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ABSTRACT 

 
In the frame of the European Space Agency (ESA) 

studies, Thales Alenia Space has carried out a research – 

VERIFIM - in collaboration with  Universita’ del 

Piemonte Orientale, implementing a software prototype 

called ARPHA for on-board diagnosis, prognosis and 

recovery. It is an innovative on-board FDIR (Failure 

Detection, Isolation and Recovery) reasoning engine for 

autonomous systems, based on the inference techniques 

that use Dynamic Probabilistic Graphical Models. It 

started in June 2010 and ended in December 2011. 

1. INTRODUCTION 

 
Currently employed FDIR operations are based on the 

design-time analysis of the faults and failure scenarios 

(e.g. FMEA, FTA) and run-time observation of the 

system operational status (health monitoring). It has the 

main objectives to timely detect the faults and to initiate 

the corresponding predefined recovery actions. If no 

corresponding action could be found, FDIR proceeds by 

executing the actions to put the spacecraft into a known 

safe configuration and transfers control to the Ground 

operations for troubleshooting and planning the 

recovery. This approach could be not adequate because 

the reaction time needed does not always allow waiting 

a Ground recovery. Besides, traditional FDIR cannot 

provide and utilize prognosis for the imminent failures. 

Automated FDIR procedures cannot leverage specific 

course of recovery based on the on-board evaluation of 

the causal knowledge of the system and its environment 

status. It is impossible to estimate on-board the impact 

of the occurred faults and failures on the operational 

capabilities of the system. 

2. THE ARPHA APPROACH 

 
A new approach to on-board FDIR is needed, with the 

capability to reason about the anomalous observations, 

based on the global knowledge of the system and its 

capabilities, system environment, and system-

environment interaction in the presence of uncertainty. 

It has to provide the system with prognosis on the 

operational status to be taken into account for 

autonomous operational planning, and to allow 

preventive recovery actions. 

 
Figure 1. ARPHA on-board reasoning plus off-board 

process 

 

The approach developed by Thales Alenia Space and 

Università del Piemonte Orientale provides a unified 

modeling and operational framework that integrates a 

high level modeling formalism (Dynamic Fault Tree - 

DFT [1]), a low level modeling formalism (Dynamic 

Bayesian Network - DBN [2]) and an inference oriented 

formalism (Junction Tree- JT [3]).  

ARPHA prototype puts emphasis on the on-board 

software capabilities, but an off-line (off-board) 

processing phase is necessary, in order to provide 

ARPHA with the operational model (figure 1). 

The DFT, constructed through the System/RAMS 

engineering, is automatically transformed to the DBN 

and then to the JT by an off-line (off-board) processing 

phase. The on-board analysis of the JT, conditioned by 

the sensor data and the recovery actions outcomes, 

allows evaluating the system current and future state, 

and choosing the recovery policies if necessary, in 

automatic way, without the assistance of the Ground 
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control. The recovery policy is selected on the base of a 

utility function that assigns a coefficient (utility value) 

to all combinations of utility variables (chosen between 

DBN variables). 

Environmental aspects of the space mission can be 

modelled in the DBN used by ARPHA to perform 

inference. It is possible to take into account the failure 

causes by inserting them in the utility function 

computation used to select recovery. ARPHA evaluates 

failure impact on the currently executing plan. This 

approach increases the achievable level of autonomy.   

2.1 Basic notions about DFT, DBN and JT 

Fault Tree (FT) [4] is the most diffused and popular 

model in Reliability analysis. A FT is a direct acyclic 

graph (DAG) representing how several combinations of 

Basic Events (BE) lead to the occurrence of a particular 

event called Top Event (TE). Each BE (component 

failure) has a certain probability to occur according to 

its failure rate. So, it is possible to compute the 

probability of occurrence of the TE (system failure). In 

FT, BEs are assumed to be independent and the 

combinations of BEs leading to the TE can only be 

expressed by means of Boolean gates (AND, OR).  

Therefore the modeling power of FT is rather limited, so 

several extensions have been proposed in the literature, 

such as the Dynamic Fault Tree (DFT) [1]. DFT 

introduces dynamic gates representing dependencies: a 

dependency arises when the failure behavior of a 

component depends on the state of another component 

or subsystem. Dynamic gates represent several kinds of 

dependencies: functional dependencies, dependencies 

concerning the events order, and the presence of spare 

components. 

