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ABSTRACT 

 

Combinatorial models for reliability analysis (like fault-trees or block diagram) are static models that 

cannot include any type of component dependence. In the CTMC (Continuous Time Markov Chain) 

framework, the transition rates can depend on the state of the system thus allowing the analyst to include 

some dependencies among components. However, in more general terms, the system reliability may depend 

on parameters or quantities that vary continuously in time (like temperature, pressure, distance, etc.). 

Systems whose behavior in time can be described by discrete as well as continuous variables, are called 

hybrid systems. In the dependability literature, the case in which the reliability characteristics vary 

continuously versus a process parameter, is sometimes referred to as dynamic reliability [1].  The 

modelling and analysis of hybrid dynamic systems is an open research area.  The present paper discusses 

the evaluation of a benchmark on dynamic reliability proposed in [1] via a modelling framework called 

Fluid Stochastic Petri Net (FSPN). 
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1. INTRODUCTION 

 

Combinatorial models for reliability modelling and evaluation (like fault-trees or block diagram) are 

static models that cannot include any type of statistical dependence among components.  In the CTMC 

(Continuous Time Markov Chain) framework, the random variables (failure and repair times) are 

exponentially distributed and have a time independent failure rate.  However, the failure rates can depend 

on the state of the system, thus allowing the analyst to model the dependence of one component on the up 

or down state of the others.  In more general terms, the system reliability may depend on some parameter or 

quantity that vary continuously in time (like temperature, pressure, distance, etc.).  Systems whose behavior 

in time can be described by discrete as well as continuous variables are called hybrid systems [2].  In the 

dependability literature, the case in which the reliability characteristics vary continuously versus a process 

parameter is sometimes referred to as dynamic reliability [1].  The modelling and analysis of hybrid 

dynamic systems is an open and challenging research area. The present paper discusses the evaluation of a 

benchmark on dynamic reliability proposed in [1] via a modelling framework called Fluid Stochastic Petri 

Net (FSPN) [3] [4]. 

FSPNs are an extension of GSPNs (Generalized Stochastic Petri Nets) since they contain new 

primitives: fluid places, that contain a continuous level of fluid (instead of a discrete number of tokens), 

and fluid arcs with the aim of increasing or decreasing the fluid level inside fluid places.  FSPNs extend the 

modelling power and flexibility of GSPNs, and are a useful modelling framework for hybrid systems [3] 

[5] [6]. 

Based on the example discussed in [1], a benchmark was proposed (Section 2) consisting of a hybrid 

dynamic system composed by a tank containing some liquid whose level is influenced by a controller 

acting on two pumps and one valve with the aim of avoiding the dry out or the overflow condition of the 

liquid.  The controller influences the system configuration by switching on or off the pumps or the valve 

according to the current liquid level.  Several versions of this system have been proposed and evaluated by 

means of Monte Carlo simulation in [1]. 

In this paper, we concentrate on two hybrid situations:  

I. The value of the failure rates of the pumps and of the valve, depends on the current state (ON or OFF) 

of these components. The level of the liquid in the tank varies continuously, and the unreliable 

condition is related to the attainment of an upper (overflow) or a lower (dry-out) boundary. 

II. A heat source is present to warm the liquid in the tank, and the component failure rates depend on the 

liquid temperature that vary continuously as a balance of the heat source and of the fresh water pumped 

into the tank; besides the liquid overflow and dry-out, the system failure occurs also if the liquid 

temperature reaches a certain boundary. 



In Section 4, we model the attainment of an unsafe liquid level (case I) by using a conventional GSPN 

[7] and discretizing the level in the tank. The GSPN model is solved analytically. Then, we show how the 

system reliability can be modelled resorting to FSPN and comparing the simulative results with the GSPN 

case (Section 4.3). The effect of the temperature variation on the failure rates (case II) is considered in 

Section 5.  Due to the presence of discrete and continuous variables, we model the dynamic behavior of the 

system by means of a FSPN [4]; the simulation of the FSPN model provides the system unreliability for 

each failure condition versus the mission times (Section 5.2). 

