
Predictive and diagnostic analysis of an holdup tank by means of
Dynamic Bayesian Networks

Daniele Codetta-Raiteri1, Luigi Portinale1

1DiSIT, Computer Science Institute, University of Piemonte Orientale,
Alessandria, Italy

Abstract

In dynamic reliability evaluation, the complete behaviour of the system has to
be taken into account. In this paper, a benchmark taken from the literature is
examined. To this aim, we exploit Dynamic Bayesian Networks (DBN) extend-
ing standard Bayesian networks by introducing a discrete temporal dimension.
The goals are the prediction of the system unreliability and the computation
of diagnostic indices. Because of the achievement of such goals, we propose
DBN to be a valid approach for dynamic reliability evaluation.

1. Introduction

We talk about dynamic reliability [1] when the system configuration changes
during the mission time. In these cases, we may have to consider the whole
system behaviour in order to evaluate the reliability. This means modelling the
normal functioning of the system, the occurrence of component failure events
and their effect on the system functioning. Combinatorial models [2] such as
Fault Trees and Reliability Block Diagrams can only represent combinations of
component failure events assumed to be independent. The complete system
behaviour can be represented by means of state space based models [2], such
as Markov Chains or Petri Nets. They rely on the specification of the whole set
of the possible system states, so that the stochastic behaviour of each com-
ponent may depend on the state of all the other components. However, their
use in dynamic reliability may determine the state space explosion making the
model analysis unpractical because of the high computing cost (and time).

Bayesian Networks (BN) [3] are an interesting trade-off between combinato-
rial and state space based models; in particular, Dynamic Bayesian Networks
(DBN) [4] provide an explicit discrete temporal dimension: a DBN represents
the system at several discrete time slices, and conditional dependencies among
variables at different slices are introduced to capture the temporal evolution.
Both BN and DBN have been recently investigated as very promising formalisms
for dependability and reliability analysis [3, 5, 6]. We argue that DBN are a pos-
sible and suitable approach to examine dynamic reliability cases; we show this
point by investigating the analysis of a specific benchmark taken from the lit-
erature [1]. The benchmark is a system consisting of a tank containing some
liquid whose level is influenced by a controller commanding two pumps and one
valve, with the aim of avoiding the dry out or overflow of the liquid. In the past,
the benchmark was evaluated by means of Monte Carlo simulation [1] and Petri
Nets [7, 8]. In this paper, the system is modelled as a DBN, with the purpose of



computing the system unreliability (the original goal of the benchmark [1]), and
diagnostic indices which are an additional possibility offered by DBN.

The paper is organized as follows: Section 2 contains the related work about
this benchmark; Section 3 describes the system behaviour; Section 4 provides
the essential notions about the DBN formalism; Section 5 describes the DBN
model of the system; finally, Section 6 reports the results of the model analysis.

2 . Related work

The benchmark is specified in [1], where the system unreliability is evaluated
by means of the Monte Carlo simulation. In [7] the benchmark is modelled as
a Generalized Stochastic Petri Net (GSPN) [2]. The GSPN model can undergo
analysis, but it suffers from two approximations: 1) the liquid level is discretized
into few intermediate levels, because only discrete variables can be represented
as the number of tokens (marking) inside places; 2) some deterministic timed
events such as the action of the pumps on the liquid level, are considered as
stochastic events. Still in [7], the benchmark is modelled and simulated as a
Fluid Stochastic Petri Net (FSPN) [9] including also fluid places which directly
represent continuous variables such as the liquid level in the tank. Finally, in [8],
Stochastic Activity Networks (SAN) [10] are applied in order to model and sim-
ulate the benchmark. SAN extend Petri Nets introducing input or output gates
able to express complex conditions and effects about the firing of transitions,
compacting the model as a consequence. SAN can represent float variables by
means of extended places.

In [1], other versions of the benchmark are presented and are characterized
by particular features (state dependent failure rates, failure on demand, repair).
They are evaluated using Petri Net based approaches in [7, 8], and using DBN
in [11].

