
ARPHA: AN INNOVATIVE ON-BOARD FDIR REASONING

ENGINE FOR AUTONOMOUS SYSTEM

Andrea Guiotto
(1)

, Luigi Portinale
(2)

, Daniele Codetta-Raiteri
(3)

, Yuri Yushtein
(4)

(1)

Thales Alenia Space Italia, Strada Antica di Collegno 253, 10146 Torino, Italy, Andrea.guiotto@thalesaleniaspace.com
(2)

Università del Piemonte Orientale "A. Avogadro", Via Michel 11, 15121 Alessandria, Italy, luigi.portinale@di.unipmn.it
(3)

Università del Piemonte Orientale "A. Avogadro", Via Michel 11, 15121 Alessandria, Italy, dcr@di.unipmn.it
(4)

ESA - European Space Agency, Keplerlaan 1, PO Box 299, 2200AG Noordwijk, The Netherlands, yuri.yushtein@esa.int

ABSTRACT

In the frame of the European Space Agency (ESA)

studies, Thales Alenia Space has carried out a research –

VERIFIM - in collaboration with Universita’ del

Piemonte Orientale, implementing a software prototype

called ARPHA for on-board diagnosis, prognosis and

recovery. It is an innovative on-board FDIR (Failure

Detection, Isolation and Recovery) reasoning engine for

autonomous systems, based on the inference techniques

that use Dynamic Probabilistic Graphical Models. It

started in June 2010 and ended in December 2011.

1. INTRODUCTION

Currently employed FDIR operations are based on the

design-time analysis of the faults and failure scenarios

(e.g. FMEA, FTA) and run-time observation of the

system operational status (health monitoring). It has the

main objectives to timely detect the faults and to initiate

the corresponding predefined recovery actions. If no

corresponding action could be found, FDIR proceeds by

executing the actions to put the spacecraft into a known

safe configuration and transfers control to the Ground

operations for troubleshooting and planning the

recovery. This approach could be not adequate because

the reaction time needed does not always allow waiting

a Ground recovery. Besides, traditional FDIR cannot

provide and utilize prognosis for the imminent failures.

Automated FDIR procedures cannot leverage specific

course of recovery based on the on-board evaluation of

the causal knowledge of the system and its environment

status. It is impossible to estimate on-board the impact

of the occurred faults and failures on the operational

capabilities of the system.

2. THE ARPHA APPROACH

A new approach to on-board FDIR is needed, with the

capability to reason about the anomalous observations,

based on the global knowledge of the system and its

capabilities, system environment, and system-

environment interaction in the presence of uncertainty.

It has to provide the system with prognosis on the

operational status to be taken into account for

autonomous operational planning, and to allow

preventive recovery actions.

Figure 1. ARPHA on-board reasoning plus off-board

process

The approach developed by Thales Alenia Space and

Università del Piemonte Orientale provides a unified

modeling and operational framework that integrates a

high level modeling formalism (Dynamic Fault Tree -

DFT [1]), a low level modeling formalism (Dynamic

Bayesian Network - DBN [2]) and an inference oriented

formalism (Junction Tree- JT [3]).

ARPHA prototype puts emphasis on the on-board

software capabilities, but an off-line (off-board)

processing phase is necessary, in order to provide

ARPHA with the operational model (figure 1).

The DFT, constructed through the System/RAMS

engineering, is automatically transformed to the DBN

and then to the JT by an off-line (off-board) processing

phase. The on-board analysis of the JT, conditioned by

the sensor data and the recovery actions outcomes,

allows evaluating the system current and future state,

and choosing the recovery policies if necessary, in

automatic way, without the assistance of the Ground

mailto:Andrea.guiotto@thalesaleniaspace.com
mailto:luigi.portinale@di.unipmn.it
mailto:dcr@di.unipmn.it
mailto:yuri.yushtein@esa.int

control. The recovery policy is selected on the base of a

utility function that assigns a coefficient (utility value)

to all combinations of utility variables (chosen between

DBN variables).

Environmental aspects of the space mission can be

modelled in the DBN used by ARPHA to perform

inference. It is possible to take into account the failure

causes by inserting them in the utility function

computation used to select recovery. ARPHA evaluates

failure impact on the currently executing plan. This

approach increases the achievable level of autonomy.