 

2. THE CASE STUDY 

 

The system [1] is composed by a tank containing some liquid, two pumps (P1 and P2) to fill the tank, 

one valve (V) to remove liquid from the tank, and a controller (C) monitoring the fluid level (L) and turning 

on or off the pumps or the valve, if L is too low or too high. P1, P2 and V have the same flow rate Q, 

measured as a linear variation of the liquid level (m/h), and can be in one of these four states: ON, OFF, 

stuck ON, stuck OFF. Fig. 1 shows the system scheme: the system is working correctly if L is inside the 

region of correct functioning (6 m < L < 8 m).  

Initially L = 7 m, with P1 and V in state ON, and P2 in state OFF; in this situation, the liquid is 

renewed, but L does not change. The failure of P1, P2 or V consists of a state transition towards the state 

stuck ON or stuck OFF (see Fig. 2), and causes a variation of L. Table 1 indicates how L changes according 

to the current state of the components. 

The controller orders the components to change their state if L is not inside the region of correct 

functioning, according to the control rules in Tab. 2, with the purpose of avoiding two failure conditions of 

the system: the liquid dry out (L  4 m) or overflow (L  10 m). If a component is stuck (ON or OFF), it 

does not respond to the controller orders, so it maintains its state. 
 

 

Fig. 1: System scheme 

 

 

 

Table 1: Variation of L for every system configuration. 
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Boundary P1 P2 V 
L  6 m 
L  8 m 

ON 
OFF 

ON 
OFF 

OFF 
ON  

 

Table 2: Control boundaries and laws. 

 

3. GSPN vs FSPN 

 

GSPNs are an extension of Petri nets including timed transitions whose firing delay is a random 

variable. Their composing elements are places, timed transitions, immediate transitions, directed arcs and 

inhibitor arcs. Places (graphically denoted by circles) can contain a discrete number of tokens; immediate 

transitions (black rectangles) fire as soon as they are enabled, while timed transitions (white rectangles) fire 

after a random period of time which is ruled by a negative exponential distribution.  Directed arcs are used 

to move tokens when a transition fires, while inhibitor arcs (ending with a small circle) can connect a place 

to a transition in order to disable the transition if the place is not empty.  

FSPNs are a new extension of Petri nets including the same elements of GSPNs with the addition of 

fluid places and fluid arcs; fluid places are represented as double circles, contain a continuous fluid level, 

and are suitable to represent continuous variables such as the temperature and the pressure.  A fluid place 

can be connected to a timed transition by means of a fluid arc (with the shape of a pipe); while the timed 

transition is enabled to fire, some fluid is moved through the fluid arc, from or to the fluid place with 

respect to the flow rate associated with the fluid arc.  Moreover, the firing of a timed transition may depend 

on the fluid level inside a fluid place: the Dirac delta function is used to make a transition fire when the 

fluid level reaches a certain value.  The Dirac delta function returns 0 if its argument differs from 0, while 

it returns + if its argument is equal to 0.  So, if we want a transition T to fire as soon as the fluid inside the 

place P reaches the level x, we have to set the firing rate of T to Dirac(P-x). 

 

4. UNRELIABILITY VERSUS LEVEL 

 

In this version of the system (case I), the failure rate of a component (P1, P2, V) depends on its current 

state. The level variation rate of P1, P2 and V is Q = 0.6 m/h. The whole system fails in two conditions: the 

liquid overflow and the liquid dry-out. Tab. 3 shows the failure rates for every component and for every 

state transition due to the component failure.  

In conventional discrete-state models the (un)reliability is evaluated as the probability of being 
in some unsafe state.  In this case, we account for an hybrid reliability condition, caused by a 
continuous variable (the liquid level) to hit an unsafe barrier. 

The use of a discrete model such as GSPN, to represent the system, requires the discretization 
of the continuous variables; in this case, the liquid level has been discretized considering eight 
intermediate levels.  The use of FSPN instead, allows to deal directly with continuous variables. 
 

