
Defining formalisms and models in the
Draw-Net Modelling System

Daniele Codetta-Raiteri1, Giuliana Franceschinis1, and Marco Gribaudo2

1 Dipartimento di Informatica, Università del Piemonte Orientale, Via Bellini
25/G, 15100 Alessandria, Italy. {raiteri, giuliana}@mfn.unipmn.it

2 Dipartimento di Informatica, Università di Torino, Corso Svizzera 185, 10149
Torino, Italy. marcog@di.unito.it

Summary. This paper presents the Draw-Net Modelling System (DMS), a frame-
work for the design and the solution of models expressed in any (graph based)
formalism, including the possibility of representing complex models by means of
multi-formalism and analyzing them by exploiting different solution modules. In
this paper, the general open architecture of the DMS framework and the formal
specification of the Data Definition Language (DDL) are introduced. A running
example of multi-formalism model is used to illustrate the main concepts of the
framework.

1 Introduction

The design of complex systems can be fruitfully supported by modeling:
both qualitative and quantitative (e.g. performance and dependability) sys-
tem properties can be analyzed on the models, and the results can be used to
guide the design. Models are the basis of Model Driven Engineering (MDE) [1]
techniques and the availability of flexible frameworks for models design and
analysis is thus a relevant and timely issue. Such flexibility may require to
represent the structure and the behaviour of the system by means of multi-
formalism models and analyze them by means of multi-solution techniques.
We talk about multi-formalism models when different modeling formalisms
are used to represent in the most suitable way different aspects of the system;
multi-formalism models usually require multi-solution, i.e. the (combined) use
of different solvers to perform the analysis of the model.

It is thus very important to pursue the goal of embedding in a single tool
the possibility of (1) building models by composition of sub-models (possibly
reusing existing sub-models), and choosing among a set of different formalisms
to express each sub-model; (2) defining and executing (more or less complex)
solution procedures based on a set of solvers that can be used in isolation or
in combination.



2 Daniele Codetta-Raiteri, Giuliana Franceschinis, and Marco Gribaudo

An example of a tool for performance and dependability analysis that goes
in this direction is Möbius [2]: it includes several formalisms that can be inte-
grated (even in a single model), and interpreted uniformly in the framework
of a unique low level semantics: models analysis takes place at this common
level by means of one of the many solvers included in Möbius. New formalisms
can be embedded in the tool by defining (and implementing) the mapping to-
ward the common semantic level. A few other tools, such as Smart [3] and
SHARPE [4], allow the combined use of different formalisms, but the set of
supported formalisms is predefined and closed.

The Draw-Net Modelling System (DMS) is a framework supporting the
design and solution of models expressed in any graph-based formalism. The
original idea behind the DMS, that differentiates it from the other approaches,
is that it focuses on the integration of different existing tools to achieve the
goal of solving multi-formalism models, rather than the creation of new tools.
Moreover, the DMS is characterized by an open architecture such that the
DMS can be customized for the design and the solution of models conforming
to new graph based formalisms. This basic idea [5] has evolved, has been for-
malized and extended. Since its first version [5], the DMS framework has been
designed to be very flexible and open to allow the inclusion of new formalisms
without any programming effort (or at least very little programming effort): a
user is free of integrating in the framework any (graph based) formalism and
the corresponding solver. The integration of new formalisms in the framework
is obtained by means of meta-modeling; a similar approach has been adopted
in ATOM 3 [6].

The possibility to adapt the DMS model editor to design models of any
graph based formalism, reminds the customization techniques of visual user
interfaces in Model Driven Engineering (see e. g. [7]). However, the DMS
has evolved in the context of modeling for performance and dependability
evaluation, and as a consequence, DMS has some specific aspects usually not
found in MDE tools.

With respect to our previous works, in this paper, we present the complete
definition of the levels composing the current architecture of the DMS which
was very briefly introduced in [8]. Here, we focus in particular on the Data
Definition Language (DDL) which is the core of the DMS architecture: the
DDL defines in an abstract way the elements for expressing formalisms and
models.