3 . The case study

The system (Figure 1.a) is composed by a tank containing liquid, two pumps
(P1, P2) to fill the tank, one valve (V) to remove liquid, and the controller (C)
monitoring the liquid level (H) and switching P1, P2, V on or off. The state
of P1, P2, V can be ON, OFF, Stuck ON (S ON), or Stuck OFF (S OFF). Ini-
tially H is equal to 0, with P1 and V in state ON, and P2 in state OFF; since
both pumps and the valve have the same level variation rate (Q=0.6 m/h), H
does not change while the initial configuration holds (Tab. 1). The cause of
a variation of H may be the occurrence of a component failure during the ON
or OFF state. The failure probability obeys the negative exponential distribu-
tion: the failure rate λ of P1, P2 and V is equal to 0.004566 h−1, 0.005714 h−1

and 0.003125 h−1, respectively. The effect of the failure is the stuck condition,
while the state transitions toward S ON and S OFF, are uniformly distributed
(Figure 1.b).



Figure 1: a) The system scheme. b) The possible states of P1, P2 and V. c)
The graph of the DBN model.

Comp. states Comp. states Comp. states
P1 P2 V effect P1 P2 V effect P1 P2 V effect

OFF OFF OFF = OFF ON ON = ON ON OFF ↑↑
OFF OFF ON ↓ ON OFF OFF ↑ ON ON ON ↑
OFF ON OFF ↑ ON OFF ON =

Table 1: The effect on H in each state configuration (S ON and S OFF have the
same effect of ON and OFF respectively).

Tab. 1 shows how H changes with respect to the current configuration of the
component states; C believes that the system is correctly functioning while H
is inside the region between the levels denoted by HLA (-1 m) and HLB (+1 m)
shown in Figure 1.a. If H reaches HLA, then C orders to P1 and P2 to switch
on, and V to switch off (order n. 1), with the aim of increasing H and avoiding
the dry out; this event occurs when H reaches the level denoted as HLV (-3 m).
If a component is stuck, it does not obey the controller order and maintains its
current state. The other system failure condition is the overflow; this happens
when H reaches HLP (+3 m). If H reaches HLB, C orders to P1 and P2 to switch
off, and V to switch on (order n. 2), with the aim of decreasing H and avoiding
the overflow.

4 . Basic notions about DBN

BN are defined by a directed acyclic graph (DAG) in which nodes correspond
to discrete random variables having a conditional dependence on the parent
nodes. DBN extend BN by providing a discrete temporal dimension. The ad-
vantage with respect to a classical probabilistic temporal model like Markov
Chains, is that a DBN is a stochastic transition model factored over a number
of random variables. While a DBN can in general represent semi-Markovian
stochastic processes of order k − 1, providing the modelling for k time slices,
the term DBN is usually adopted when k = 2. If so, the Markovian assumption
holds and only 2 time slices are considered in order to model the system tem-



poral evolution: the slice at time t depends only on the previous slice at t −∆,
and is conditionally independent of the past ones (∆ is the time discretization
step). An example of DBN is shown in Figure 1.c.

In a DBN, we can distinguish between two kinds of arcs: intra-slice and inter-
slice arcs establishing dependencies between variables in the same time slice,
and dependencies between variables in different time slices, respectively. The
variables characterized by a temporal evolution, have two instances, one for
each time slice. connected by a temporal arc graphically appearing as a thick
line. Inter-slice arcs connecting two instances of a variable are called temporal
arcs. For instance, in Figure 1.c, P1 and P1# are present in the time slices
t − ∆ and t respectively, and are connected by the temporal arc (P1, P1#).
This means that P1 may change its state during the interval ∆ between two
consecutive time steps.

The dependencies of a certain DBN node are quantified in terms of conditional
probabilities and are stored in its Conditional Probability Table (CPT). The prob-
ability in every CPT entry has to be set according to the state of the parent
nodes (possibly including the other instance of the node).

Analysis. Let X t be a set of variables at time t and ya:b any stream of obser-
vations between the time points a and b (a set of instantiated variables Y j

i with
a ≤ j ≤ b). The following tasks can be performed over a DBN:
• Prediction: computing P (X t+h|ya:b) for some horizon h > 0, i.e. predicting a
future state taking into consideration the observation up to now (if h = 0 the
task is more properly called Filtering or Monitoring);
• Smoothing: computing P (X t−l|ya:b) for some l < t, i.e. estimating what hap-
pened l steps in the past, given all the evidence (observations) up to now.

In this work, the DBN model is designed and analyzed by means of the RADY-
BAN software tool [12]. In particular, for the analysis, we resort to the Junction
Tree (JT) algorithm based on the construction of a classical BN inference data
structure called junction or join tree [4]. The JT algorithm returns exact results
for both the above tasks.

