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Abstract
An extension to Continuous Time Bayesian Net-
works (CTBN) called Generalized CTBN (GCTBN)
is presented; the formalism allows one to model, in
addition to continuous time delayed variables (with
exponentially distributed transition rates), also non
delayed or “immediate” variables, which act as
standard chance nodes in a Bayesian Network.
The usefulness of this kind of model is discussed
through an example concerning the reliability of
a simple component-based system. A semantic
model of GCTBNs, based on the formalism of
Generalized Stochastic Petri Nets (GSPN) is out-
lined, whose purpose is twofold: to provide a well-
defined semantics for GCTBNs in terms of the un-
derlying stochastic process, and to provide an ac-
tual mean to perform inference (both prediction and
smoothing) on GCTBNs. The example case study
is then used, in order to highlight the exploitation
of GSPN analysis for posterior probability compu-
tation on the GCTBN model.

1 Introduction
Temporal probabilistic graphical models allow for a factor-
ization of the state space of a process, resulting in better mo-
deling and inference features. Such models are usually based
on graph structures, grounded on the theory of Bayesian Net-
works (BN). When time is assumed to be discrete, Dynamic
Bayesian Networks (DBN) [7; 10] can be adopted. However,
a discrete time assumption is not always adequate; for these
reasons, Continuous Time Bayesian Networks (CTBN) have
been proposed in [11; 12] and refined in [14]. Extensions to
the basic model have also been proposed both regarding the
use of indirect graph models [4] and the use of Erlang-Coxian
distributions on the transition time [6].

In this paper, we propose another kind of extension and,
in particular, a generalization of the standard CTBN frame-
work, by allowing the presence of nodes which have no ex-
plicit temporal evolution; the values of such nodes are, in
fact, “immediately” determined, depending on the values of
other nodes in the network. The resulting framework is called
Generalized CTBN (GCTBN) and is formally presented in
Sec. 2. GCTBNs allow the modeling of processes having

both a continuous-time temporal component and an immedi-
ate component capturing the logical/probabilistic interactions
among modeled variables. While these modeling features
are actually possible in discrete time DBNs, our work is, at
the best of our knowledge, the first attempt trying to mix in
the same BN, continuous-time delayed nodes with standard
chance nodes.

In case of continuous time, a model having similar features
can be found in the framework of Petri Nets, namely Gen-
eralized Stochastic Petri Nets (GSPN) [1]1 . Briefly, GSPNs
are stochastic Petri nets, with two different sets of transitions,
namely temporal with an exponentially distributed delay, and
immediate transitions (with no delay), having priority over
temporal ones. We propose to express a GCTBN model in
terms of a GSPN, by means of a set of translation rules (see
[13] for details). This translation is twofold: (1) it provides a
well-defined semantics for a GCTBN model, in terms of the
underlying stochastic process it represents (this is discussed
in Sec. 4); (2) it provides an actual mean to perform infer-
ence on the GCTBN model, by exploiting well-studied analy-
sis techniques for GSPNs, as described in Sec. 5.

Actually, in case of a CTBN exact inference may often be
impractical, so approximations through message-passing al-
gorithms on cluster graphs [12; 14], or through sampling [4;
5] have been proposed. In the present work, we take advan-
tage of the correspondence between GCTBN and GSPN, in or-
der to propose inference algorithms for GCTBN models (both
for prediction and smoothing), based on GSPN solution algo-
rithms and providing the exact solution of the model.

The possibilities offered by GCTBNs, can be exploited in
several applications. For example, in system reliability anal-
ysis, it is very practical to distinguish between system com-
ponents (having a temporal evolution) and specific modules
or subsystems, whose behavior has to be modeled for the
analysis. For instance, in Fault Tree Analysis (FTA), ba-
sic events represents the system components with their fail-
ure rates, while non-basic events are logical gates identifying
modules of the system under examination [15]. In Dynamic
Fault Trees [3], logical gates identifying sub-modules, can be
combined with dynamic gates, modeling time-dependent de-
pendencies (usually assuming continuous time) among com-

1Because of space restrictions, we refer the interested reader to
[1; 13] for details and formal definitions.



ponents or sub-modules. Also in this case, it is very impor-
tant to distinguish, at the modeling level, between delayed
and immediate entities. Of course, similar considerations ap-
ply in other tasks as well, as in medical diagnosis, financial
forecasting, biological process modeling, etc. Sec. 3 provides
a simple case study in the reliability field, supporting the pre-
sentation of the concepts in the following sections.