The paper is organized as follows: in Sec. 2, the related literature is ex-
amined. Sec. 3 describes the architecture of the DMS and provides a formal
description of the DDL. Sec. 4 describes an example of system that can be
conveniently modeled and analyzed by following the DMS multi-formalism,
multi-solution approach: this example supports the explanation of the con-
cepts concerning the DDL. Sec. 5 shows the formalism definition process in
the DMS; through the running example different situations of increasing com-
plexity (from simple to derived and composed formalism) are presented. Sec. 5
describes also the DNForGe editor for the definition and the manipulation of



Defining formalisms and models in the Draw-Net Modelling System 3

formalisms. Sec. 6 shows how models conforming to the formalisms defined
in Sec. 5, can be built through the Draw-Net tool, the DMS model editor.
Finally, Sec. 7 summarizes the ideas presented in the paper and defines some
future work directions.

2 Related work

The DMS is a language-oriented framework for the definition of models and
formalisms: thanks to its meta-modeling capabilities users can define their
own modeling formalisms, and combine them as needed. This is its distinctive
characteristic with respect to other similar projects.

Other tools allowing multi-formalism, like Möbius [9] or Smart [3], can be
considered as solution-oriented: their main purpose is to propose a framework
where efficient solution methods are implemented, based on some low level
model. Multi-formalism is allowed by integrating formalisms that can be seen
as high level counterparts of the basic low level model. Both the syntax and
the semantics of these formalisms are defined. No meta-modeling facilities are
provided to express the syntax: each time a new formalism must be included,
a special purpose representation language, editor and parser must be defined
and implemented; the semantics is then given by mapping the specific formal-
ism into common low level concepts, so that the available solution algorithms
can be applied to the new formalism through this mapping. Multi-solution is
possible in both Möbius and Smart, in fact an overall solution can be obtained
by allowing different models to exchange data, that is the value of a measure
computed in one model can be assigned to an input parameter of another
model. The introduction of new formalisms in the above tools requires some
programming effort to adapt the new formalism to the common low level con-
cepts managed by the implemented solvers. Moreover the extension of the set
of available solvers or multi-solution strategies is an exclusive task of the tool
development teams.

The SHARPE tool [4] allows to build and analyze models conforming to
several formalisms and oriented to the performance or dependability evalua-
tion, such as Fault Trees, Reliability Block Diagrams, Markov Chains, Stochas-
tic Petri Net, etc. Moreover, SHARPE can deal with hierarchical models, i. e.
models composed by several (heterogeneous) submodels at different levels: in
a (sub)model, the property value of a modeling primitive can correspond to a
measure computed on a submodel at lower level. For instance, the probability
of a basic event in a Fault Tree can be set to be equal to the mean number
of tokens in a place of a Stochastic Petri Net, or the probability of a state
in a Markov Chain. Each submodel is analyzed with the proper technique
(combinatorial analysis, state space analysis, etc.) and the results are passed
from lower level submodels to the higher level ones. This tool was designed
with a predefined set of modeling formalisms in mind, and it does not provide
an easy way to include new formalisms or new solution modules.



4 Daniele Codetta-Raiteri, Giuliana Franceschinis, and Marco Gribaudo

The DMS differs from all the above mentioned tools since it focuses on the
definition of languages to express models (i.e. on the syntax) and provides an
easy way to include new formalisms; the choice of the most appropriate solvers
and (multi)solution strategies are left to the user: the DMS only provides the
mechanisms to connect existing solvers to its framework.

Another multi-solution framework is MOSEL-2 [10]: it provides a high
level language to specify models, that can then be translated in the specific
modeling language of other tools (e.g. SPNP or TimeNET) for solving them.
The DMS instead allows the user to choose the most effective representa-
tion: both high-level formalism (possibly domain specific ones) and low-level
formalisms are allowed.

The idea of using meta-modeling to easily integrate new (graph based)
formalisms can be found in ATOM 3 [6]: this framework allows to define also
the semantics of new formalisms using graph transformation grammars. The
DMS approach differs from that proposed in ATOM 3 since it does not pro-
vide any mechanism to define the semantics of the user-defined formalisms,
but it leaves any semantic issue to the solvers. Graph transformation gram-
mars are a very powerful and interesting way for translating a model from a
given formalism into another one, and in the DMS framework they could play
an important role in the definition of complex solution strategies. Another
feature of the DMS that has no counterpart in ATOM 3 is the definition of
a standard way to specify measures, and to define how to interchange them
between editors and solvers. Measures are specific properties computable on
a (sub)model.

Finally the DMS project closely integrates with the multi-formalism and
multi-solution framework OsMoSys [11]. OsMoSys proposes a general and
powerful approach to multi-solution, allowing very different solution tech-
niques and tools to cooperate [12]: the core module allowing the integration
of solvers is a workflow engine, through which models written using multiple
formalism, can be solved using multiple solution components, orchestrated by
a solution process (which can be user defined or automatically generated).
The DMS framework provides the high-level user and solver interface to the
OsMoSys workflow engine.