Component from state to state failure rate 
P1 
P1 
P1 
P1 
P2 
P2 
P2 
P2 
V 
V 
V 
V 

ON 
ON 
OFF 
OFF 
ON 
ON 
OFF 
OFF 
ON 
ON 
OFF 
OFF 

stuck ON  
stuck OFF 
stuck ON 
stuck OFF 
stuck ON 
stuck OFF 
stuck ON 
stuck OFF 
stuck ON 
stuck OFF 
stuck ON 
stuck OFF 

0.002283 1/h 
0.002283 1/h 
0.045662 1/h 
0.456621 1/h 
0.057142 1/h 
0.571429 1/h 
0.002857 1/h 
0.002857 1/h 
0.001562 1/h 
0.001562 1/h 
0.031250 1/h 
0.312500 1/h 

 
Table 3: Failure rates for every state of a component. 

 

 



 

Fig. 2: State transitions of a component due to a failure. 

 

4.1 GSPN model of the system 

 

The system has been modelled as a GSPN (Fig. 3) with the purpose of performing the reliability 

evaluation of the system with an analytical approach.  The state of a component, for instance P1, is 

modelled by three places: P1on, P1off and P1stuck; when P1on contains one token, P1 is ON; when P1off 

contains one token, P1 is OFF; if P1stuck contains one token, P1 is stuck. 

The component state variations due to a failure,  are modelled by four timed transitions: P1failONON, 

P1failONOFF, P1failOFFON and P1failOFFOFF.  For instance, P1failONOFF models the transition from 

the state ON to the state stuck OFF by moving the token from P1on to P1off and putting one token in 

P1stuck. The firing rate of the timed transition P1failONOFF is the failure rate of P1 for the state transition 

from ON to stuck OFF (Table 3).  The failure of P2 and V is modelled in the same way. 

 

#tokens Tank Level (L) Condition 

11 

10 

9 

8 

7 

6 

5 

4 

3 

> 10 m 

10 m 

9 m 

8 m 

7 m 

6 m 

5 m 

4 m 

< 4 m 

overflow 

 

 

control boundary 

correct functioning 

control boundary 

 

 

dry-out 

 

Table 4: Correspondence between the number of tokens in the place LEVEL and the liquid level L. 

 

The liquid level has been discretized: eight intermediate levels have been modelled by a set of tokens 

inside the place named LEVEL; Tab. 4 shows the correspondence between the number of tokens in the 

place LEVEL and the level of the fluid in the tank. The liquid level variations are  modelled by five timed 

transitions: Fill1, Fill2, Fill3, Fill4, Remove; they correspond to the four state configurations leading to the 

fluid level increase, and to the unique state configuration leading to the fluid level decrease (Tab. 1). The 

firing rate of these transitions differs from 0 while the relative state configuration holds; in this period, the 

firing rate is equal to the level variation rate of the relative state configuration.  The effect of their firing is 

the addition (or the removal) of one token in LEVEL; in this way, we model the increase (or the decrease) 

of L. 

In the initial marking of the GSPN, P1on, P2off and Von are marked with one token, while LEVEL 

contains 7 tokens, corresponding to the correct functioning level (Tab. 4); all the other places are empty.  

The controller action on the component state  with respect to L, is modelled by two immediate 

transitions for each component, connected to the place LEVEL.  In the case of P1, we have P1switchON 

and P1switchOFF; the first one fires when LEVEL contains less than seven tokens, i. e. L  6 m (see Tab. 

4), with the effect of moving the token from P1off  to P1on if P1 is currently OFF. Similarly, P1switchOFF 

fires when LEVEL contains at least eight tokens (L  8 m), and moves the token from P1on to P1off if P1 

is currently ON. Both transitions are disabled if P1stuck is marked. 

The dry-out and the overflow conditions are detected by two specific immediate transitions: Empty and 

Full, respectively; the first one fires when LEVEL contains less than four tokens (L < 4 m), and puts one 



token inside the place DRYOUT meaning that the dry out has occurred; the second one fires when LEVEL 

contains 11 tokens (L > 10 m), and puts one token inside OVERFLOW, meaning that the overflow has 

occurred. 