2 The generalized CTBN model
Following the original paper in [11], a CTBN is defined as
follows:
Definition 2.1 LetX = X1, . . . , Xn be a set of discrete vari-
ables, a CTBN over X consists of two components. The
first one is an initial distribution P 0

X over X (possibly spec-
ified as a standard BN over X). The second component is a
continuous-time transition model specified as (1) a directed
graph G whose nodes are X1, . . . , Xn (and with Pa(Xi) de-
noting the parents of Xi in G); (2) a conditional intensity
matrix QXi|Pa(Xi) for every Xi ∈ X .
We can now introduce the notion of a Generalized CTBN
(GCTBN).
Definition 2.2 Given a set of discrete variables X =
{X1, . . . , Xn} partitioned into the setsD (delayed variables)
and I (immediate variables) (i.e. X = D∪I andD∩I = ∅),
a Generalized Continuous Time Bayesian Network (GCTBN)
is a pair N = 〈P 0

X , G〉 where
• P 0

X is an initial probability distribution over X;
• G is a directed graph whose nodes areX1, . . . , Xn (and

with Pa(Xi) denoting the parents of Xi in G) such that
1. there is no directed cycle in G composed only by

nodes in the set I;
2. for each node X ∈ I a conditional probability ta-

ble P [X|Pa(X)] is defined (as in standard BN);
3. for each node Y ∈ D a conditional intensity matrix
QY |Pa(Y ) is defined (as in standard CTBN).

Delayed (or temporal) nodes are, as in case of a CTBN, nodes
representing variables with a continuous time evolution ruled
by exponential transition rates, and conditioned by the val-
ues of parent variables (that may be either delayed or imme-
diate). Immediate nodes are introduced, in order to capture
variables whose evolution is not ruled by transition rates as-
sociated with their values, but is conditionally determined at
a given time point, by other variables in the model. Such
variables are then treated as usual chance nodes in a BN and
have a standard Conditional Probability Table (CPT) associ-
ated with them.

A few words are worth to be spent for the structure of the
graph modeling the GCTBN. While it is in general possible to
have cycles in the graph (as in CTBN) due to the temporal na-
ture of some nodes, such cycles cannot be composed only by
immediate nodes. Indeed, if this was the case, we would in-
troduce static circular dependencies among model variables.

Finally, it is worth noting that the initial distribution P 0
X

can in general be specified only on a subset of X . In particu-
lar, letR ⊂ I be the set of root nodes (i.e. node with no parent
in G) which are immediate, then the initial distribution can

be computed as P 0
X = P 0

R∪D

∏
Yj∈(I−R) P [Yj |Pa(Yj)]. In

fact, while it is necessary to specify an initial distribution over
delayed variables, the distribution on the immediate variables
can be determined depending on the values of their parents;
of course if an immediate variable is modeled as a root node,
an initial prior probability is needed2.

3 An illustrative example
We now consider a case study which can be easily modeled
in form of GCTBN. This is a typical case in the field of reli-
ability analysis, and consists of a small system composed by
the main component A and its “warm” spare component B.
This means that initially both components are working, but
A is active while B is dormant; in case of failure of A, B is
activated in order to replace A in its function. We assume that
the activation of B occurs with a 0.99 probability. If B fails
before A, B can not replace A.

The system is considered as failed if A is failed and B is
dormant or failed. We suppose that only while the system is
failed, the components A and B undergo repair. As soon as
the repair of one of the components is completed, the com-
ponent re-starts in working state: if A is repaired the system
becomes operative again and the repair of B is suspended; if
instead B is repaired, this may determine one of these two sit-
uations: 1) B may become active with probability p = 0.99
and consequently the system becomes operative again and the
repair of A is suspended. 2) B may become dormant with
probability 1−p, so the system is still failed and the repair of
B goes on.

