in shadow or when
both solar arrays are faulty (SA is true). Both shadow
and power supply are monitored parameters. The charge
of the battery is affected by the operational mode under
which the rover is working, namely Mode=standard,
Mode=energy_saving, Mode=halt). The opera-
tional mode is a controllable parameter, so a recovery ac-
tion can be executed by setting the suitable state of the
node Mode. Discharge and charge rates between the bat-
tery levels depends on the operating mode (Mode) as well
as on the presence of power from solar arrays.

In ARPHA, we decided to implement the DDN analysis
by resorting to Junction Tree (JT) inference algorithms
[4, 5]. In this class of algorithms, once the JT structure is
obtained, one can get rid of the original network, so an-
other role of the off-board process is the generation of the
JT from the DDN. In particular, since a specific instan-
tiation of the decision node will transform the DDN in a
DBN, we implemented two different JT-based algorithms
for DBNSs as core inference procedure to be used: Mur-
phy’s 1.5JT algorithm [6] and Boyen-Koller (BK) algo-
rithm [15]. The first is an exact inference method, while
the second is a parametric algorithm that, depending on
the input parameters, produces approximated inference
with different degrees of accuracy (actually, 1.5JT can
be considered as a special case of BK); the main rea-
son for implementing approximated inference is that, in
case of network models which are particularly hard to
solve with exact inference, a reasonable approximation
can trade-off time/space complexity and quality of the

results®. As mentioned, the implemented inference algo-
rithms use a DBN as the underlying network model; this
is because the DDN obtained during off-board analysis
is evaluated by considering different setting of the con-
trol actions/policies (that are then entered as evidence in
the corresponding variables), then transforming the DDN
into a DBN. In this way, since the inference procedures
will be performed on board, the JT will be the actual op-
erational model undergoing analysis by the on-board pro-
cess of ARPHA, with diagnosis, recovery, and prognosis
purposes.

4.2. On-board process

The on-board process operates on a Junction Tree as ac-
tual operational model, receiving evidence from both sen-
sors (for contextual as well as finding information) and
the Autonomy Building Block (for plan actions); it is in-
tended to produce recovery actions (to be translated into
autonomous control action commands), as well as diag-
nostic and prognostic indices (see Fig. 2). We refer to the
following characterization of the FDIR process:

e Diagnosis at time ¢: a belief state on the set of diag-
nostic nodes D at time ¢, i.e. the posterior probabil-
ity at time ¢ of each d € D given the evidence (from
Planand Sensor Nodes) up to time ¢;

e Recovery at time t: choice of the “best” ac-
tion/policy r from Recovery node at time ¢, given
the evidence up to time ¢;

e Prognosis at time t' from time ¢ < t': the belief state
of set D at time ¢, given the observations up to time ¢
(and possibly plan information up to ¢’ if available);

We also define the following notions; Discretization step:
the time interval A between two consecutive inferences;
Mission Frame: the time interval concerning the analysis,
starting from an initial time instant ¢y, ending in a time
instant ¢y and discretized into intervals of width A, i.e.
MF = [to,to + A, ...t — A ty].

The UML use case diagram in Fig. 4 represents the main
functionalities of ARPHA. The actors that interact with
ARPHA are the following:

o System Context: it represents memory area that con-
tains data received from sensors and configuration
of system;

e Autonomy BB: it represents an autonomy building
block dedicated to plan execution and plan genera-
tion.

3The assumption is also that, since the networks used by ARPHA
have a reasonable number of observed variables (i.e. each relevant sys-
tem component is a sensored component and sensors have a high accu-
racy), then the approximation error is bounded by conditioning on the
next set of observations during a temporal inference.

Sensors
(Finding or Context)

Pl an actions

NoPWRSA_sens
[}

NoPWRSA NoPWRSA#
Bhadow 0 1
1

Shad_sens Shad_sens#
1

BattCharge sens
0

;9 BatiCharge_sens#
1 0
BattCharie Ba SreEd
0 1
-

Tiode (2) Tode#
0 MoPWRBatt 1 NoPWRBatt#

3

NS,

1 OverTemp#
60

Ext teqp# arfe
1 @ 1

ExTemp_sens#

mechShack# e

BattDamaged#
1

Drill#
1

Figure 3. Example of a DDN for ARPHA.

e Event Handler: it represents the manager of events Anomalous (an anomaly is detected) or Failed (a

receiving from ARPHA the id of the action to be
performed to recover the system.

ARPHA cyclically (at each time step) performs the fol-
lowing sequence of use cases:

e Observation Collection: it periodically retrieves

data necessary for on-board reasoning. More specif-
ically, ARPHA periodically checks the current mis-
sion time: if the mission has just begun, then
ARPHA loads the initial version of the on-board
model from the System Context; if a new mission
frame has just begun, then ARPHA retrieves the
long scale sensor data (available for the whole mis-
sion frame), still from the System Context. At each
time slice, sensor and plan data are then retrieved
from the System Context and the Autonomy BB re-
spectively. Both kinds of data are converted in form
of observations concerning the variables of the on-
board model.