 

 

Fig. 3: GSPN model of the system. 

4.2 FSPN model of the system 

 

In order to verify the correctness of the results obtained through the fluid level discretization in the 

GSPN model, we have built the FSPN model relative to the same system, in Fig. 4. 

The fluid level in the tank is represented by the fluid place L.  The three fluid arcs connected to L, 

model the action of the two pumps and of the valve on L. If we consider for instance pump P1, the fluid 

variation rate of the relative fluid arc is 0.6  #P1on, where #P1on is the number of tokens inside the place 

P1on; in other words, some fluid is moved to L only while P1 is ON.  



The current state and the failure of a component are modelled in the same way as in the GSPN; the 

controller action on the components is now modelled by two timed transitions for each component.  In the 

case of P1, they are P1switchON and P1switchOFF; the first one must fire when L reaches 6 m, so its firing 

rate is the function Dirac(L-6), and it switches P1 to ON if P1 is currently OFF.  The second transition must 

fire when L reaches 8 m, so its firing rate is Dirac(L-8) and it switches P1 to OFF if P1 is currently ON.  

Both transitions are disabled if P1 is stuck. 

Two timed transitions named Empty and Full, detect the dry out and the overflow condition 

respectively; the transition Empty must fire when L reaches 4 m, so the firing rate of this transition is 

Dirac(L-4).  The transition Full must fire when L reaches 10 m, so its firing rate is Dirac(L-10). 

 
4.3 Comparison of results 

 

In order to evaluate the reliability of the system,  we calculated the dry out and the overflow cumulative 

distribution function (cdf) on both the GSPN and the FSPN model; this means computing the probability 

that the system is in such conditions, as a function of the time. The cdf has been computed as the 

probability of the presence of one token in the place DRYOUT and in the place OVERFLOW respectively, 

as a function of the time. Since these places can contain zero or one token, the mean number of tokens 

inside each of these places, will be a value inside the continuous range (0,1). 

The GSPN model has been drawn  and analyzed by means of the GreatSPN tool [8]; the analytical 

results obtained in this way, are validated by comparison with the results returned by the FSPN simulation 

which is executed by means of the FSPNedit tool [9]. 

The cdf is computed for a mission  time varying from 0 to 1000 hours.  The results obtained on both the 

GSPN and the FSPN models are reported in Tab.5 (dry out) and in Tab. 6 (overflow).  For each time value, 

the result given by the GSPN analysis is inside the range of values between the lower and the upper 

confidence levels returned for the cdf by the FSPN simulation; this is shown in Fig. 5 (dry out) and in Fig. 

6 (overflow).  Our analytical results are also quite similar to those reported in [1], obtained by Monte Carlo 

simulation. 

 
time cdf (GSPN) min (FSPN) max (FSPN) 
100 h 
200 h 
300 h  
400 h 
500 h 
600 h 
700 h 
800 h 
900 h 
1000 h 

0.019585 
0.039143 
0.053337 
0.063036 
0.069508 
0.073770 
0.076553 
0.078357 
0.079520 
0.080267 

0.016763 
0.038078 
0.048871 
0.058176 
0.064140 
0.068957 
0.071754 
0.073877 
0.074649 
0.075518 

0.022237 
0.046122 
0.057929 
0.068024 
0.074460 
0.079643 
0.082646 
0.084923 
0.085751 
0.086682 

 

Table 5: cdf values for the dry-out failure condition. 

 

Fig. 5: Dry-out cdf. The solid line indicates the GSPN analytical results. 

 



 

 

Fig. 4: FSPN model of the system. 

 

 

 

 

 

 

 
 



hours cdf (GSPN) min (FSPN) max (FSPN) 
100 h 
200 h 
300 h 
400 h 
500 h 
600 h 
700 h 
800 h 
900 h 
1000 h 

0.077879 
0.167562 
0.234353 
0.280056 
0.310778 
0.331513 
0.345659 
0.355426 
0.362243 
0.367048 

0.070307 
0.160161 
0.221677 
0.265212 
0.295452 
0.316283 
0.331619 
0.340273 
0.345387 
0.350502 

0.081093 
0.176239 
0.240523 
0.285788 
0.317148 
0.338717 
0.354581 
0.363527 
0.368813 
0.374098 

 

Table 6: cdf values for the overflow failure condition.  