Due to the presence of dependencies, the analysis 

technique for FT [4] are not suitable to analyze DFTs. 

Recently the analysis of DFT models has been faced by 

resorting to Dynamic Bayesian Networks (DBN) [2]. 

The way to convert a DFT into DBN is described in [5]. 

Besides the computation of the system unreliability, 

DBN allow computing predictive or diagnostic 

measures conditioned by observations about the system 

or components state during the mission time. The 

Radyban tool [6] for DFT analysis is based on the DBN 

approach. After the DFT conversion into DBN, it is 

possible to relax some constraints, such as the 

hypothesis that BEs are binary (working/failed).  

Furthermore, through the DBN, new knowledge and  

new dependencies can be included in the model.    
Bayesian Networks (or Belief Networks - BN) [7] have 

become a widely used formalism for representing 

uncertain knowledge in probabilistic systems. BN are 

defined by a DAG in which discrete random variables 

are assigned to each node, together with the conditional 

dependence on the parent nodes. In particular, each 

node has associated a Conditional Probability Table 

(CPT) specifying the probability of each value of the 

node, conditioned by every instantiation of parent 

nodes. Root nodes are nodes with no parents, and 

marginal prior probabilities are assigned to them. In this 

way, it is possible to include local conditional 

dependencies, by directly specifying the causes that 

influence a given effect. This allows computing the 

probability distribution of any variable given the 

observation of the values of any subset of the other 

variables.  

DBN extend BN by providing an explicit discrete 

temporal dimension. A DBN is essentially the 

replication of a BN over two time slices, t-Δ and t, 

where Δ is the time discretization step. In other words, 

each variable has two instances, one for each time slice. 

If a variable is characterized by a temporal evolution, its 

instance in the time slice t depends on its instance in t-Δ. 

Moreover, it is possible to establish intra-slice 

dependencies involving different variables in the same 

time slice, or inter-slice dependencies involving 

different variables in different time slices. Given a set of 

observations up to the current time t, it is possible to 

compute the probability distribution of a variable at t, in 

the future, or in the past.  

A way to efficiently compute conditioned probabilities 

on a BN or DBN, consists of generating and analyzing 

the Junction Tree (or Join Tree – JT [3]) according to 

the procedures detailed in [8]. A JT is an undirected 

unrooted tree where each node corresponds to a set of 

nodes in the original BN or DBN (also called a cluster).  

3. ARPHA IMPLEMENTATION 

 

ARPHA is implemented as one periodic process. 

ARPHA will run in parallel to other processes of the on-

board software (figure 2). In particular, the management 

of the policy event, triggered by recovery and managed 

by Event Handler of Event Action Service, is assumed 

to run concurrently to ARPHA. In this way, ARPHA 

does not have to wait the conclusion of the active 

recovery policy execution to perform a new diagnosis or 

prognosis on the system, but ARPHA can consider also 

the changes performed during execution of a recovery 

policy to perform a new diagnosis or recovery. 

 
Figure 2. ARPHA process 



A cycle of ARPHA starts with a diagnosis inference. In 

case the inference result is nominal state, ARPHA 

performs a prognosis inference; in case diagnosis result 

is anomaly or failure, ARPHA performs a reactive 

recovery inference. In case the prognosis inference 

result is not nominal, ARPHA performs a preventive 

recovery inference (see figure 3). 

Diagnosis

Inference(long_sensors, short_sensors, plan)

Recovery

Inference(policy)

Current_State_is_Not_NominalCurrent_State_is_Not_Nominal

Current_State_is_Nominal

Prognosis

Inference(long_sensors, plan)

Future_State_is_Nominal

Future_State_is_Not_Nominal

Current_State_is_Nominal

Future_State_is_Not_Nominal

 
Figure 3. ARPHA cycle 

 

4. THE ARPHA IMPLEMENTATION AND 

VERIFICATION 

 

The developed ARPHA prototype has been evaluated 

on the space embedded target (running under RTEMS 

on the LEON3 processor) using as a case study the 

scenario and the simulation of a rover mission for 

planetary exploration. Several simulations have been 

performed in order to evaluate the suitability of the 

approach w.r.t.: 