5 . Modelling the benchmark

State of components. The DBN model of the benchmark is shown in Fig-
ure 1.c. The state of P1 is represented by the variables P1 and P1#. Their
value can be 0, 1, 2, or 3, in order to represent the states OFF, ON, S OFF,
S ON, respectively. The variable P1 in the time slice t − ∆ does not depend
on any other variable (P1 is a root node). Therefore its CPT (Section 4) simply
provides the initial probability distribution of the four possible values. In particu-
lar, the value 1 has probability 1 in order to express that the initial state of P1 is
ON. The variable P1# in the time slice t depends on P1 and region# in order
to model that the current state depends on the state in the previous time step,
and on the current region determining the command currently provided by C



(Section 3). So, the variable region# is ternary: the value 0 corresponds to the
order n. 1, 1 represents the absence of orders (correct region), 2 corresponds
to the order n. 2 (Section 3). The CPT of P1# (Tab. 2) contains the probability
distribution of the possible values of P1# given all the possible combinations of
the values of P1 and region#. Let us consider the entries of this CPT:
• the entry n. 1 is the case where P1 = 0 and region# = 0; this means that
P1 was OFF in the previous time step and C orders the pumps to switch on
in the current time. So, the probability that P1# = 0 (P1 is currently OFF) is
null because P1 can not ignore the order if it is not stuck. The probability that
P1# = 1 (P1 is currently ON) is the probability that P1 does not fail (reliability of
P1) during the transition between the time slices t − ∆ and t, according to the
negative exponential distribution, the rate λ (Section 3) and the time step ∆ (the
value of ∆ will be specified in the following). The probability that P1# = 2 (P1
is currently S OFF) is half of the probability of failure, because the probability to
turn S ON or S OFF after the failure, is uniformly distributed (Section 3). The
probability that P1# = 3 (P1 is currently S ON) is computed in the same way.
The sum of the probabilities in the entry n. 1 and in the following entries has
to be 1. For the sake of brevity, the lines characterized by null probability are
omitted in the CPTs.
• The entry n. 2 is the case where P1 was OFF and C provides no order.
Therefore Pr{P1# = 1} is null, while Pr{P1# = 0} is the reliability of P1 dur-
ing the time step ∆. Pr{P1# = 2} and Pr{P1# = 3} are computed in the
same way as in the entry n. 1 and the following ones, up to entry n. 6.
• The entry n. 3 is the situation where P1 was OFF and C orders the pumps to
switch off. So, Pr{P1# = 0} is the reliability of P1 during the time step ∆, while
Pr{P1# = 1} is null because of the order from C.
• In the entry n. 4, P1 was ON and the command is to turn ON. Therefore
Pr{P1# = 0} is null, while Pr{P1# = 1} is the probability that P1 does not fail
(reliability).
• In the entry n. 5, P1 was ON and no commands are provided, so the same
probability distribution as in the entry n. 4, holds.
• The entry n. 6 is the case where P1 was ON and C orders the pumps to switch
off. Therefore Pr{P1# = 0} is the component reliability, while Pr{P1# = 1} is
equal to 0.
• In the entries n. 7, 8, 9, P1 was in the S OFF state (P1 = 2) in the previous
time step. Since P1 is not repairable, P1 maintains such state in the current
time step, ignoring any command from C. Therefore Pr{P1# = 2} is equal to 1
in all the entries, while the probabilities of the other values are null.
• In the entries n. 10, 11, 12, P1 was S ON (P1 = 3), so Pr{P1# = 3} is equal
to 1 in all such entries.

The states of P2 are modelled in the same way by the variable P2# depend-
ing on P2 and region#. The states of V are represented by the variable V#
influenced by V and region#. The CPT of V# takes into account the opposite
reactions of V to the orders, and the failure rate λ of V (Section 3).

Variations to H. The variable trend depends on the variables P1, P2 and V ,
and its value can vary between 0 and 3. The role of this variable is to represent



n. P1 region# P1# prob. n. P1 region# P1# prob.