Current state detection: observations are loaded into
the on-board model; then, inference is executed by
JT propagation. Inspection of the probabilities of
the diagnostic variables can provide the diagnosis at
the current mission time. The possible system states
are Normal (no anomalies or failures are detected),

failure is detected).

Reactive Recovery: this kind of recovery is per-
formed if the current state detection returns a Failed
state. After having incorporated the current evi-
dence in the diagnostic phase, for each available re-
covery action (i.e. for each possible state of the re-
covery node), the action itself is loaded (propagated)
into the on-board JT; as mentioned in section 3, the
decision node Recovery is in general designed in
such a way that each value or state of the node actu-
ally represents a recovery policy (i.e. a set of atomic
recovery actions). Setting this node actually means
to set a specific value to the model’s variables af-
fected by the policy itself. So, the underlying model
on which to perform inference can be assumed to
be a DBN (from which to derive the JT as on-board
model); the expected utility of each policy is then
computed by setting in the JT the corresponding ev-
idence and by propagating it. The action/policy with
the maximum expected utility is then determined;
such action is converted into a command to be ex-
ecuted by the actuator components, then the com-
mand is delivered to the Event Handler for the exe-
cution. For example in Fig. 3, the states of the de-
cision node Mode are “atomic” policies (composed
by a single action) each one setting a specific oper-
ational mode for the device. The decision node can
then be simply mapped into a chance node having

policy set

policy set

on-board modal,
short scale sensordata,
long scale sensor data

System Centext

ARPHA

failure set, anomaly set

plan data

Diagnosis

Observations Collection &<—————

<=Include>>

Current state detection

{prognosis horizon)

Autonomy BB |
|
Prognosis !
l
<<Extend>> l
: : l
Future state detection Y- - 1 /rentstates Nomal_,
failure set,
anonmaly set, <<Extend>>
n_prog

if current state is Anomalous .
-

== Extend=>

<=Extend=>
If future state is Failed
or Anomalous

Recovery .

Preventive Recove:
|

=
i

-
ry

Reactive Recovery

T
l
l
|
|
l
l
: if currant state is Failed
l
l
|
|
l
|

!
Policy event generation

policy event

Event Handler

Figure 4. The UML use case diagram of ARPHA.

the operational modes as values/states; they are then
considered as evidence in the resulting DBN each
time a policy has to be evaluated. The Event Han-
dler will then deliver, as command to be executed,
the switching to the operational mode with the max-
imum expected utility.

Future state detection: if the current state is Normal,
then the time horizon ¢’ for prognosis is determined
and JT inference is performed with a time step of A
until ¢/, by considering no recovery (i.e. the recovery
node set at the current state) and plan information at
each time step as evidence.

Preventive Recovery: this kind of recovery is per-
formed if the current state detection returns an
Anomalous state, or if the future state detection pro-
vides an Anomalous or Failed state. The choice of
the best recovery action follows the same approach
applied for the Reactive Recovery use case, but ac-
cording to a certain time horizon if the preventive
recovery is a consequence of the future state detec-
tion.

The operations performed inside each use case are rep-

resented by the UML state-chart diagram in Fig. 5. The

results of the execution of each use case are stored in a

log file.

The software architecture of ARPHA is composed by the
following components represented by the UML class di-]

agram in Fig. 6:

e Main: it implements the main program capabilities

and controls the other components.

The

System_Context_Manager: it implements functions
dedicated to retrieve and manage data contained in
System Context.

Autonomy_BB_Manager: it implements functions
dedicated to interface the Autonomy BB in order to
obtain plan data.

Observation_Generator: it converts sensor data and
plan data into observations to be propagated into the
on-board model (i.e. the JT); in particular, it maps
each sensor with the corresponding variable in the
model and sets the variable value according to the
sensor reading (possibly performing discretization if
the sensor reads a continuous value).

JT_Handler: it implements propagation of observa-
tions and actions into the on-board model, it com-
putes the expected utility and gives the current or
future belief state.

State_Detector: it examines the current or future
belief state in order to detect the current or future
state of the system respectively (Normal, Anoma-
lous, Failed).

Policy_Evaluator: it manages the evaluation of the
best recovery action.

Event_Manager: it manages the Event Handler, in
order to send the action to be performed.

Logger: it implements the logger capabilities.