 

 The rover mission characteristics such as 

unpredictable local conditions (slope of terrain, 

presence of dust, type of soil) 

 Damage to rover component such as battery 

 Current state diagnosis 

 Future state prognosis  

 Selection of recovery  

 Development methodology 

 
ARPHA  has also been  run in order to characterize the 

approach with regard to the following parameters: 

reliability (ability to perform diagnosis and prognosis to 

select a recovery strategy in case of anomaly), adequacy 

(failure impact verification, autonomy requirements, 

critical system requirements), effectiveness 

(dependency on the  component fault rate, precision of 

diagnosis, prognosis and recovery), availability 

(duration of the ARPHA cycle vs. the frequency of 

observations collection, schedulability analysis), 

processing power and memory requirements. 

5.1 Description of case study 

The selected space system to be used as a case study has 

been a rover for planetary mission. Because of the 

limited per day Ground contacts and of the 

communication delay mainly due to the Earth-Planet 

distance, on-board processes have to be designed and 

implemented to manage autonomously potential 

anomalies and threats. 

In addition to the classical anomalies and failure sources 

that are normally considered on a satellite, the planetary 

rover is subject to a number of mission threats that are 

due to the close interaction of the rover with the Planet 

environment, that is, in some cases, impossible to 

predict by ground and requires an onboard monitoring 

and reaction capability. 

 

A typical example of threat to the rover vehicle is when 

the rover is travelling on a slope. In this case, if the 

inclination of the rover is exceeding a given security 

threshold then an FDIR reaction is immediately needed 

to stop the locomotion system. When a threat is 

detected, this will trigger an alarm causing a reboot of 

the OBC, leading the system to Standby Mode. Other 

errors depending on slope of terrain are operational 

errors in the orientation of the solar panels, influencing 

the power generated by solar arrays. Moreover, power 

generated by solar arrays is also influenced by the 

presence of dust, while power generated by the battery 

can decrease as a consequence of a damage of the 

battery itself. Other threats can be finally related to drill 

and subsurface material. 

In order to evaluate ARPHA with realistic mission 

threats, the following scenarios have been identified: 

 Slope of terrain (S1): the presence of a terrain slope 

increases sun aspect  angle by causing lower power 

generation of solar array 

 Presence of dust (S2): the presence of dust 

increases optical depth and reduces power 

generated by solar arrays. 

 Problem during drilling (S3): we simulate an 

unexpected high request of energy by drill. 

 Damage to battery system (S4): we simulate a 

damage to battery that reduces battery charge level.  

 

Hereafter the table reports description of recovery 

policies. 

Policy 

ID 

Description Scenario 

1 Transition to STAND_BY mode S1 

2 Bring solar array horizontally S1 

3 Move out from shadowed area S2  

4 Move SA panels to horizontal 

position 

Retract DRILL 

Transition to STAND_BY mode 

S2 S3 S4 

5 Retract Drill 

Transition to STAND_BY mode 

S3 

 

Identified scenarios can be represented by considering 

the electrical power subsystem of the rover, and the top 

event (TE) considered in DFT analysis is the 

unavailability of power to generic equipment when 

needed. 



For each failure, there is one or two recovery policies to 

be selected. The recovery policy is selected on the base 

of a utility function (see table 1). In this case, the 

interest of utility function is to perform a sequence of 

recovery actions and to have a positive balance 

(generated power is greater than consumed power). 

Utility function assigns a coefficient to all combinations 

of actionID and balance. For example, the utility to 

perform any actions with negative balance is zero. 

Utility values different from zero are assigned to 

combination between recovery action and not negative 

balance.  