3 Architecture of the DMS

The DMS is a complete framework for the analysis of models that support both
multi-formalism specifications and multi-solution analysis. The key aspect of
the DMS is to be an open framework, where other components can be easily
added to the system. The current DMS components are organized in a layered
architecture as shown in Fig. 1.

The highest level identifies the user who can create or edit DDL based for-
malisms and models by means of the editors present in the Editor level ; the



Defining formalisms and models in the Draw-Net Modelling System 5

Fig. 1. The layered architecture of the DMS.

DMS provides two tools to this aim: DNForGe (Draw-Net FORmalism GEn-
erator) is the formalism editor, while Draw-Net is the model editor. The DDL
is an abstract system of languages that allows the description of formalisms
and models. In the Editor level, we can include other tools not provided by
the DMS, but DDL based, for the manipulation of models and formalisms.

The DDL level concerns the abstract representation of the DDL described
in Sec. 3.2, and is separated from the Editor level by the intermediate level
called DDL Implementation level collecting the implementations of the DDL
according to the several programming languages. Currently in the DMS, the
DDL has been implemented only in Java language (DNlib); future implemen-
tations in other programming languages are possible and will be included in
the DDL implementation level.

Below the DDL level, we find the Filter level ; filters are DMS components
for the conversion of formalisms and models expressed in DDL form, into a
specific language adopted to save formalisms or models in files. Model solvers
are software components that read the models, compute some sort of analysis
and return some kind of result, such as performance or dependability mea-
sures; they are represented by the Solver level. Model solvers may have their
own language to save models in a file, or they can exploit the XML inter-
change format defined inside the DMS. Such format allows to map in XML
files, the data types composing formalisms and models expressed by the DDL.
The XML formats defined inside the DMS will be considered in Sec. 3.5.

A model solver dealing with a model saved according to the XML in-
terchange format of the DMS, may be able to directly parse the XML files
describing the model; if not, an adapter has to be implemented in order to



6 Daniele Codetta-Raiteri, Giuliana Franceschinis, and Marco Gribaudo

map the XML files into other files still representing the model specification,
but conforming to another model representation language.

An adapter consists of a program parsing a XML file and translating the
model specifications in another language. XML parsing can be easily imple-
mented by exploiting specific libraries which are available for the most com-
mon programming languages such as C, C++ and Java. The effort to translate
the model from XML to a tool specific language, depends on the complexity
of the model to be translated and on the complexity of the language used by
the tool.

The Adapter level represents the set of the adapters and it connects the
XML level with the set of the model solvers which require their own model
representation language. The effort to produce adapters allows the DMS to
be open to the integration of other solvers which exploit their own model
representation language.

There are some solvers which can directly use the DMS XML interchange
format: they are represented in Fig. 1 by a portion of the Solver level imme-
diately below the XML level.

The Workflow level represents the workflow engines used to solve multi-
formalism multi-solution; a workflow engine manages the solution of the sub-
models and of the global model; this is a complex task where several actions
must be orchestrated; the workflow engine deals with aspects such as models
decomposition, determining the order of solution of submodels, the invoca-
tion of filters or adapters, running solvers on submodels, passing results from
a submodel to another, results storing and fetching, combining intermediate
results to obtain the final result. The DMS supports hierarchical models def-
inition and we assume that they are stored in XML files; so, solvers involved
by a workflow engine may need adapters or not. For this reason, a portion
of the Adapter level lies below the Workflow level. An example of workflow
engine is that implemented in the OsMoSys framework [12].

3.1 Current state of implementation

The DMS architecture has not been completely implemented so far. The Draw-
Net tool for model editing is already available and is based on the DNlib. A
prototype version of DNForGe has been developed before the definition of the
DDL, so DNForGe is not yet based on the DDL, but on its own data structure
to manage formalisms. The DDL has been fully implemented in Java language
generating the DNlib. The XML filters towards the XML interchange format
are available. As mentioned in the previous section, a workflow engine based
on the DMS has been developed inside the OsMoSys framework.

Some solvers for models expressed in the XML interchange format have
been developed in the past, but such format recently evolved, so those solvers
need to be updated in order to deal with the current XML interchange for-
mat. These solvers allow to analyze Fluid Stochastic Petri Nets (FSPN) [13],



Defining formalisms and models in the Draw-Net Modelling System 7

Extended Fault Trees [14] and Dynamic Bayesian Networks (DBN) [15]. More-
over, some work is in progress to support multi-solution in an automatic way.