The component time to failure or repair is a random
variable ruled by the negative exponential distribution ac-
cording to the component failure or repair rate respec-
tively. In the case of the main component A, the fail-
ure rate is λA =1.0E−06 h−1. The failure rate of B, λB ,
changes according to its current state: if B is dormant, λB

is equal to 5.0E−07 h−1; if instead B is active, λB is
equal to 1.0E−06 h−1. Because of this, the spare is de-
fined as “warm” [3]. A and B have the same repair rate:
µA =µB =0.01 h−1.

3.1 The GCTBN model
The case study described above is represented by the GCTBN
model in Fig. 1 where the variables A, B, SY S represent
the state of the component A, the component B and the whole
system respectively. All the variables are binary because each
entity can be in the working or in the failed state (for the
component B, the working state comprises both the dormancy
and the activation). In particular, we represent the working
state with the value 1, and the failed state with the value 2.

The variable A influences the variable B because the fail-
ure rate of the component B depends on the state of A. Both
the variablesA andB influence the variable SY S because the

2Actually, since prior probabilities on immediate root nodes
are a special case of CPT, we could also simply write P 0

X =
P 0
D

Q
Yj∈I P [Yj |Pa(Yj)], to emphasize the fact that, for the speci-

fication of the temporal evolution of the model, the only initial distri-
bution is on delayed nodes (the other parameters are actually a fixed
specification on the network).



state of the whole system depends on the state of the compo-
nents A and B. The arcs connecting the variable SY S to A
and B respectively, concern the repair of the components A
and B: only while the system is failed, they can be repaired.

The variables A and B in the GCTBN model in Fig. 1 are
delayed variables (Sec. 2) and are drawn as double-circled
nodes: both variables implicitly incorporate a Continuous
Time Markov Chain (CTMC) composed by two states: 1
(working) and 2 (failed). Due to the assumption that both
components are initially supposed to work, the initial proba-
bility distribution is set equal to 1 for statesA = 1 andB = 1.
In the case of A, the current value of the rates λA and µA de-
pends on the current value of the variable SY S, the only one
influencing A. This is shown by the Conditional Intensity
Matrix (CIM) reported in Tab. 1.a, where we can notice that
the rate µA is not null only if the value of SY S is 2. The rate
λA instead, is constant.

In the case of the variable B, the current value of the rates
λB and µB depends on the current value of the variables A
and SY S, as shown by the CIM appearing in Tab. 1.b, where
λB is increased only whenA is equal to 2 and SY S is equal to
1 (this implies that B is active). As in the case of the variable
A, the rate µB is not null only if the value of SY S is 2. Notice
that the combination A = 1, SY S = 2 is impossible, so the
corresponding entries are not significant.

The variable SY S is immediate (Sec. 2) and is shown as a
circle node in Fig. 1. It is characterized by the CPT appearing
in Tab. 1.c. In particular, SY S is surely equal to 1 if A is
equal to 1, and surely equal to 2 if both A and B are equal to
2. In the case ofA equal to 2 andB equal to 1, SY S assumes
the value 1 with probability 0.99 (this implies the activation
of the spare component B), or the value 2 with probability
0.01 (this implies that B is still dormant).

Figure 1: GCTBN model of the case study.

4 A Petri Net semantics for GCTBN
The combination in a single model of entities explicitly evolv-
ing over time with entities whose determination is “imme-
diate”, has been already proposed in frameworks other than
CTBN; as we have already noticed in Sec. 1, DBNs provide an
example, in case of discrete time. In case of continuous time,
GSPNs allow to model both kinds of entities by means of
temporal and immediate transitions respectively. This means
that, in case both an immediate and a temporal transition are
enabled, the firing of the former takes precedence over the
firing of the latter. Immediate transitions may also have dif-
ferent priority levels among them.