 

 

 

 

 BALANCE 

ACTIONID gen=cons gen>cons gen<cons 

standby 0,2 1 0 

drill 0 0 0 

move 0 0 0 

pancam 0 0 0 

mast 0 0 0 

wisdom 0 0 0 

tilt 0,1 1 0 

retract 0 1 0 

 

Table 1. Example of Utility function 

 

 
 

Figure 4. DFT model of the case study 

 



 
 

Figure 5. DBN model of the case study 

 

The DFT model of the case study represents the 

combinations of events or states leading to TE 

corresponding to the anomaly or failure of the whole 

system (figure 4). TE is the output of an OR gate and 

occurs if the event S1, S2, S3, or S4 happens. The event 

S1 represents the scenario S1 and is the output of an 

AND gate. S1 occurs if both the events PowGen and 

AngleSA2 occur. They represent an anomaly/failure 

about the power generation (for instance, a low level of 

generated power) and a non optimal sun aspect angle for 

SA2 (we assume that the sun aspect angle of SA2 is 

similar to the angle of SA1 and SA3). PowGen occurs if 

all the events PowGenSA1, PowGenSA2 and 

PowGenSA3 happen. Each of them represents the fact 

that a solar array is not producing energy. For example, 

PowGenSA1 concerns SA1 and happens if StringsSA1 

occurs (all the strings of SA1 are failed) or SA1perf 

occurs (the time, the optical depth and sun aspect angle 

of SA1 do not allow the generation of energy). The 

optical depth is not optimal in case of storm or shadow.  

The event S2 occurs if both PowGen and OpticalDepth 

happen. S3 occurs if both BattCharge and Drill occur; 

they represent an anomaly/failure about the level of 

charge of the battery, and the drill actions in execution 

respectively. BattCharge in turns occurs if both the 

events Balance and BattFail happen. Balance represents 

the fact that the use of the battery is necessary: Balance 

happens if both PowGen and Load occur. The second 

event represents the presence of a load (consume of 

energy). The event BattFail models the damage of the 

battery because of the failure of all its strings (event 

BattStrings) or a low temperature (event Temp). Finally, 

S4 occurs if both the events BattCharge and BattFail 

happen. 

The model contains two functional dependency (FDEP 

[1]) gates. The first one represents the influence of 

ActionId on other events, such as Load, Drill (in case of 

drilling actions), DrillRetract (drill in or out), 

AngleSA1, AngleSA2, AngleSA3 (in case of tilting 

actions), Shadow (in case of travelling actions), and 

MechShock (possibility of mechanical shock damaging 

the battery strings, in case of drilling or travelling 

actions).  MechShock influences in turns the events 

BattString1, BattString2, BattString3 by means of the 

second FDEP gate. 

The DBN of the case study reported in figure 5 has been 

derived from the faul-tree model by following two 

steps: 1) the DFT has been “translated” into the DBN. 

2) Then, the DBN has been enriched by increasing the 

size (number of possible values) of several variables and 

expressing more complicated relations among the 

variables inside the Conditional Probability Tables 

(CPT) of the variables. For instance, the level of power 

generation, battery charge, or load needs to be 

represented with a variable with more than two values, 

if the model has to be enough accurate to capture the 

aspects of the system behaviour causing its state. For 



this reason, the DBN resulting from the DFT conversion 

has been enriched in this sense: 

 The variables representing the sun aspect angle of 

each solar array and the variable Temp are ternary 

(good, discrete, bad). 

 The size of PowGen and BattCharge is 4 (we can 

represent 4 intermediate levels of power generation 

and battery charge). 

 The size of Load is 5 (5 levels of consume of 

energy). 

 The size of ActionId is 8 in order to represent 8 

actions of interest in the model.  

 The variables S1, S2, S3, S4 are ternary in order to 

represent the states Normal, Anomalous and Failed 

in each scenario (the Normal state indicates that the 

scenario is not happening).    

 

The structure of the DBN reflects the structure of the 

originating DFT: each event in the DFT corresponds to 

the variable in the DBN with the same name, while the 

DFT gates determine the influence arcs in the DBN. 

However, in the DBN we added some support variables 

in order to reduce the number of entries in the CPT of 

the non binary variables by applying the so-called 

“divorcing” technique [6]. The support variables are: 

TravelCom, DrillCom and RetractCom depending on 

ActionId, and Trend depending on Balance and 

BattFail. 

In the DBN, each variable has two instances, one for 

each time slice (t, t+Δ). If a variable has a temporal 

evolution, its two instances are connected by a 

“temporal” arc appearing in blue colour in figure 5. Still 

in figure 5, the observable variables are put in evidence 

(blue nodes); the values coming from the sensors will 

become observations for such variables during the 

ARPHA cycles and the inference analysis of the model. 