3.2 The Data Definition Language

The DDL is the core of the DMS framework. It consists of a system of lan-
guages that allows the definition of a model at two levels: the formalism level
and the model level.

The formalism level represents the languages used to describe models.
It defines all the primitives that can be used to specify a model in a partic-
ular language. For example, it tells that a Petri Net is composed by Places,
Transitions, and Arcs, and that a place contains tokens.

The model level contains the description of a system expressed in the cor-
responding formalism. It uses the primitives defined in the formalism to specify
a model. For example it tells that a producer/consumer model described by a
Petri Net is composed by two transitions (representing the producer and the
consumer respectively) and a place (representing the buffer).

Sec. 3.3 and Sec. 3.4 give a formal description of formalisms and models
inside the DDL, respectively.

3.3 Formalisms

A formalism is F defined as the tuple F = {E,P,C, S,H, TP , L} where E is
the set of Elements; P is the set of Properties; C is the set of Constraints; S :
E → 2(E∪P ) is the structure function; H : E → 2E is the inheritance function;
TP : P → Σ is the property typing function and Σ = {σ1, σ2, . . . , σn} is the
set of allowed property types; L is the set of Layers.

Elements are the key feature of the DDL. Elements correspond to the
entities that can be combined to construct a model, that is to represent any
(sub)model expressed in a given formalism. Elements of a Petri Net formalism
are for example Places, Transitions, Arcs and Petri Nets submodels.

Properties define the attributes associated with an element. For example a
Petri Net’s place has a ”marking” property that counts the number of tokens
contained in that place. Properties are typed: they can only contain values
of a specific type. The typing function TP assigns to each property its type.
The set of property types Σ supported by the DDL, is divided into three
classes: atomic types, structured types and reference types. Atomic types are
the basic types and correspond to integers, real numbers, strings, Booleans
and enumerations. Structured data types aggregate other data types to create
more complex values. They are arrays, structures and unions (similar to the
analogue concepts found in the C programming language). Reference data
types contain reference to other elements of a model. Model references refer to
entire models, element references are pointers to elements (possibly contained
in other models), and property references are pointers to property values.



8 Daniele Codetta-Raiteri, Giuliana Franceschinis, and Marco Gribaudo

Element references may be used for example to define the starting and the
ending point for an arc.

Each property type σ ∈ Σ has its own set of possible values Γ (σ). For
example, for integer number Γ (int) = N, for real numbers Γ (float) = R, for an
enumerated property ep (TP (ep) = enum) Γ (enum) = X = {x1, . . . xn} (n ≥
2), where X is the set of the values that can be assigned to the property ep.
We will call Γ ∗ the set of all possible property values: Γ ∗ = {∀σ ∈ Σ,Γ (σ)}.

Constraints are logical propositions that describe required consistency re-
lations among elements and properties of a model. For example, in a Petri
Net constraints tell that an arc can only connect places to transitions, and
transitions to places, but not places to places or transitions to transitions.

Each element e ∈ E may have some associated properties and a set of
contained elements. This association is expressed by the structure function S.
The ability of an element to be a container, and the fact that a formalism
(a submodel) is an element itself, makes it possible to create multi-formalism
models, by including in the model sub-models described in another formal-
ism. Note that a formalism F is actually a container of different specification
languages, which may contain several different paradigms. Each model will
specify which of the available paradigms are actually used.

One of the key features of the DMS is the ability to define new elements by
extending existing ones. One element can inherit properties and sub-elements
from other elements. The inheritance is expressed by function H; the elements
are partitioned into three subsets E = Ea ∪ Ep ∪ Ec: abstract, private and
concrete. Abstract elements e ∈ Ea cannot be instantiated directly in a model,
but can be exploited to define a common set of properties and sub-elements
that can be inherited by other elements e′ ∈ Ec. Private elements e ∈ Ep are
excluded from inheritance. Concrete elements e ∈ Ec can be both instanced
and inherited.

The actual set of properties and sub-elements Ŝ(e) associated with an
element e ∈ Ec can be expressed as: Ŝ(e) = S(e) ∪

⋃
e′∈H(e) Ŝ(e′). Inher-

itance is also used to define which elements are sub-formalisms, which are
nodes and which are arcs in the graph that visually describes a model. Ev-
ery formalism F , in order to be used in the DDL, must include three special
abstract elements: {GraphBased,Node,Edge} ⊂ E. Every element that ex-
tends GraphBased is a (sub)formalism. Every element that extends Node is
a node in the graph, and every element that extends Edge is an edge.