2.1 Basic notions about DFT, DBN and JT

Fault Tree (FT) [4] is the most diffused and popular

model in Reliability analysis. A FT is a direct acyclic

graph (DAG) representing how several combinations of

Basic Events (BE) lead to the occurrence of a particular

event called Top Event (TE). Each BE (component

failure) has a certain probability to occur according to

its failure rate. So, it is possible to compute the

probability of occurrence of the TE (system failure). In

FT, BEs are assumed to be independent and the

combinations of BEs leading to the TE can only be

expressed by means of Boolean gates (AND, OR).

Therefore the modeling power of FT is rather limited, so

several extensions have been proposed in the literature,

such as the Dynamic Fault Tree (DFT) [1]. DFT

introduces dynamic gates representing dependencies: a

dependency arises when the failure behavior of a

component depends on the state of another component

or subsystem. Dynamic gates represent several kinds of

dependencies: functional dependencies, dependencies

concerning the events order, and the presence of spare

components.

Due to the presence of dependencies, the analysis

technique for FT [4] are not suitable to analyze DFTs.

Recently the analysis of DFT models has been faced by

resorting to Dynamic Bayesian Networks (DBN) [2].

The way to convert a DFT into DBN is described in [5].

Besides the computation of the system unreliability,

DBN allow computing predictive or diagnostic

measures conditioned by observations about the system

or components state during the mission time. The

Radyban tool [6] for DFT analysis is based on the DBN

approach. After the DFT conversion into DBN, it is

possible to relax some constraints, such as the

hypothesis that BEs are binary (working/failed).

Furthermore, through the DBN, new knowledge and

new dependencies can be included in the model.
Bayesian Networks (or Belief Networks - BN) [7] have

become a widely used formalism for representing

uncertain knowledge in probabilistic systems. BN are

defined by a DAG in which discrete random variables

are assigned to each node, together with the conditional

dependence on the parent nodes. In particular, each

node has associated a Conditional Probability Table

(CPT) specifying the probability of each value of the

node, conditioned by every instantiation of parent

nodes. Root nodes are nodes with no parents, and

marginal prior probabilities are assigned to them. In this

way, it is possible to include local conditional

dependencies, by directly specifying the causes that

influence a given effect. This allows computing the

probability distribution of any variable given the

observation of the values of any subset of the other

variables.

DBN extend BN by providing an explicit discrete

temporal dimension. A DBN is essentially the

replication of a BN over two time slices, t-Δ and t,

where Δ is the time discretization step. In other words,

each variable has two instances, one for each time slice.

If a variable is characterized by a temporal evolution, its

instance in the time slice t depends on its instance in t-Δ.

Moreover, it is possible to establish intra-slice

dependencies involving different variables in the same

time slice, or inter-slice dependencies involving

different variables in different time slices. Given a set of

observations up to the current time t, it is possible to

compute the probability distribution of a variable at t, in

the future, or in the past.

A way to efficiently compute conditioned probabilities

on a BN or DBN, consists of generating and analyzing

the Junction Tree (or Join Tree – JT [3]) according to

the procedures detailed in [8]. A JT is an undirected

unrooted tree where each node corresponds to a set of

nodes in the original BN or DBN (also called a cluster).

3. ARPHA IMPLEMENTATION

ARPHA is implemented as one periodic process.

ARPHA will run in parallel to other processes of the on-

board software (figure 2). In particular, the management

of the policy event, triggered by recovery and managed

by Event Handler of Event Action Service, is assumed

to run concurrently to ARPHA. In this way, ARPHA

does not have to wait the conclusion of the active

recovery policy execution to perform a new diagnosis or

prognosis on the system, but ARPHA can consider also

the changes performed during execution of a recovery

policy to perform a new diagnosis or recovery.

Figure 2. ARPHA process

A cycle of ARPHA starts with a diagnosis inference. In

case the inference result is nominal state, ARPHA

performs a prognosis inference; in case diagnosis result

is anomaly or failure, ARPHA performs a reactive

recovery inference. In case the prognosis inference

result is not nominal, ARPHA performs a preventive

recovery inference (see figure 3).