The stochastic process associated with a GSPN is a homo-
geneous continuous time semi-Markov process that can be

a)

1 2

1
SY S λA

1 1.0E-06 h−1

2 1.0E-06 h−1

2
SY S µA

1 0 h−1

2 0.01 h−1

b)

1 2

1

A SY S λB

1 1 5.0E-07 h−1

1 2 −
2 1 1.0E-06 h−1

2 2 5.0E-07 h−1

2

A SY S µB

1 1 0 h−1

1 2 −
2 1 0 h−1

2 2 0.01 h−1

c)

A B SY S Prob.
1 1 1 1
1 1 2 0
1 2 1 1
1 2 2 0
2 1 1 0.99
2 1 2 0.01
2 2 1 0
2 2 2 1

Table 1: a) CIM for the variableA. b) CIM for the variableB.
c) CPT for the variable SY S in the GCTBN model in Fig. 1.

analyzed either by solving the so called Embedded Markov
Chain or by removing from the set of possible states, the so-
called vanishing states or markings and by analyzing the re-
sulting CTMC [1]. Vanishing states are the state (or mark-
ings) resulting from the firing of immediate transitions; they
can be removed, since the system does not spend time in such
states. This removal operation has also the advantage of re-
ducing (often in a significant way) the set of possible states to
be analyzed.

Solution techniques for GSPNs have received a lot of atten-
tion, especially with respect to the possibility of representing
in a compact way the underlying CTMC and in solving it effi-
ciently [8; 9]. Once a GCTBN has been compiled into a GSPN
[13], such techniques can be employed to compute inference
measures on the original GCTBN model (see Sec. 5).

There are two main analyses that can be performed with a
GSPN: steady state and transient analysis. In the first case,
the equilibrium distribution of the states is computed, while
in the latter, such a distribution is computed at a given time
point. In particular, solving a GSPN (for either steady state or
transient analysis) can provide the probability distribution of
the number of tokens in each place. This information can then
be exploited, in order to perform inference on the original
GCTBN model as it will be shown in Sec. 5.

4.1 The GSPN model for the case study
According to the conversion rules described in [13], the
GCTBN of the case study in Fig. 1 can be converted into the
GSPN model shown in Fig. 2 where the placesA,B and SY S
correspond to the variables in the GCTBN model. The value
of a GCTBN variable is mapped into the marking (number of
tokens) of the corresponding place in the GSPN. Let us con-
sider the place B in the GSPN: the marking of the place B
can be equal to 1 or 2, the same values that the variable B
in the GCTBN can assume. B is a delayed variable and its



initialization is modeled in the GSPN by the immediate tran-
sitions B init 1 and B init 2 called “init” transition. Such
transitions are both initially enabled to fire with the effect of
setting the initial marking of the place B to 1 or 2 respec-
tively. The probability of these transitions to fire corresponds
to the initial probability distribution of the variable B.

The variation of the marking of the place B is determined
by the timed transitions B 1 2 and B 2 1. The transition
B 1 2 is enabled to fire when the place B contains one to-
ken; the effect of its firing is setting the marking of B to 2.
The transitionB 2 1 instead, can fire when the marking of the
placeB is equal to 2, and turns it to 1. The dependency of the
transition rate of a variable on the values of the other variables
in the GCTBN model, becomes in the GSPN model, the de-
pendency of the firing rate of a timed transition on the mark-
ings of the other places. For instance, in the GCTBN model
the variable B depends on A and SY S; let us consider λB ,
the transition rate ofB from 1 to 2 depending on the values of
the variables A and SY S (Tab. 1.b). In the GSPN model, λB

becomes the firing rate of the timed transition B 1 2 whose
value depends on the marking of the places A and SY S, and
assumes the same values reported in Tab. 1.b. The firing rate
of the timed transition B 2 1 instead, will correspond to the
rate µB reported in Tab. 1.b, still depending on the marking
of the places A and SY S.