1
0 0 1 eλ∆

5
1 1 1 e−λ∆

0 0 2 (1− e−λ∆)/2 1 1 2 (1− e−λ∆)/2
0 0 3 (1− e−λ∆)/2 1 1 3 (1− e−λ∆)/2

2
0 1 0 eλ∆

6
1 2 0 e−λ∆

0 1 2 (1− e−λ∆)/2 1 2 2 (1− e−λ∆)/2
0 1 3 (1− e−λ∆)/2 1 2 3 (1− e−λ∆)/2

3
0 2 0 eλ∆ 7 2 0 2 1
0 2 2 (1− eλ∆)/2 8 2 1 2 1
0 2 3 (1− eλ∆)/2 9 2 2 2 1

4
1 0 1 e−λ∆ 10 3 0 3 1
1 0 2 (1− e−λ∆)/2 11 3 1 3 1
1 0 3 (1− e−λ∆)/2 12 3 2 3 1

Table 2: The CPT of P1# and P2#.

the four possible effects on H according to the current state of P1, P2 and V,
as specified in Tab. 1. In particular, the value 0 represents the decrease of H,
1 represents the steadiness of H, 2 models the slow growth of H, 3 models the
quick growth of H. There is no difference between the states OFF and S OFF,
or ON and S ON, in terms of effects on H. The CPT of trend reflects the content
of Tab. 1. For instance, the first entry specifies that if all the components P1, P2
and V are OFF, then H is steady (trend = 1) with probability 1.

A DBN can represent discrete quantities in terms of the values of variables. H is
a continuous measure to be discretized in order to be modelled by a DBN vari-
able. On one hand, a low number of discrete intermediate levels may lead to
some approximation of the inference results. On the other hand, a high number
may increase in a relevant way the size of several CPTs and as a consequence,
the complexity of the model analysis. In order to achieve a good trade-off be-
tween accuracy and complexity, in the DBN we discretize H into 13 intermediate
levels. To this aim, we exploit the variable Level whose value can vary between
0 and 12. This means that the distance between an intermediate level and the
following one is 0.5 m: Tab. 3 defines the correspondence between the 13 val-
ues of Level and the effective liquid level in the tank. Given that two consecutive
intermediate values differ by 0.5 m, in the DBN we can represent the variation
of H for the same quantity by increasing or decreasing Level by one unit. If the
variation rate for P1, P2 and V is Q=0.6 m/h (Section 3), then a variation of H by
0.5 m (1 unit for Level) due to the action of a single component, takes 0.8333 h
of time. We set the time discretization step ∆ to this value in such a way that
Level may change by 1 during one time step. The parameter ∆ is used in the
CPTs of P1# (Tab. 2), P2#, V# to compute the component (un)reliability.

In the DBN, the variable Level# (current H) depends on Level (H in the previous
time step) and on trend (the effect due to current state of P1, P2 and V). In
particular, with respect to the value of Level, the value of Level# is the same
if trend = 1, is decreased by 1 if trend = 0, is increased by 1 if trend = 2,
or by 2 if trend = 3. All of this is specified in the CPT of Level# (Tab. 4).



actual actual actual
Level level region Level level region Level level region

12 +3.0 m 2 7 +0.5 m 1 2 -2.0 m 0
11 +2.5 m 2 6 +0.0 m 1 1 -2.5 m 0
10 +2.0 m 2 5 -0.5 m 1 0 -3.0 m 0
9 +1.5 m 2 4 -1.0 m 0
8 +1.0 m 2 3 -1.5 m 0

Table 3: The values of Level and the corresponding intermediate liquid levels
(Figure 1.a).

Level trend Level# prob. Level trend Level# prob.
0 0 0 1 7 0 6 1
0 1 0 1 7 1 7 1
0 2 0 1 7 2 8 1
0 3 0 1 7 3 9 1
1 0 0 1 8 0 7 1
1 1 1 1 8 1 8 1
1 2 2 1 8 2 9 1
1 3 3 1 8 3 10 1
2 0 1 1 9 0 8 1
2 1 2 1 9 1 9 1
2 2 3 1 9 2 10 1
2 3 4 1 9 3 11 1
3 0 2 1 10 0 9 1
3 1 3 1 10 1 10 1
3 2 4 1 10 2 11 1
3 3 5 1 10 3 12 1
4 0 3 1 11 0 10 1
4 1 4 1 11 1 11 1
4 2 5 1 11 2 12 1
4 3 6 1 11 3 12 1
5 0 4 1 12 0 12 1
5 1 5 1 12 1 12 1
5 2 6 1 12 2 12 1
5 3 7 1 12 3 12 1
6 0 5 1
6 1 6 1
6 2 7 1
6 3 8 1

Table 4: The CPT of Level#.



The entries with Level = 0 and Level = 12 correspond to the dry out and the
overflow respectively; the probabilities in such entries express the assumption
that H does not change any more if a system failure condition is reached.