Diagnosis

Inference(long_sensors, short_sensors, plan)

Recovery

Inference(policy)

Current_State_is_Not_NominalCurrent_State_is_Not_Nominal

Current_State_is_Nominal

Prognosis

Inference(long_sensors, plan)

Future_State_is_Nominal

Future_State_is_Not_Nominal

Current_State_is_Nominal

Future_State_is_Not_Nominal

Figure 3. ARPHA cycle

4. THE ARPHA IMPLEMENTATION AND

VERIFICATION

The developed ARPHA prototype has been evaluated

on the space embedded target (running under RTEMS

on the LEON3 processor) using as a case study the

scenario and the simulation of a rover mission for

planetary exploration. Several simulations have been

performed in order to evaluate the suitability of the

approach w.r.t.:

 The rover mission characteristics such as

unpredictable local conditions (slope of terrain,

presence of dust, type of soil)

 Damage to rover component such as battery

 Current state diagnosis

 Future state prognosis

 Selection of recovery

 Development methodology

ARPHA has also been run in order to characterize the

approach with regard to the following parameters:

reliability (ability to perform diagnosis and prognosis to

select a recovery strategy in case of anomaly), adequacy

(failure impact verification, autonomy requirements,

critical system requirements), effectiveness

(dependency on the component fault rate, precision of

diagnosis, prognosis and recovery), availability

(duration of the ARPHA cycle vs. the frequency of

observations collection, schedulability analysis),

processing power and memory requirements.

5.1 Description of case study

The selected space system to be used as a case study has

been a rover for planetary mission. Because of the

limited per day Ground contacts and of the

communication delay mainly due to the Earth-Planet

distance, on-board processes have to be designed and

implemented to manage autonomously potential

anomalies and threats.

In addition to the classical anomalies and failure sources

that are normally considered on a satellite, the planetary

rover is subject to a number of mission threats that are

due to the close interaction of the rover with the Planet

environment, that is, in some cases, impossible to

predict by ground and requires an onboard monitoring

and reaction capability.

A typical example of threat to the rover vehicle is when

the rover is travelling on a slope. In this case, if the

inclination of the rover is exceeding a given security

threshold then an FDIR reaction is immediately needed

to stop the locomotion system. When a threat is

detected, this will trigger an alarm causing a reboot of

the OBC, leading the system to Standby Mode. Other

errors depending on slope of terrain are operational

errors in the orientation of the solar panels, influencing

the power generated by solar arrays. Moreover, power

generated by solar arrays is also influenced by the

presence of dust, while power generated by the battery

can decrease as a consequence of a damage of the

battery itself. Other threats can be finally related to drill

and subsurface material.

In order to evaluate ARPHA with realistic mission

threats, the following scenarios have been identified:

 Slope of terrain (S1): the presence of a terrain slope

increases sun aspect angle by causing lower power

generation of solar array

 Presence of dust (S2): the presence of dust

increases optical depth and reduces power

generated by solar arrays.

 Problem during drilling (S3): we simulate an

unexpected high request of energy by drill.

 Damage to battery system (S4): we simulate a

damage to battery that reduces battery charge level.

Hereafter the table reports description of recovery

policies.

Policy

ID

Description Scenario

1 Transition to STAND_BY mode S1

2 Bring solar array horizontally S1

3 Move out from shadowed area S2

4 Move SA panels to horizontal

position

Retract DRILL

Transition to STAND_BY mode

S2 S3 S4

5 Retract Drill

Transition to STAND_BY mode

S3

Identified scenarios can be represented by considering

the electrical power subsystem of the rover, and the top

event (TE) considered in DFT analysis is the

unavailability of power to generic equipment when

needed.

For each failure, there is one or two recovery policies to

be selected. The recovery policy is selected on the base

of a utility function (see table 1). In this case, the

interest of utility function is to perform a sequence of

recovery actions and to have a positive balance

(generated power is greater than consumed power).

Utility function assigns a coefficient to all combinations

of actionID and balance. For example, the utility to

perform any actions with negative balance is zero.

Utility values different from zero are assigned to

combination between recovery action and not negative

balance.

 BALANCE

ACTIONID gen=cons gen>cons gen<cons

standby 0,2 1 0

drill 0 0 0

move 0 0 0

pancam 0 0 0

mast 0 0 0

wisdom 0 0 0

tilt 0,1 1 0

retract 0 1 0

Table 1. Example of Utility function

Figure 4. DFT model of the case study

Figure 5. DBN model of the case study

The DFT model of the case study represents the

combinations of events or states leading to TE

corresponding to the anomaly or failure of the whole

system (figure 4). TE is the output of an OR gate and

occurs if the event S1, S2, S3, or S4 happens. The event

S1 represents the scenario S1 and is the output of an

AND gate. S1 occurs if both the events PowGen and

AngleSA2 occur. They represent an anomaly/failure

about the power generation (for instance, a low level of

generated power) and a non optimal sun aspect angle for

SA2 (we assume that the sun aspect angle of SA2 is

similar to the angle of SA1 and SA3). PowGen occurs if

all the events PowGenSA1, PowGenSA2 and

PowGenSA3 happen. Each of them represents the fact

that a solar array is not producing energy. For example,

PowGenSA1 concerns SA1 and happens if StringsSA1

occurs (all the strings of SA1 are failed) or SA1perf

occurs (the time, the optical depth and sun aspect angle

of SA1 do not allow the generation of energy). The

optical depth is not optimal in case of storm or shadow.