The initialization of the marking of the place A is mod-
eled by the immediate init transitions A init 1 and A init 2,
while the variation of its marking is modeled by the timed
transitions A 1 2 and A 2 1, but in this case their firing rate
will depend only on the marking of the place SY S, because
in the GCTBN model the variableA depends only on the vari-
able SY S. Such variable is immediate in the GCTBN and
depends on A and B. Therefore in the GSPN each time the
marking of the place A or of the place B is modified, the
marking of SY S has to be immediately updated: each time
the transition A 1 2, A 2 1, B 1 2 or B 2 1 fires, one token
appears in the place emptySY S; this determines the firing
of the immediate transition reset SY S 1 or reset SY S 2
having priority over the other immediate transitions (priority
level π = 2 in Fig. 2), with the effect of removing any to-
ken inside the place SY S. At this point, the marking of such
place has to be set according to the current marking of the
places A and B. This is done by one of the immediate tran-
sitions set SY S 1, set SY S 2, set SY S 3, set SY S 4,
set SY S 5. Each of them corresponds to one entry having
not null probability in the CPT of the variable SY S in the
GCTBN model (Tab. 1.c). Each of such transitions has the
same probability and the same effect on the marking of the
place SY S, as the corresponding entry in the CPT.

5 Inference
Standard inference tasks in temporal probabilistic models are
prediction and smoothing [10]. Prediction is the task of com-
puting the probability of a set of queried variables, given past
evidence, i.e. predicting a future state taking into considera-
tion the observations up to now (a special case occurs when
the last evidence time point and the query time are the same
and is called Filtering or Monitoring). Smoothing is the task

Figure 2: GSPN model obtained from the GCTBN in Fig. 1.

of estimating what happened k > 0 time points in the past,
given all the evidence (observations) up to now. Such tasks
can be accomplished, depending on the model adopted, by
inference procedures usually based on specific adaptation of
standard algorithms for Bayesian Networks. For instance, in
DBN models, both exact algorithms based on junction tree
[10] as well as approximate algorithms exploiting the net
structure [2] or based on stochastic simulation can be em-
ployed. In this paper, we propose the conversion into GSPN,
and the GSPN analysis methods, as means to compute ex-
act inference on the GCTBN model, for both prediction and
smoothing tasks.

Computing the probability of a given variable assignment
X = xi at time t, will correspond to compute the probability
of having i tokens in the place modeling X at time t. In par-
ticular, if P () is the probability function associated with the
GCTBN model and Pr{} is the probability function associ-
ated with the GSPN model, then P (Xt = xi) = Pr{#Xt =
i}, where Xt is the value of X at time t and #Xt is the num-
ber of tokens in the place corresponding to X at time t.

5.1 Prediction Inference
The task of prediction consists in computing the posterior
probability at time t of a set of queried variables Q ⊆ D ∪ I ,
given a stream of observations (evidence) et1 , . . . , etk

from
time t1 to time tk with t1 < . . . < tk < t. Every evidence etj

consists of a (possibly different) set of instantiated variables.
Prediction can then be implemented by repeatedly solving

the transient of the corresponding GSPN at the observation
and query times. Of course, any observation will condition
the evolution of the model, so the suitable conditioning oper-
ations must be performed before a new GSPN resolution. The
pseudo-code for the prediction procedure is shown in Fig. 3.
Notice that, in the special case of filtering, the last evidence
would be available at the query time (i.e. t = tk in Fig. 3);
in such a case, the update of the transition weights (last state-
ment in the for cycle) is not necessary, as well as the final
transient solution. The procedure would then simply output



Procedure PREDICTION
INPUT: a set of queried variables Q, a query time t, a set of
temporally labeled evidences et1 , . . . , etk
with t1 < . . . < tk < t
OUTPUT: P (Qt|et1 , . . . , etk

)

let t0 = 0;

for i = 1 to k {
solve the GSPN transient at time (ti − ti−1);
compute from transient, pi(j) = Pr{Xj |eti

} for Xj ∈ D ∪ R;
update the weights of the immediate init transitions of Xj
according to pi(j); }

solve the GSPN transient at time (t− tk);
compute from transient, r = Pr{Q};

output r;

Figure 3: The prediction inference procedure.