 

Fig. 6: Overflow cdf. The solid line indicates the GSPN analytical results. 

 

5. THE DEPENDENCE ON THE TEMPERATURE 

 

In this version of the system, a heat source (H) is present with the aim of increasing the temperature (T) 

of the liquid inside the tank.  The liquid level variation rate of the pumps and of the valve is now Q = 1.5 

m/h.  

The tank is assumed to be filled with water and has a cross section area of 180 m².  The heating power 

of H is w=753.48 MJ/h = 1m°C/h [1]; we assume that there is no heat released outside the tank, and that the 

heat is uniformly distributed in the liquid. The initial temperature of the liquid inside the tank is 15.6667°C; 

the temperature of the fresh liquid pumped in the tank is T_in=15°C, and we assume that the pumped liquid 

gets mixed instantaneously with the liquid in the tank.  Besides the dry-out and the overflow conditions, the 

system failure occurs if the temperature T reaches a threshold of  100°C.  Assuming that a pump is 

activated at time t0 and is still active at time t > t0, we use the equations 1 and 2 to provide respectively the 

liquid level and temperature at time t > t0, where L0 is the the liquid level and T0 is the liquid temperature at 

time t0. 

 

L(t) = L0 + Q  (t – t0)       (1) 

 

T(t) = T0  L0 / L(t) + T_in  Q  (t – t0) / L(t)     (2) 

 

If we want to express the liquid temperature at time t > t0 as T(t) = T0 - (t), from equation 2 we can 

derive equation 3. 

 

(t) = (T0 - T_in)  Q  (t - t0) / L(t)      (3) 

 

The failure rates of the components P1, P2 and V are temperature dependent; 0 in Tab. 7 is the failure 

rate of the component for a temperature equal to 20°C; the failure rate as a function of T, is given by 

equation 4 [1]. 



(T) = 0  ( 0.2exp(0.005756(T-20)) + 0.8exp(-0.2301(T-20)) )    (4) 

 

Component Failure rate 0 

P1 

P2 

V 

0.004566 1/h 

0.005714 1/h 

0.003125 1/h 

 

Table 7: Failure rates for T=20°C 

 

5.1 The FSPN model 

 

Fig. 7 shows the FSPN model of the system.  The liquid level and temperature are  represented by two 

fluid places L and T, respectively.  L is initially set to 7, while T is initially set to 15.6667. 

The component states and failure conditions are modelled as in the previous case.  The failure rates of 

P1, P2 and V depend on the temperature, but do not depend on the current state of the component; 

moreover, the failure of P1 or P2 leads the component to the state stuck ON or stuck OFF with the same 

probability. For this reasons, the firing rate of such timed transitions is set to (T)/2, where (T) is defined 

by equation 4, and T is the current temperature, represented by the level inside the fluid place representing 

the temperature. 

The action of P1, P2 and V on the liquid level is  modelled by a set of transitions and fluid arcs. The 

addition of liquid in the tank by P1, is modelled by a fluid arc drawn from the transition P1fill to the fluid 

place L; the flow rate of such arc is #P1on  Q, where #P1on is the current number of tokens inside the 

discrete place P1on (0 or 1).  In other words, while P1  is on, it injects some liquid in the tank according to 

its level variation rate.  The action of P2 is modelled in the same way (transition P2fill), while the removal 

of liquid from the tank by the valve V, is modelled by a fluid arc drawn from the fluid place L to the 

transition Vremove. 

The transitions P1fill and P2fill are connected by means of other fluid arcs, also to the fluid place T 

representing the current liquid temperature. In this way, we model the variation of the temperature of the 

liquid inside the tank, due to the injection of some fresh liquid by the pumps. We use  (equation 3) as the 

flow rate of the fluid arcs drawn from the fluid place T to the transitions named P1fill and P2fill, 

respectively. 