Layers divides the elements and the properties of a formalism into classes.
Each class contains elements and properties that refer to specific aspects of
the formalism. The role of the layers is explained in Sec. 3.5

3.4 Models

A model is defined by the tuple M = {F, I,m0, A, T, V, L} where F is the
formalism of the model; I are the element instances; m0 ∈ I is the main model;
A : I → {I ∪root} is the model structure function; T : I → F.Ec∪F.Ep is the



Defining formalisms and models in the Draw-Net Modelling System 9

element typing function; V : I×F.P → {Γ ∗∪nil} is the assignment function.
Here, nil is a special element which represents the fact that a property has no
assigned value. Finally, L is the set of the layers of the model; their meaning
is explained in Sec. 3.5.

Every i ∈ I represents an instance of an element of the formalism used in
the model. T (i) defines its type, that is the formalism element to which the
instance corresponds. The element type must not be abstract. An instance i
can contain other instances i′. This is specified by the model structure function
A(i′) = i. Note that since every element instance can be contained only in
a single element, function A imposes a tree like structure to the model. If
a node i′′ is not contained in any other (it is a root), then A(i′′) = root.
Property values are specified by the assignment function V . In particular
V (i, p) represents the value of property p ∈ F.P of the instance i ∈ I.

The instances enclosed in other instances, and the property assigned to
a particular instance, must be compatible with the definitions and the con-
straints specified by the formalism. In other words:

∀i, i′ ∈ I : A(i′) = i ⇒ T (i′) ∈ F.Ŝ(T (i))
∀p ∈ F.P, ∀i ∈ I : p 6∈ F.Ŝ(T (i)) ⇔ V (i, p) = nil

∀p ∈ F.P, ∀i ∈ I : V (i, p) 6= nil ⇒ V (i, p) ∈ Γ (F.TP (p))
∀c ∈ F.C, c = true

The first proposition states that a model element may only contain element
whose type is allowed by the formalism. The second states that all the proper-
ties associated with an element must be specified, and that an element cannot
have other properties. The third one is used to state that properties can only
assume values consistent with their type (as specified by the formalism). The
last one is used to check the validity of the constraints.

A model M may actually include several models in its definition: this
makes it possible to ”reuse” a given parametric submodel (possibly extracted
from a submodel library) by instantiating it several times in the global model
definition, and be sure that an update in the parametric submodel will be
automatically propagated to all its instances. However, a solver may require
a starting point for the computation of its solution, m0 represents the main
model in I.

3.5 Formalism and model layers

In the DDL, formalisms and models are organized in layers; usually a for-
malism and the corresponding models have four standard different layers: the
structural layer, the query layer, the solution layer and the representation
layer.

The Formalism Definition Layer (FDL), the Result Definition Layer (RDL)
and the Formalism Representation Layer (FRL) are related to a formalism.



10 Daniele Codetta-Raiteri, Giuliana Franceschinis, and Marco Gribaudo

The FDL is the structural layer and defines the elements of the formalism.
For example in the Stochastic Petri Net formalism, the FDL contains the def-
inition of places, transitions and arcs. The RDL is both the query layer and
the solution layer of the formalism; this means that the RDL integrates both
the definition of the possible queries and of the possible results available in
a model conforming the formalism. For instance, in the Stochastic Petri Nets
formalism, the RDL contains the transitions throughput, the mean number
of tokens, the probability of reaching a specific marking and so on. The FRL
is the representation layer and describes how the elements are graphically
represented. Still in the case of Stochastic Petri Nets, the FRL contains the
definition of the fact that places are drawn as circles and transitions as boxes.

The layers of a formalism are reflected in the models conforming to that
formalism: the Model Definition Layer (MDL), the Model Query Layer (MQL),
the model ReSult Layer (RSL) and the Model Representation Layer (MRL)
are related to a model. The MDL contains the definition of the structure of the
model. The MQL and RSL layers are used to interface with the solvers; the
MQL contains requests, that is information that a solver can use to compute
particular results. The RSL is not used by the modeler, but it is used by the
solver to store the results it has computed. The MRL contains the graphical
structure of the model indicating for instance the horizontal and the vertical
position of each model composing element.