Pr{Q|et} computed from the last transient analysis.
In case there is evidence available at time t0 = 0, if the

evidence is on variables X ∈ D ∪ R, then it is incorporated
into their “init” distribution; if the evidence is on variables
X ∈ I −R, then the “init” of the other variables are updated
by solving the transient at time t0 = 0.

5.2 Smoothing Inference
The smoothing task consists in computing the probability at
time t of a set of queried variables Q ⊆ D∪I , given a stream
of observations (evidence) et1 , . . . , etk

from time t1 to time
tk with t < t1 < . . . < tk. The issue is how to condition on
variables observed at a time instant that follows the current
one. The idea is then to try to reformulate the problem in
such a way that it can be reduced to a prediction-like task.
The approach is then based on the application of the Bayes
rule as follows:
P (Qt|et1 , . . . , etk

) = αP (Qt)P (et1 , . . . , etk
|Qt)

= αP (Qt)P (et1 |Qt) . . . P (etk
|et1 , . . . , etk−1 , Qt)

In this way, every factor in the above formula is condi-
tioned on the past and can be implemented as in prediction.
However, the computation of the normalization factor α, re-
quires that a separate computation must be performed for ev-
ery possible assignment of the query Q. The interesting point
is that such computations are independent, so they can be pos-
sibly performed in parallel3. Once the computation has been
performed for every query assignment, then results can be
normalized to get the actual required probability values.

The pseudo-code for the smoothing procedure is shown in
Fig. 4. The normalize operator, just divide any entry of
the vector A by the sum of all the entries, in order to provide
the final probability vector of the query.

5.3 Example of inference in the case study
Consider again the case study of Fig. 1. Concerning predic-
tion, let us consider to observe the system working (SY S =
1) at time t = 105h and the system failed (SY S = 2) at
time t = 2 · 105h. By considering the procedure outlined in
Fig. 3 we can compute the probability of component A being
working at time t = 5 · 105h, conditioned by the observation

3An alternative can be to directly compute the denominator of the
Bayes formula (i.e. the probability of the evidence stream); however,
this requires a larger number of transient solutions if the length of the
observation stream is greater than the the number N of assignments
of Q (i.e.if k > N ), as is usually the case.

Procedure SMOOTHING
INPUT: a set of queried variables Q, a query time t, a set of
temporally labeled evidences et1 , . . . , etk
with t < t1 < . . . < tk
OUTPUT: P (Qt|et1 , . . . , etk

);

let N be the cardinality of possible assignments qi(1≤i≤N) of Q;
A: array[N];
for i = 1 toN {
//possibly in parallel
A[i]=SMOOTH(qi); }

output normalize(A);

Procedure SMOOTH(q) {
t0 = t;
solve the GSPN transient at time t;
compute from transient, r = Pr{Q = q};
ev = q;
for i = 1 to k {
compute from transient, pi−1(j) = Pr{Xj |ev} for Xj ∈ D ∪ R;
update the weights of the immediate init transitions of Xj

according to pi−1(j);
solve the GSPN transient at time (ti − ti−1);
compute from transient, pi(e) = Pr{eti

};
r = rpi(e);
ev = eti

; }

output r; }

Figure 4: The smoothing inference procedure.

stream, as follows: (1) we solve the transient at t = 105h
and we compute the probabilities of A and B, conditioned by
the observation SY S = 1; (2) we use the above computed
probabilities as the new init probabilities for the places A and
B of the GSPN; (3) we solve the transient for another time
interval t = 105h and we compute the probabilities of A and
B, conditioned by the observation SY S = 2; (4) we use the
above computed probabilities as the new init probabilities for
the places A and B of the GSPN; (5) we solve the transient
for a time interval t = 3 · 105h and we finally compute the
probability of the queryA. Tab. 2 shows the values computed

Time (h) P (A = 1|e) P (A = 2|e) P (B = 1|e) P (B = 2|e)
100000 0.909228 0.090772 0.952445 0.047555
200000 0 1 0.071429 0.928571
500000 0.521855 0.478145 - -

Table 2: Probabilities for prediction inference in the case
study (e is the current accumulated evidence).

during the above process. The last row shows the required
results.