The event S2 occurs if both PowGen and OpticalDepth

happen. S3 occurs if both BattCharge and Drill occur;

they represent an anomaly/failure about the level of

charge of the battery, and the drill actions in execution

respectively. BattCharge in turns occurs if both the

events Balance and BattFail happen. Balance represents

the fact that the use of the battery is necessary: Balance

happens if both PowGen and Load occur. The second

event represents the presence of a load (consume of

energy). The event BattFail models the damage of the

battery because of the failure of all its strings (event

BattStrings) or a low temperature (event Temp). Finally,

S4 occurs if both the events BattCharge and BattFail

happen.

The model contains two functional dependency (FDEP

[1]) gates. The first one represents the influence of

ActionId on other events, such as Load, Drill (in case of

drilling actions), DrillRetract (drill in or out),

AngleSA1, AngleSA2, AngleSA3 (in case of tilting

actions), Shadow (in case of travelling actions), and

MechShock (possibility of mechanical shock damaging

the battery strings, in case of drilling or travelling

actions). MechShock influences in turns the events

BattString1, BattString2, BattString3 by means of the

second FDEP gate.

The DBN of the case study reported in figure 5 has been

derived from the faul-tree model by following two

steps: 1) the DFT has been “translated” into the DBN.

2) Then, the DBN has been enriched by increasing the

size (number of possible values) of several variables and

expressing more complicated relations among the

variables inside the Conditional Probability Tables

(CPT) of the variables. For instance, the level of power

generation, battery charge, or load needs to be

represented with a variable with more than two values,

if the model has to be enough accurate to capture the

aspects of the system behaviour causing its state. For

this reason, the DBN resulting from the DFT conversion

has been enriched in this sense:

 The variables representing the sun aspect angle of

each solar array and the variable Temp are ternary

(good, discrete, bad).

 The size of PowGen and BattCharge is 4 (we can

represent 4 intermediate levels of power generation

and battery charge).

 The size of Load is 5 (5 levels of consume of

energy).

 The size of ActionId is 8 in order to represent 8

actions of interest in the model.

 The variables S1, S2, S3, S4 are ternary in order to

represent the states Normal, Anomalous and Failed

in each scenario (the Normal state indicates that the

scenario is not happening).

The structure of the DBN reflects the structure of the

originating DFT: each event in the DFT corresponds to

the variable in the DBN with the same name, while the

DFT gates determine the influence arcs in the DBN.

However, in the DBN we added some support variables

in order to reduce the number of entries in the CPT of

the non binary variables by applying the so-called

“divorcing” technique [6]. The support variables are:

TravelCom, DrillCom and RetractCom depending on

ActionId, and Trend depending on Balance and

BattFail.

In the DBN, each variable has two instances, one for

each time slice (t, t+Δ). If a variable has a temporal

evolution, its two instances are connected by a

“temporal” arc appearing in blue colour in figure 5. Still

in figure 5, the observable variables are put in evidence

(blue nodes); the values coming from the sensors will

become observations for such variables during the

ARPHA cycles and the inference analysis of the model.

5.2 Evaluation results

In order to perform an empirical evaluation of the

approach, ARPHA has been deployed in an evaluation

platform composed by a workstation linked to a PC via

Ethernet cable. A rover simulator has been installed on

the workstation. On the PC we installed the TSIM

environment, emulating the on-board computing

hardware/OS environment (LEON3/RTEMS). This

paper reports results of scenario 2 simulation (presence

of dust increases optical depth and reduces power

generated by solar arrays).