A concrete syntax for the DDL layers has been defined as basis of an XML
interchange format for both formalisms, models and their layers. In order to
simplify the handling of formalisms and models, the corresponding various
layers are separated into different files.

For this reason, the DMS defines seven different XML based markup lan-
guages, one for each of the standard layers for both the formalisms and the
models. Standard layers are summarized in Tab. 1.

Table 1. Standard layers for formalisms and models.

Structure Query Results Representation

Formalism FDL RDL RDL FRL

Model MDL MQL RSL MRL

4 Running example

Multi-formalism modeling means representing the system by means of several
interacting sub-models, expressed with different formalisms.

In this section, we provide an example of a system that is conveniently
represented by using multi-formalism, with the aim of evaluating the proba-
bility of the system to be failed at a certain time. Multi-formalism involves



Defining formalisms and models in the Draw-Net Modelling System 11

multi-solution because each sub-model needs a specific solution method in
order to be analyzed.

The system under study consists of an emergency lamp (L) which is ini-
tially off and is switched on by a controller (C) when the electric power (EP) is
not supplied. We say that EP is up when EP is provided, and we say that EP
is down when EP is missing. A sensor constantly indicates to the controller
the presence or the absence of the electric power by sending to the controller
a specific signal (S) corresponding to the state of EP: up or down.

The electric power is provided by two power suppliers: PS1 and PS2. PS2
is the spare component of PS1; more specifically, PS2 is a warm spare com-
ponent. This means that PS1 is initially working, while PS2 is dormant, i. e.
in a stand-by state. If PS1 fails, PS2 replaces PS1 in its function by turning
from the dormant state to the working state. The time to fail of both PS1 and
PS2 is ruled by a negative exponential distribution; the failure rate of PS1 is
λ = 1/8760 = 0.000114, while the failure rate of PS2 changes according to its
current state: while PS2 is dormant, its failure rate is αλ, where α = 0.01 is
called the dormancy factor and reduces the probability of failure of PS2 with
respect to the probability to fail of PS1. If PS2 is activated in order to replace
PS1, the failure rate of PS2 becomes λ.

We assume that in the moment of activation of PS2, the controller C may
fail with a certain probability (0.1). If C fails, the emergency lamp L will not
be switched on in case of absence of electric power. Moreover, the sensor may
send the wrong signal to C: the signal is up when EP is down, or the signal
is down when EP is up, with a probability equal to 0.05. The probability of
correct signal is instead 0.95. So, in case of electric blackout, L may not be
switched on due to wrong signal S even though C is not failed.

The whole system fails when the electric power is missing and L has not
been switched on. So, we are interested in computing this probability: Pr{L =
off |EP = down}.

The multi-formalism model representing the behaviour of the system is
composed by

• a Generalized Stochastic Petri Net (GSPN) [16] modeling the state varia-
tions of PS1 and PS2, together with the possible failure of C (Fig. 8);

• a Bayesian Network (BN) [17] modeling the signal S depending on the
state of EP, and the possible activation of L depending on S and on the
state of C (Fig. 7);

• a Container model indicating which results have to be computed and
exchanged between the GSPN model and the BN model in order to obtain
the measure of interest (Fig. 9).

In the next sections, we will refer to this example to explain how formalisms
and models are expressed by the DDL. The example of multi-formalism use
presented in the next sections is not trivial even if it is composed of a two level
formalism hierarchy; in fact, to the best of our knowledge, in the literature
there aren’t examples of composition of these (basic) formalisms. This example



12 Daniele Codetta-Raiteri, Giuliana Franceschinis, and Marco Gribaudo

of multi-formalism model requires multi-solution to obtain some result: in this
case the sequence of solvers application and results exchange is rather simple,
and follows the container model structure, however in general much more
complex solution schema might be required, and the corresponding solution
process in that case should be explicitly defined [12]. In Sec. 5 we shall discuss
a number of different ways of using multi-formalism.

5 Defining formalisms in the DDL

In the DDL, formalisms can be classified as Simple formalisms (Sec. 5.1), De-
rived formalisms (Sec. 5.2) and Composed formalisms (Sec. 5.3). The reference
model (Sec. 6) is described using two formalisms (BN, GSPN) collected in a
composed formalism (BN+GSPN). In particular, BN is a Simple formalism
(Sec. 5.1) in the sense that it can be described in a single definition. GSPN
is a derived formalism described by extending the Petri Net (PN) simple for-
malism and adding it GSPN specific modeling primitives.