Main component coordinates the components in-

volved in each use case, while the core of the architec-

ture is the JT_Handler component: it implements the BK

Modelioad B

Ldo load the on-board moded from the System Contextje.

policy executed

maodel loaded
Time Check

\Lﬂissmﬂ'mtobemﬂa‘ted

ﬂm:;
| entry / check curment time of the mission begin of a mission frame entry / get long-scale data from System Context
/-Ldo { wait for sansor data to be updated do / convedt data into observations

Mission Frame Init \

data conversion completed

(Observation Collection

do/ convert data into observations

Lcnlry | get sansor short scale data from System Context and plan data from Autonomy BBJ

J/ data conversion completed

State

entry / propagate observations into the on-board model
exit/ detect the current state

do/ perform an inference on the onboard model at the current time

slate

ﬂ do / log the current state |

A

[D Log b

cument state is Anbmalous
[=2=1

current state is Falled Y

B

; P
Policies retrieval for Failure
dao / get policies for the current failure, from the System ContcxtJ

policies retiaved d, policies ratisved

2y

(Policies retrieval for Anomaly
Ldo I get policies for the current anomaly, from the System Context f—

Palicy selection

Policy &

do/ select an available policy palicy bk luath \
\ antry / convert the policy actions into chservations and propagate them into the on-board model
- . do / perform an inference in the future
all policies considerd best policy updated exit/ compare the utility of the cumrent policy with the utility of the cument best policy

Paolicy event generation
entry / generate a policy event for the best policy
do/ transmit the policy event to the Event Manager

A policy event delivered

Recovery Log

do / log the policy event

future state is Normal (

Prognosis

Future state d

Prognosis Log

axit / detect the future state

Ldo / perform an inference of the on-board model, in the future

future state is Anomalous|

do/ log the future state

future state is Failed

curent state is Normal

Figure 5. The UML state-chart diagram of ARPHA.

inference algorithm (with the special case of 1.5JT) with
the goal of providing the posterior probabilities over the
variables of interest to the other components that need
them (e.g. State_Detector and, Policy_Evaluator). The
Logger records all the probabilistic computations per-
formed by the JT_Handler and can then provide such logs
to Ground when requested. The interactions among such
components in each use case have also been designed in
form of UML sequence diagrams which are reported in
[13].

5. CONCLUSIONS

We have presented ARPHA, a formal architecture for
on-board FDIR process for an autonomous spacecraft.
ARPHA aims at keeping as much standard as possi-
ble the fault analysis phase, by allowing reliability en-
gineers to build their fault models using an intuitive ex-
tension of the DFT language (the EDFT language), be-
ing able to address issues that are very important in the
context of innovative on-board FDIR: multi-state compo-
nents with different fault modes, stochastic dependencies
among system components, partial observability, system-
environment uncertain interactions. ARPHA transforms
the EDFT model into an equivalent DDN to be used as
the operational model for the FDIR analysis task. On-

board analysis exploits Junction Tree inference, by com-
piling the DDN into the JT structure to be actually used
on-board; FDIR is then implemented by resorting to stan-
dard JT propagation as the core procedure for on-line di-
agnosis, recovery and prognosis. The formal software ar-
chitecture of ARPHA has then been presented through
UML diagrams. The architecture is currently under val-
idation on a set of case studies concerning the on-board
FDIR process applied to a Mars rover.

ACKNOWLEDGEMENTS

This work has been funded by European Space Agency
(ESA/ESTEC) under study TEC-SWE/09259/YY. The
study is a joint effort with Thales/Alenia, Torino (Italy).
We want to thank Andrea Guiotto of Thales/Alenia for
having contributed with his work to the content of the
present paper.

REFERENCES

[1] M. Schwabacher, M. Feather, and L. Markosian.
Verification and validation of advanced fault detec-
tion, isolation and recovery for a NASA space sys-

(2]

.pimihm

activity_id : sting

-running . infeger

-variable_name . sting data <<actor>>
-time ; integar Autonomy_BB

Anomaly
-anomaly_id : string,
-variable_nama : sting
-variable_value . intager
~under_recovery : boolean
-prabability_thrashold : fioat

Failure
-failure_id : string
-variable_name . string

| ‘Observation_Generator

+convert_policy_to_obsip . policy) : observation_stream

+convert_plan_tc_obs(p : plan_data) : observation_stream

1
'
+convert_long_scale_sensor_to_obs(s : sensor_data, range_set : range [*], steps : integer) : cbservation_stream :

+convert_short_scale_sensor_to obs(s : sensor_data, range_set : range [*]) : observation stream

i

: -variable_value | integer policy
| [-under_racovery : boslean Lid | string

I .