5.2 Evaluation results 

In order to perform an empirical evaluation of the 

approach, ARPHA has been deployed in an evaluation 

platform composed by a workstation linked to a PC via 

Ethernet cable. A rover simulator has been installed on 

the workstation. On the PC we installed the TSIM 

environment, emulating the on-board computing 

hardware/OS environment (LEON3/RTEMS). This 

paper reports results of scenario 2 simulation (presence 

of dust increases optical depth and reduces power 

generated by solar arrays). 

 
 

 

 
Diagnosis at mission time 9 (663 sec) and 10 (728 sec) 

gives as result, nominal current state, while prognosis at 

mission time 9 and 10 gives as result, anomalous/failed 

future state (see table below). No preventive recovery is 

requested because prognosis flag is set to N that inhibits 

the recovery for prognosis.  
*** Diagnosis *** STATE SYSTEM "N“ 

 ## Prognosis ## FUTURE STATE SYSTEM "F" (2)  

Future System state anomalous/failied but prognosis flag 

set to 'N' 

Elapsed Time Prognosis and or Recovery: 43.500000 sec 

 

At mission time 27 (1835 sec) also diagnosis detects the 

failure of S2 by confirming the prognosis of the 

previous steps. Policy 3 and 4 are selected for reactive 

recovery. Policy 4 is saved as the best one (utility 

function=0.8773) and Policy 3 is discharged (utility 

function=0.09183467). 
*************** ROSEX VALUES ***************  

(1835) At step 27 read opticaldepht = 5.00000  

(1835) At step 27 read pwrsa1 = 5.53303  

(1835) At step 27 read pwrsa2 = 8.77638  

(1835) At step 27 read pwrsa3 = 8.79704  

*********************************************  

*** Diagnosis ***  

  

NO FAILURE Pr{S1#=2} = 0.00000000 (0.99000000)  

(Criticality level 3) Failure 2 save  

[Pr{S2#=2} = 1.00000000] >= 0.59000000  



NO FAILURE Pr{S3#=2} = 0.00000000 (0.99000000)  

NO FAILURE Pr{S4#=2} = 0.00000000 (0.99000000)  

Anomaly 1 excluded because under recovery or minor 

criticaly (no check)  

Anomaly 2 excluded because under recovery or minor 

criticaly (no check)  

NO ANOMALY Pr{S3#=1} = 0.00000000 (0.99000000)  

NO ANOMALY Pr{S4#=1} = 0.00000000 (0.99000000)  

        STATE SYSTEM "F" (2)  

Elapsed Time for diagnosis: 8.630000 sec  

  ## Reactive Recovery ## 

Policy 3 save as best (0.09183467)  

Policy 4: 

Utility Function= 0.8773   

Policy 4 save as best (previous 0.09183467)  

Best policy for Reactive Recovery is the 4  

BEST POLICY for the failure 2 is:       4  

Failure 2 under recovery  

Policy 4 running  

Elapsed Time Prognosis and or Recovery: 174.320000 sec  

 

 

From mission time 0 to mission time 3 all the 

observations from sensors indicate a normal situation 

about the monitored parameters, and this determines the 

detection of the normal state of the system by both the 

diagnosis and the prognosis. 

From mission time 4 to mission time 8, there is only one 

change in the observations. Such change concerns the 

optical depth which is not optimal any more. Since we 

still observe that the power generation is performed by 

all the solar arrays, S2 is not detected by the diagnosis.  

The prognosis does not detect S2 in the future five steps 

because the plan does not contain in such steps any 

movement (GNC) action by the rover. This means that 

the position of the rover will not change, and as a 

consequence the situation about the optical depth and 

the power generation may be the same. The future 

probability of S2 is not high enough for the detection of 

S2 by the prognosis. 

At mission times 9 and 10, the observations from the 

sensors are the same as before, so S2 is not detected by 

the diagnosis. However the plan contains now a future 

travel (GNC) action. Such action will change the rover 

position increasing the probability of the scenario S2 

which is detected by the prognosis as a consequence. 