5.1 Simple formalisms

A simple formalism defines the primitives of a graph based model whose ele-
ments can only be nodes and edges, with no sub-models. At the same time,
a simple formalism does not inherit any element from a parent formalism
(inter-formalism inheritance), except from GraphBased. However, in a sim-
ple formalism F0, the intra-inheritance is possible; this means that an element
e ∈ F0.E can inherit some of its properties from a set of parent elements
p1, . . . , pm (m ≥ 1) inside the same simple formalism; other properties can be
defined specifically for the element e.

Let us consider the case of the BN simple formalism; Fig. 2 shows the
elements of the BN formalism, using a UML-like graphic language where each
box indicates the name of an element, its properties and the results com-
putable on it. The use of UML is simply a way to graphically represent the
elements of a formalism; actually, in the DMS, formalisms are represented by
means of the DDL.

5.2 Derived formalisms

Derived formalisms are the result of the application of inter-formalism in-
heritance; this means that some of the elements of a derived formalism are
inherited from another formalism (simple or derived); the other elements are
formalism specific.

It is possible to define a formalism as abstract ; in this way, it can only be
used for derivation. Moreover, suppose that an element e inside a formalism
F1 is declared as private; if the formalism F2 is derived from F1, F2 includes
all the elements of F1, except e.



Defining formalisms and models in the Draw-Net Modelling System 13

Fig. 2. UML-like diagram of the abstract representation of the BN formalism.

A case of derived formalism is GSPN derived from the PN simple formal-
ism; Fig. 3 shows the elements of both the PN and GSPN formalism using an
UML-like graphic language: GSPN inherits the same elements of PN, with the
addition of some new elements: INHIBITOR ARC, TIMED TRANSITION,
IMMEDIATE TRANSITION. The last two elements are derived from the ab-
stract element GSPN TRANSITION, so the result Throughput is associated
with both of them. No instances of GSPN TRANSITION can be present in
a model conforming the GSPN formalism.

5.3 Composed formalisms

In a multi-formalism model, we usually have a container model and a set of
sub-models; the container model is an higher level model whose aim consists
of containing several sub-models, and defining how each sub-model interacts
with the others.

The elements to build a container model have to be defined in a Composed
formalism. The main role of a composed formalism, is being the container
of the several simple or derived formalisms, together with a set of elements
(nodes, edges, measures) necessary to build the higher level models. Moreover,
a composed formalism F2 can derive from another composed formalism F1;
in such case, F2 inherits all the elements of F1 including nodes, edges and
contained formalisms.

Fig. 4 shows the structure of an example of composed formalism called
BN+GSPN and including the BN and the GSPN formalism. BN+GSPN is
composed also by specific elements realizing the results exchange between
submodels; such elements are SOLV ER which is a node, and two edges called
COMMUNICATION ARC and SOLUTION ARC. The property of the



14 Daniele Codetta-Raiteri, Giuliana Franceschinis, and Marco Gribaudo

Fig. 3. UML-like diagram of the abstract representation of the GSPN formalism.

SOLV ER node is Solution Tool indicating the tool to be applied to a sub-
model. The SOLUTION ARC is used to connect SOLV ER to a sub-model.
COMMUNICATION ARC is used to establish a connection between two sub-
models with the consequent exchange of some values. A connection between
two models establishes a sort of dependency of one model from the other.
For instance, if a parameter of the model M1 corresponds to a result to be
computed on the model M2, then M1 depends on M2. For this reason, a
COMMUNICATION ARC must have a verse pointing to the dependent
sub-model; moreover, such an edge has some properties: Result in order to
set which result has to be computed, Object to set the object of the result
computation, V ariable to indicate the name of the variable storing the result,
once returned by the solution tool.

The formalisms included in this composed formalisms (Fig. 4) are BN and
GSPN. In the BN+GSPN formalism, we define an element of type measure;
a measure is a result concerning a (sub)model instead of a primitive element.

In [11] a distinction between explicit and implicit multi-formalism was
made: the discussion presented in this paper concerns mainly explicit multi-
formalism. Implicit multi-formalism can be used when some of the submodels
composing the actual model to be used in the solution process are only im-
plicitly represented by some ”placeholder” in the (single formalism) model
designed by the user: the placeholder is then automatically transformed into



Defining formalisms and models in the Draw-Net Modelling System 15

the final submodel (and composed with the complete model) at solution time;
an example of implicit multi-formalism can be found in [14]. Multi-formalism
models usually require multi-solution: in the simplest cases the solution pro-
cess can be directly inferred from the model structure (as in the example
presented in this paper) however in general the solution process can be more
complex and needs to be explicitly described: an example of language for
expressing solution processes and of general multi-solution tool has been pre-
sented in [12].