H can be inside one of three regions: H≤HLA, HLA<H<HLB, H≥HLB (Sec-
tion 3). The variable Level# influences region# whose value can be 0, 1, or 2
in order to represent the above three regions respectively, and the correspond-
ing commands (Section 3). The CPT of region# maps the values of Level#
into the corresponding value of region# according to Tab. 3.

System states. We need the ternary variable state# to model the three possi-
ble states of the system: working, dry out or overflow. In particular, the working
state is any situation where the dry out or the overflow has not occurred yet.
These states are determined by H, so state# is influenced by Level#. The
value 0 of state# represents the dry out, the value 1 models the working state,
and 2 indicates the overflow. In the CPT of state#, we set this variable to 0
only when Level# = 0 and we set it to 2 only when Level# = 12, according to
Tab. 3. In any other case, state# is set to 1. Since Level# does not change
any more its value in case of dry out or overflow (as described above), state#
maintains its value if set to 0 or 2.

6 . Model analysis

Predictive results. First, we compute the cumulative distribution function for
the dry out (cdfdry) and the overflow (cdfov). The value of cdfdry and cdfov at time t
is the probability that the system has failed because of the dry out and overflow,
respectively, during the time period (0, t). In other words, cdfdry and cdfov are
the system unreliability because of the dry out and the overflow, respectively.
These measures can be computed on the DBN models by means of the filtering
task with an empty stream of observations (Section 4).

As in [1], the system is evaluated for a mission time varying between 0 and
1000 h. In DBN, the time is discrete (Section 4), and two consecutive time
steps differ by the interval ∆ which is set to 0.8333 h in the DBN models of the
benchmark (Section 5). So, in order to evaluate the system from 0 to 1000 h,
we have to inference the model from 0 to 1200 time steps. For example, the
system evaluation at 400 h is given by the DBN analysis at 480 time steps (480
= 400 h / 0.8333 h).

At each time step, the variable state# is queried to obtain the probability distri-
bution of its values 0, 1, 2, corresponding to the dry out, working, and overflow
condition, respectively (Section 5). So, the probability that state# is equal to 0
at time t, provides cdfdry at that time, while cdfov is given by the probability that
state# is equal to 2.

The results returned by DBN analysis are quite similar to those obtained by the
techniques described in Section 2, as shown in Tab. 5 (cdfdry) and in Tab. 6



time step DBN an. SAN sim. GSPN an. FSPN sim.
200 h 240 2.2789E-2 2.2390E-2 2.2077E-2 2.400E-2
400 h 480 6.6455E-2 6.5990E-2 6.5827E-2 6.730E-2
600 h 720 9.5366E-2 9.5290E-2 9.5014E-2 9.360E-2
800 h 960 1.1040E-1 1.1003E-1 1.1022E-2 1.084E-1

1000 h 1200 1.1777E-1 1.1747E-1 1.1768E-2 1.165E-1

Table 5: The cumulative distribution function for the dry out (cdfdry).

time step DBN an. SAN sim. GSPN an. FSPN sim.
200 h 240 1.9890E-1 1.9914E-1 1.9518E-1 2.0050E-1
400 h 480 3.6172E-1 3.6207E-1 3.5987E-1 3.6220E-1
600 h 720 4.3652E-1 4.3665E-1 4.3568E-1 4.4160E-1
800 h 960 4.6997E-1 4.7063E-1 4.6959E-1 4.7630E-1

1000 h 1200 4.8538E-1 4.8572E-1 4.8520E-1 4.9100E-1

Table 6: The cumulative distribution function for the overflow (cdfov).

(cdfov). This verifies that DBN analysis generates results with a good degree
of accuracy. The differences in the results are due to the model evaluation
approach (analysis or simulation), the modelling power of each formalism (DBN,
SAN, GSPN, FSPN), and the assumptions holding in the model (Section 2). For
instance, the DBN, the GSPN, and the SAN model capture variations of H by
0.5 m, 1 m and 0.01 m respectively, while H is a continuous variable in the
FSPN. The DBN and the GSPN model undergo analysis, while the SAN and
FSPN model are simulated.