The temperature of the liquid in the tank is also influenced by the presence of the heat source which is 

modelled in the FSPN as the fluid arc drawn from the transition Heat to the fluid place T, in order to 

represent the increase of the temperature due to the heat source. The flow rate of such fluid arc is 1/L, since 

the heat power is uniformly distributed in the liquid in the tank whose level is represented by the fluid place 

L. 

For each component, two timed transitions model the action of C on the component state. In the case of 

P1, the timed transition P1offon switches P1 on if P1 is OFF and is not stuck, by moving  the token inside 

the place P1off, to the place P1on.  Such transition must fire when L reaches 6 m, so its firing rate is 

Dirac(L-6).  The timed transition P1onoff instead, models the other control law (Tab. 2); its aim is 

switching P1 on when L reaches 8 m, so its firing rate is Dirac(L-8). The action of C on the state of P2 and 

V, is modelled analogously 

The detection of the system failure conditions (dry out, overflow, high temperature) is achieved by 

means of three transitions.  The transition Empty detects the dry out condition (L=4), so its firing rate is 

Dirac(L-4); if this transition fires, one token appears in the place DRYOUT, in order to represent the dry 

out state of the system. The overflow condition (L=10) is detected by the transition Full whose firing rate is 

Dirac(L-10); this transition puts one token inside the place OVERFLOW to represent the overflow state.  

Finally, the transition Boil fires when the temperature of the liquid inside the tank reaches 100°C, so its 

firing rate is Dirac(T-100); the effect of its firing is the presence of one token inside the place HIGHTEMP 

in order to model the failure of the system due to the condition of high temperature. 

 

 



 

Fig. 7: FSPN model of the system. 

5.2 Unreliability evaluation 

 

In order to evaluate the unreliability of the system,  we computed via simulation on the FSPN model, 

the cdf for the dry out, the overflow and the high temperature failure condition.  The dry out cdf has been 

computed as the mean number of tokens inside the place DRYOUT, at the given time.  Analogously, the 

overflow cdf is computed as the mean number of tokens inside the place OVERFLOW, while the high 

temperature cdf is computed as the mean number of tokens inside the place HIGHTEMP. 

The FSPN model has been  drawn and simulated by means of the FSPNedit tool [9].  The obtained cdf 

values for each failure condition and for a mission time varying between 0 and 1000 hours, are shown in 

Tab. 8 and in Fig. 8. 

 



time dry-out overflow high temperature 

100 

200 

300 

400 

500 

600 

700 

800 

900 

1000 

0.0334 

0.0684 

0.0910 

0.1107 

0.1225 

0.1254 

0.1261 

0.1261 

0.1261 

0.1261 

0.2537 

0.3855 

0.4451 

0.4757 

0.4911 

0.4956 

0.4967 

0.4967 

0.4968 

0.4968 

0 

0 

0 

0 

0 

0.0424 

0.0912 

0.1276 

0.1315 

0.1320 

 

Table 8: cdf values for every failure condition. 

 
6. CONCLUSIONS 

 

In this paper, we propose the use of Petri Nets for the evaluation of hybrid and dynamic systems. When 

the continuous variables describing the system behavior can be discretized with a not relevant loss of 

precision in the system evaluation, the GSPN formalism is suitable for the modelling and the analysis of the 

system.  The case I (Section 4) of the benchmark examined in this paper, has been modelled and analyzed 

as a GSPN.  The analytical results obtained on such model have been validated by comparison with the 

results returned by the simulation of the FSPN model of the same version of the benchmark, and with the 

results returned by Monte Carlo simulation and reported in [1].  

When the discretization of the continuous variables describing the system behavior, becomes 

unpracticable, as in the case II (Section 5) of the benchmark, the FSPN formalism is a valid framework to 

evaluate the system, though simulative results can be computed on FSPN models.    
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Fig. 8: cdf values for each failure condition. 
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