From mission time 11 to mission time 26 we are in the 

same situation observed in the mission times from 4 to 

8, about the sensors and the plan. Therefore we obtain 

again that the current and future state is normal. 

 

The size of ARPHA application is  320 Kbytes. ARPHA 

performs inference within 32MB of RAM. Using case 

study model, an ARPHA cycle (diagnosis and 

prognosis) takes about 1 minute. A single inference 

cycle takes 9 seconds. In case of recovery the ARPHA 

cycle can take 4 minutes. The time spent for inference 

could appear as a weak point of the approach, but it is 

due to microprocessor performance used to run 

ARPHA. It is obvious that with a more powerful 

hardware also ARPHA performance will improve. The 

duration of ARPHA cycle should be comparable to 

frequency of sensors updating in system context, in case 

of the best performance by the processor. In any case, 

ARPHA has been developed as a potential Building 

Block to be reused in on-board software. ARPHA is 

robust to stack overflow. ARPHA does not use 

unbounded depth recursive functions. It does not use 

dynamic memory allocation. 

5.3 Industrial prospective 

Evaluation and characterization of ARPHA have 

demonstrated that ARPHA could be suitable to be used 

in the context of the current space applications and 

available on-board, but some gaps must be still filled. In 

particular, computing time for analysis could be reduced 

by improving the onboard computing power especially 

in the prognosis functions. It could be interesting to run 

ARPHA on a co-processor. Another aspect to be 

improved is related to modelling. The DFT formalism is 

rather simple, so the design of the DFT model does not 

require a modeller with particular skills in stochastic 

modelling. The DBN can be obtained in automatic way, 

but its enrichment actually requires a modeller with a 

specific experience in Bayesian modelling. In particular, 

the editing of CPTs needs a particular attention in order 

to consider any possible case and avoid cases not 

compatible with observations. 

In order to avoid the manually enrichment of DBN, 

DFT formalism can be extended into the EDFT [9] 

formalism introducing the modeling mentioned above. 

If an automatic translator from EDFT to DBN was 

developed, the effort to enrich the DBN would be less 

relevant because several features may be directly 

modelled in EDFT form, and translated into DBN in 

automatic way.  

In order to design an accurate stochastic model, 

knowledge about probability parameters (i.e. component 

failure rates to be associated with the basic events in the 

DFT model) has to be provided. Such values may not be 

immediately available; in this case, they must be 

estimated or investigated 

At this point, another not negligible aspect is the link 

between computing time and model complexity.  The 

time necessary to analyze the model is influenced by the 

model size. The complexity of the DBN model depends 

on the number of entries in the CPTs of variables. The 

size of CPT depends on the size of variables (number of 

possible values) and the number of parents of the 

variables. In this sense, a simple model may not take 

into account system features relevant to the system 

reliability, while a complex model may require long 

computing time on the on-board hardware. It is 

necessary to perform a trade-off between the model 

accuracy and the computing time.  

The on-board use of ARPHA requires a dedicated 

software development process to be integrated with the 

on-board software development showed in figure 6.



 

Figure 6. ARPHA software development process 

 

5. CONCLUSIONS 

The developed approach provides a unified modeling and 

autonomous framework that integrates an high level 

modeling formalism (DFT), a low level modeling 

formalism (DBN) and an inference oriented formalism 

(JT). The on-board analysis of the JT conditioned by the 

sensors data and the recovery actions, allows evaluating 

the system current and future state, and the recovery 

policies if necessary, in automatic way, without the 

assistance of the ground control. This approach increases 

the achievable level of autonomy. The developed 

prototype ARPHA represents an on-board software FDIR 

component suited for use in the existing spacecraft system 

architectures. It can perform on-board diagnosis, prognosis 

and recovery inference.  ARPHA is able to verify the 

failure impact on the future state of the system. 

Environmental aspects of space mission can be modeled in 

the DBN used by ARPHA to perform inference. It is 

possible to take in account the failure causes, by inserting 

them in the utility function used to select recovery. 

ARPHA can evaluate the failure impact on the currently 

executing plan as well. 

The developed ARPHA prototype has been evaluated on 

the space embedded target (running under RTEMS on the 

LEON3 processor). The obtained performance data shows 

ARPHA usability in the context of the current space 

applications and available on-board computers. 
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