([[FRn ke steps | integer
i

l-utility_variable : string
|-utility_value : integer
[-fallure_id . string
[-anomaly_id : string

Autonomy_BB_manager

+poll_for_plan_data(}: plan_data

System_Context manager

__|-nunning : boolean

+poll_for_short_scale_sensor_data() : short_scale_sensor_data

+getl_model() : model

\ State_Detector |
i ‘ﬁinctm_smc[ns befief_state, a_set : Anomaly ['], f_set : Failure [*]): state |

+gel

+getl_failure_set() . failure [*]

[*getStepsy) : inleger
+poll_for_long_scale_data) : long_scale_sensor_data
: state, type ! string) : policy [*] ?
anomaly [] action

+gel_anomaly_sel() :

+get_n_prog() : integer
+set_failure_to_recovered(failure_id) : void
+sat_anomaly_to_recoverad(anomaly_id) : void

l-component_id : string
|-variable_name : sting
l-activity integer

Policy Evaluator

+reset_probability() : void

+check_utility(p : policy, bs : belief_state) ! string

'
| <EUSEEE

A'4

<cuse>>

+set_policy_to_minning{best_policy_id : string} : void l-action_id ; string
+gel_ranges() . range [*] l-time : integer
rangs l
-sensor_name : siring V ‘
-variable_name ; sting |—«@y| <<actor>>
-variable_value | integer System Context [
-min_value : float n_prog : integer ’—
-max_value : floal

variable_name : string

JT_Handler

|-variable_value :integer

1 [+load_model{m : model) : void

|-probability : fioat

| Event_Manager |

1
1
|
1
: +inference(lime_steps :integer, s_stream : observation_stream, p_stream : observation_stream, pol_stream : observation_stream) : belief_slate
1
|
'
1

e _>|+send_cvcr|t_report(policy_xd: string) : void | state | Joti scaTNea A Hate | | AXOVC SR sanNc ety |
| -name . string | | |
1 id ; string sansor_ilem
V : slring W/ ¥ ~sensor_name | string shespation
= I i l-variabla_name : str
_EACtory +gatld(} : string sensor_data -sensor_value : float - S
Event_Handler - variabie_name : sting |variable_value : inleger

|-step : integer
|-probabiity : float

Figure 6. The UML class diagram of ARPHA.

tem. In Proc. Int. Symp. on Software Reliability En-
gineering, Seattle, WA, 2008.

P. Robinson, M. Shirley, D. Fletcher, R. Alena,
D. Duncavage, and C. Lee. Applying model-based
reasoning to the FDIR of the command and data
handling subsystem of the ISS. In Proc. iSAIRAS
2003, Nara, Japan, 2003.

W. Glover, J. Cross, A. Lucas, C. Stecki, and
J. Stecki. The use of PHM for autonomous un-
manned systems. In Proc. Conf. of the PHM So-
ciety, Portland, OR, 2010.

D. Koller and N. Friedman. Probabilistic Graphi-
cal Models: Principles and Techniques. MIT Press,
2009.

EV. Jensen and T.D. Nielsen. Bayesian Networks
and Decision Graphs (2nd ed.). Springer, 2007.

K. Murphy. Dynamic Bayesian Networks: Repre-
sentation, Inference and Learning. PhD Thesis, UC
Berkley, 2002.

S. Russell and P. Norvig. Artificial Intelligence: a
Modern Approach (3rd ed.). Prentice Hall, 2010.

W. G. Schneeweiss. The Fault Tree Method. LilLoLe
Verlag, 1999.

J. Bechta Dugan, S.J. Bavuso, and M.A. Boyd. Dy-
namic fault-tree models for fault-tolerant computer

[10]

(11]

[12]

[13]

[14]

[15]

systems. IEEE Transactions on Reliability, 41:363—
377, 1992.

Y. Kai. Multistate fault tree analysis. Reliability
Engineering and System Safety, 28(1):1-7, 1990.

X. Zang, H. Sun, D. Wang, and K.S. Trivedi. A
BDD-based algorithm for analysis of mulitstate sys-
tems with multistate components. IEEE Transac-
tions on Computers, 52(12):1608-1618, 2003.

K. Buchacker. Modeling with extended fault trees.
In Proc. IEEE Int. Symp. on High Assurance System
Engineering, Albuquerque,NM, 2000. IEEE Press.

D. Codetta-Raiteri and L. Portinale. ARPHA: an
FDIR architecture for Autonomous Spacecrafts
based on Dynamic Probabilistic Graphical Models.
Technical Report TR-INF-2010-12-04-UNIPMN,
Dip. di Informatica, Univ. del Piemonte Orientale,

http://www.di.unipmn.it/?page=pubblicazioni&pubid=131,

December 2010.

S. Montani, L. Portinale, A. Bobbio, and
D. Codetta-Raiteri. RADYBAN: a tool for reliability
analysis of dynamic fault trees through conversion
into dynamic bayesian networks. Reliability Engi-
neering and System Safety, 93(7):922-932, 2008.

X. Boyen and D. Koller. Tractable inference for
complex stochastic processes. In Proc. UAI 1998,
pages 33-42, 1998.