Concerning smoothing inference, let us suppose to have
observed the system working at time t = 3 · 105h and failed
at time t = 5 · 105h. We ask for the probability of component
A at time t = 2·105h, conditioned by the above evidence. By
considering the procedure outlined in Fig. 4 we can compute
the required probabilities as follows: (1) we first consider the
case A = 1; (2) we solve the transient at t = 2 · 105h and we
compute r1 = P (A = 1); (3) we condition A and B on A =
1 and we determine the new init probabilities forA andB; (4)
we solve the transient for t = 105h (to reach time 3·105h) and
we compute r2 = P (SY S = 1); we also condition A and B
on SY S = 1 and we use such values as new init probabilities
for placesA andB; (5) we solve the transient for t = 2 ·105h
(to reach time 5 · 105h) and we compute r3 = P (SY S = 2);
(6) we compute the un-normalized probability of A = 1 as
p1 = r1 · r2 · r3; By performing the above steps also for
the case A = 2 we can similarly compute the un-normalized



probability of A = 2, namely p2. A simple normalization
over p1 and p2 will then produce the required results. Tab. 3
shows the values computed during the above process (partial
results r1, r2, r3 are shown in bold).

P (A = 1) at t = 2 · 105 = 0.833086
Time (h) P (A = 1|e) P (B = 1|e) P (SY S = 1|e) P (SY S = 2|e)
200000 1 0.891238 - -
300000 0.913981 0.854028 0.999988 -
500000 - - - 0.000022

p1=0.0000183277

P (A = 2) at t = 2 · 105 = 0.166914
Time (h) P (A = 1|e) P (B = 1|e) P (SY S = 1|e) P (SY S = 2|e)
200000 0 0.999922 - -
300000 0.056648 0.952429 0.999950 -
500000 - - - 0.000049

p2=0.0000081784

P (A = 1|e) p1
p1+p2 =0.691452

P (A = 2|e) p2
p1+p2 =0.308548

Table 3: Probabilities for smoothing inference in the case
study (e is the current accumulated evidence).

6 Conclusions and Future Works
In this paper we have presented a generalized CTBN formal-
ism, allowing one to mix in the same model continuous time
delayed variables with standard “immediate” chance vari-
ables. The usefulness of this kind of model has been dis-
cussed through an example concerning the reliability of a
simple component-based system. The semantics of the pro-
posed GCTBN formalism has been provided in terms of Gen-
eralized Stochastic Petri Nets (GSPN), a well-known formal-
ism isomorph to semi-Markov processes, through which it is
also possible to exploit well established analysis techniques,
in order to perform standard prediction or smoothing infer-
ence. In particular, adopting GSPN solution algorithms as
the basis for GCTBN inference, allows one to take advan-
tage of specialized methodologies for solving the underlying
stochastic process, that are currently able to deal with ex-
tremely large models; in particular, such techniques (based
on data structures like matrices or decision diagrams) allow
for one order of magnitude of increase in the size of the mod-
els to be solved exactly, with respect to standard methods,
meaning that models with an order of 1010 tangible states can
actually be solved [8; 9].

However analyzing a GCTBN by means of the underlying
GSPN is only one possibility that does not take explicit ad-
vantage of the structure of the graph as in CTBN algorithms
[12; 14]. Our future works will try to investigate the possibil-
ity of adopting cluster-based or stochastic simulation approx-
imations, even on GCTBN models, and in comparing their
performance and quality with respect to GSPN-based solu-
tion techniques. In particular, since Petri nets are a natural
framework for event-based simulation, it would be interest-
ing to investigate how simulation-based approximations can
be actually guided by the underlying GSPN model. Finally,
since symbolic representations (based on matrices or deci-
sion diagrams) have been proved very useful for the analy-
sis of GSPN models, it would also be of significant interest
to study the relationships between such representations and

the inference procedures on probabilistic graphical models in
general, since this could in principle open the possibility of
new classes of algorithms for BN-based formalisms.
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