Diagnosis at mission time 9 (663 sec) and 10 (728 sec)

gives as result, nominal current state, while prognosis at

mission time 9 and 10 gives as result, anomalous/failed

future state (see table below). No preventive recovery is

requested because prognosis flag is set to N that inhibits

the recovery for prognosis.
*** Diagnosis *** STATE SYSTEM "N“

 ## Prognosis ## FUTURE STATE SYSTEM "F" (2)

Future System state anomalous/failied but prognosis flag

set to 'N'

Elapsed Time Prognosis and or Recovery: 43.500000 sec

At mission time 27 (1835 sec) also diagnosis detects the

failure of S2 by confirming the prognosis of the

previous steps. Policy 3 and 4 are selected for reactive

recovery. Policy 4 is saved as the best one (utility

function=0.8773) and Policy 3 is discharged (utility

function=0.09183467).
*************** ROSEX VALUES ***************

(1835) At step 27 read opticaldepht = 5.00000

(1835) At step 27 read pwrsa1 = 5.53303

(1835) At step 27 read pwrsa2 = 8.77638

(1835) At step 27 read pwrsa3 = 8.79704

*** Diagnosis ***

NO FAILURE Pr{S1#=2} = 0.00000000 (0.99000000)

(Criticality level 3) Failure 2 save

[Pr{S2#=2} = 1.00000000] >= 0.59000000

NO FAILURE Pr{S3#=2} = 0.00000000 (0.99000000)

NO FAILURE Pr{S4#=2} = 0.00000000 (0.99000000)

Anomaly 1 excluded because under recovery or minor

criticaly (no check)

Anomaly 2 excluded because under recovery or minor

criticaly (no check)

NO ANOMALY Pr{S3#=1} = 0.00000000 (0.99000000)

NO ANOMALY Pr{S4#=1} = 0.00000000 (0.99000000)

 STATE SYSTEM "F" (2)

Elapsed Time for diagnosis: 8.630000 sec

 ## Reactive Recovery ##

Policy 3 save as best (0.09183467)

Policy 4:

Utility Function= 0.8773

Policy 4 save as best (previous 0.09183467)

Best policy for Reactive Recovery is the 4

BEST POLICY for the failure 2 is: 4

Failure 2 under recovery

Policy 4 running

Elapsed Time Prognosis and or Recovery: 174.320000 sec

From mission time 0 to mission time 3 all the

observations from sensors indicate a normal situation

about the monitored parameters, and this determines the

detection of the normal state of the system by both the

diagnosis and the prognosis.

From mission time 4 to mission time 8, there is only one

change in the observations. Such change concerns the

optical depth which is not optimal any more. Since we

still observe that the power generation is performed by

all the solar arrays, S2 is not detected by the diagnosis.

The prognosis does not detect S2 in the future five steps

because the plan does not contain in such steps any

movement (GNC) action by the rover. This means that

the position of the rover will not change, and as a

consequence the situation about the optical depth and

the power generation may be the same. The future

probability of S2 is not high enough for the detection of

S2 by the prognosis.

At mission times 9 and 10, the observations from the

sensors are the same as before, so S2 is not detected by

the diagnosis. However the plan contains now a future

travel (GNC) action. Such action will change the rover

position increasing the probability of the scenario S2

which is detected by the prognosis as a consequence.

From mission time 11 to mission time 26 we are in the

same situation observed in the mission times from 4 to

8, about the sensors and the plan. Therefore we obtain

again that the current and future state is normal.

The size of ARPHA application is 320 Kbytes. ARPHA

performs inference within 32MB of RAM. Using case

study model, an ARPHA cycle (diagnosis and

prognosis) takes about 1 minute. A single inference

cycle takes 9 seconds. In case of recovery the ARPHA

cycle can take 4 minutes. The time spent for inference

could appear as a weak point of the approach, but it is

due to microprocessor performance used to run

ARPHA. It is obvious that with a more powerful

hardware also ARPHA performance will improve. The

duration of ARPHA cycle should be comparable to

frequency of sensors updating in system context, in case

of the best performance by the processor. In any case,

ARPHA has been developed as a potential Building

Block to be reused in on-board software. ARPHA is

robust to stack overflow. ARPHA does not use

unbounded depth recursive functions. It does not use

dynamic memory allocation.

5.3 Industrial prospective

Evaluation and characterization of ARPHA have

demonstrated that ARPHA could be suitable to be used

in the context of the current space applications and

available on-board, but some gaps must be still filled. In

particular, computing time for analysis could be reduced

by improving the onboard computing power especially

in the prognosis functions. It could be interesting to run

ARPHA on a co-processor. Another aspect to be

improved is related to modelling. The DFT formalism is

rather simple, so the design of the DFT model does not

require a modeller with particular skills in stochastic

modelling. The DBN can be obtained in automatic way,

but its enrichment actually requires a modeller with a

specific experience in Bayesian modelling. In particular,

the editing of CPTs needs a particular attention in order

to consider any possible case and avoid cases not

compatible with observations.