Diagnostic results. DBN can be exploited to compute measures conditioned
by observations (Section 4). In this case, the difference between a filtering and
a smoothing inference (Section 4) relies on the fact that in the former case,
while computing the probability at time t, only the evidence (observations) gath-
ered up to time t is considered; on the contrary, in the case of smoothing the
whole evidence stream is always considered in the posterior probability com-
putation. For diagnosis purposes, filtering can be exploited to perform the on
line diagnosis of the system. This means evaluating the state of components
during the monitoring of the system behaviour. For instance, in our case study,
if we assume that the value of H is observable at each time step t, then we can
compute the probability of each possible state of P1, P2 and V at t. In this way,
we can estimate the causes of the current value of H. Smoothing instead, may
be exploited in order to reconstruct the history of the system components for a
kind of temporal diagnosis. For instance, we may be interested in evaluating the
probability of each state of P1, P2 and V at each time step, based on the ob-
servations about H, collected during all the system mission time. These kinds
of measures were not computed in the previous works about the benchmark
(Section 2). They are an additional value given by DBN.

In order to clarify these concepts, we provide an example of filtering and smooth-



Figure 2: The observations about Level and the diagnostic results given by the
filtering task.

Figure 3: The diagnostic results given by the smoothing task.

ing applied to the DBN model, assuming to observe the value of the variable
Level at each time step; Level represents H in the model (Tab. 3). The progress
of Level during the time is depicted in Figure 2.a. In order to detect if current
H is due to a particular state of P1, P2 or V, we perform the filtering task on
the DBN model, querying the variables P1#, P2# and V#, with the aim of
computing the probabilities of their possible values (0, 1, 2, 3) corresponding to
the possible states (OFF, ON, S OFF, S ON, respectively) of the components
(Section 5).

The filtering results are depicted in Figure 2. Level is observed steady to 6
from time step 0 to time step 199. So, initially, P1 is ON, P2 is OFF and V is ON
with probability 1. This configuration is still possible from 1 to 199, but there is
an increasing probability of S ON for P1 and V, and S OFF for P2, due to the
observed steadiness of Level and the failure rate of the components.

At time step 200, Level becomes 5. The filtering results indicate that the cause
of this decrease is certainly the S OFF state of P1. At 201, Level reaches
4 (H=HLA), so we expect an order from C with the aim of switching on the
pumps and switching off V. Actually in this time step, P2 turns to ON, while
V turns to OFF, with probability 1. Level grows from 4 to 8 during the time
steps from 201 to 205. In particular, at 205, due to Level = 8 (H=HLB), C



should order the pumps to switch off, and V to switch off. This is confirmed by
the probabilities of P2 to be OFF and of V to be ON, both equal to 1 in this
time step. This configuration of the components leads to a decrease of Level
from 8 to 4 during the time steps from 205 to 209. At 209, Level is equal to
4 (H=HLA), so C successfully sets P2 to ON and V to OFF according to the
filtering results. This configuration will determine another growth of Level up to
8 (H=HLB) with another inversion of the states of P2 and V to decrease Level
again. This fluctuation of Level lasts until the time step 300 and is reflected by
the alternation of the states ON and OFF for P2 and V, during this time.

At 301, we observe that Level is equal to 7, the same value observed at 300.
In other words, Level has interrupted its growing stage maintaining its value.
The filtering results provide two alternative causes for this event, with different
probabilities: P2 is S OFF or V is S ON. From 302 to 392 Level maintains the
value 7; because of this, during these steps, P2 may be ON or S ON (combined
with V in S ON state), or S OFF (combined with V in OFF or S OFF); V instead,
may be OFF or S OFF (assuming that P2 is S OFF), or S ON (assuming that
P2 is ON or S ON). At 393, Level becomes 6 (H is decreasing). The filtering
task deduces that the certain cause is the contemporary S OFF state of P1 and
the S ON state of V. This is confirmed in the next steps leading to the dry out.

The smoothing results for Scenario 2 (Figure 3) show a more precise diagno-
sis: the anticipated knowledge about the values of Level excludes the possibility
that P1, P2 or V may be S OFF or S ON between the time steps 1 and 199.
Their state is certain during that period. The diagnosis between the time steps
200 and 300 is confirmed; the probability that P2 is S ON and the probabil-
ity that V is S OFF between 301 and 392, are both null in the smoothing task
results, while such states were possible according to the filtering output (Fig-
ure 2).

7 . Conclusions

A benchmark on dynamic reliability taken from the literature has been evalu-
ated. The predictive results about the system unreliability that we obtained, are
in general quite similar to those computed by means of other techniques. This
proposes DBN as suitable models to deal with dynamic reliability cases, with
two main advantages: 1) with respect to state space based models, the use
of a DBN takes advantage of factorization of the system state space into the
model variables. 2) DBN introduce the possibility of computing measures con-
ditioned by observations, at specific times. This has been applied in order to
compute diagnostic measures about the state of components.
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