In order to avoid the manually enrichment of DBN,

DFT formalism can be extended into the EDFT [9]

formalism introducing the modeling mentioned above.

If an automatic translator from EDFT to DBN was

developed, the effort to enrich the DBN would be less

relevant because several features may be directly

modelled in EDFT form, and translated into DBN in

automatic way.

In order to design an accurate stochastic model,

knowledge about probability parameters (i.e. component

failure rates to be associated with the basic events in the

DFT model) has to be provided. Such values may not be

immediately available; in this case, they must be

estimated or investigated

At this point, another not negligible aspect is the link

between computing time and model complexity. The

time necessary to analyze the model is influenced by the

model size. The complexity of the DBN model depends

on the number of entries in the CPTs of variables. The

size of CPT depends on the size of variables (number of

possible values) and the number of parents of the

variables. In this sense, a simple model may not take

into account system features relevant to the system

reliability, while a complex model may require long

computing time on the on-board hardware. It is

necessary to perform a trade-off between the model

accuracy and the computing time.

The on-board use of ARPHA requires a dedicated

software development process to be integrated with the

on-board software development showed in figure 6.

Figure 6. ARPHA software development process

5. CONCLUSIONS

The developed approach provides a unified modeling and

autonomous framework that integrates an high level

modeling formalism (DFT), a low level modeling

formalism (DBN) and an inference oriented formalism

(JT). The on-board analysis of the JT conditioned by the

sensors data and the recovery actions, allows evaluating

the system current and future state, and the recovery

policies if necessary, in automatic way, without the

assistance of the ground control. This approach increases

the achievable level of autonomy. The developed

prototype ARPHA represents an on-board software FDIR

component suited for use in the existing spacecraft system

architectures. It can perform on-board diagnosis, prognosis

and recovery inference. ARPHA is able to verify the

failure impact on the future state of the system.

Environmental aspects of space mission can be modeled in

the DBN used by ARPHA to perform inference. It is

possible to take in account the failure causes, by inserting

them in the utility function used to select recovery.

ARPHA can evaluate the failure impact on the currently

executing plan as well.

The developed ARPHA prototype has been evaluated on

the space embedded target (running under RTEMS on the

LEON3 processor). The obtained performance data shows

ARPHA usability in the context of the current space

applications and available on-board computers.

6. REFERENCES

1. Bechta-Dugan, J., Bavuso, S.J. & Boyd M.A. (1992).

Dynamic fault-tree models for fault-tolerant computer

systems. IEEE Transactions on Reliability 41, 363-

377.

2. Weber, P. & Jouffe, L. (2003). Reliability modelling

with dynamic Bayesian networks. In Proc.

‘Symposium on Fault Detection, Supervision and

Safety of Technical Processes’, Washington DC, USA.

3. Murphy, K. (2002). Dynamic Bayesian Networks:

Representation, Inference and Learning. PhD thesis,

UC Berkley.

4. Schneeweiss, W.G. (1999). The Fault Tree Method,

LiLoLe Verlag.

5. Montani, S., Portinale, L. & Bobbio, A. (2005).

Dynamic Bayesian networks for modeling advanced

fault tree features in dependability analysis., In Proc.

‘European Safety and Reliability Conference’, Gdansk,

Poland.

6. Portinale, L., Bobbio, A., Codetta-Raiteri, D. &

Montani, S. (2007). Compiling dynamic fault trees into

dynamic Bayesian nets for reliability analysis: The

Radyban tool. CEUR Workshop Proceedings 268.

7. Langseth, H., & Portinale, L. (2007). Bayesian

Networks in reliability. Reliability Engineering and

System Safety 92, 92–108.

8. Huang, C. & Darwiche, A. (1996). Inference in Belief

Networks: A Procedural Guide. International Journal

of Approximate Reasoning 15(3), 225-263.

9. Portinale, L. & Codetta-Raiteri, D. (2011). Using

Dynamic Decision Networks and Extended Fault Trees

for Autonomous FDIR. In Proc. ‘International

Conference on Tools with Artificial Intelligence’, Boca

Raton, FL USA.