Fig. 4. UML-like diagram of the abstract representation of BN+GSPN.

5.4 DNForGe

The Draw-Net tool allows to create or edit any graph based model whose
formalism has been previously defined. Due to the complexity of a formalism
specification, and the high number of parameters to define, building a formal-
ism manually by writing directly its XML code, would be unpractical; so a
way to simplify the specification of a formalism, became necessary.

For this reason, a graphical interface called DNForGe has been developed
with the aim of creating and editing formalisms for the DMS. By means of
DNForGe, the user can manipulate the definition of a formalism avoiding to
deal with the XML code. Such code is automatically generated or updated by
DNForGe.

The main window of DNForGe (Fig. 5) displays in a tree graphical struc-
ture the hierarchy of the formalisms collected in a composed formalism; by
means of the main window, the user can modify the formalisms hierarchy by
adding or removing formalisms inside composed formalisms. Moreover, from



16 Daniele Codetta-Raiteri, Giuliana Franceschinis, and Marco Gribaudo

this window, the user can select a single formalism and edit it in a specific
window. (Fig. 6). In this window the user can add or remove formalism ele-
ments; he can also select a certain element and edit its properties by means
of a further window.

In general, DNForGe allows the user to define formalisms of any kind (sim-
ple, derived, composed), exploiting all the aspects described in the previous
sections, such as intra-formalism and inter-formalisms inheritance, abstract
and private elements.

Let us consider the GSPN formalism; it has been built using DNForGe.
The content of the XML file storing the FDL layer of such formalism, follows:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE fdl SYSTEM ’../../dtd/fdl.dtd’>
<fdl main="GSPN">
<include src="base/GraphBased.fdl" />
<include src="base/Instantiable.fdl" />
<parent ref="PN" />
<elementType name="GSPN_TRANSITION" type="abstract">
<parent ref="TRANSITION" />

</elementType>
<elementType name="IMMEDIATE_TRANSITION" >
<parent ref="GSPN_TRANSITION" />
<propertyType name="Weight" type="float" default="1.0" />
<propertyType name="Priority" type="integer" default="1" />

</elementType>
<elementType name="TIMED_TRANSITION" >
<parent ref="GSPN_TRANSITION" />
<propertyType name="Firing_Rate" type="float" default="1.0" />

</elementType>
<elementType name="INHIBITOR_ARC" >
<parent ref="WEIGHTED_ARC" />

</elementType>
</fdl>

The description of the RDL layer of the GSPN formalism is contained in this
XML file:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE rdl SYSTEM "../../dtd/rdl.dtd">
<rdl main="GSPN">
<parent ref="PN" />
<elementType name="GSPN_TRANSITION">
<resultType name="Throughput"/>

</elementType>
<elementType name="IMMEDIATE_TRANSITION">
<parent ref="GSPN_TRANSITION" />



Defining formalisms and models in the Draw-Net Modelling System 17

</elementType>
<elementType name="TIMED_TRANSITION">
<parent ref="GSPN_TRANSITION" />

</elementType>
<elementType name="INHIBITOR_ARC">
<parent ref="WEIGHTED_ARC" />

</elementType>
</rdl>

We avoid to report the XML representation of the FRL layer of the formalism.

Fig. 5. Screenshot of the ”DNForGe: Composer” window.

Fig. 6. Screenshot of the ”DNForGe: Formalism Elements” window.

6 Building models

In this section the multi-formalism model representing the behaviour of the
system proposed in Sec. 4, is described; the model is composed by a container



18 Daniele Codetta-Raiteri, Giuliana Franceschinis, and Marco Gribaudo

model (Fig. 9) conforming to the BN+GSPN formalism, and two submodels:
BN0 (Fig. 7), and GSPN1 (Fig. 8) conforming to the BN and GSPN formal-
ism respectively (Sec. 5). Each submodel represents a specific feature of the
system behaviour, as mentioned at the end of Sec. 4. The complete multi-
formalism model is drawn by means of the Draw-Net tool (Fig. 8). We avoid
the description of the submodels BN0 and GSPN1, and we concentrate our
attention on the container model (Fig. 9). According to the formal definition
of model given in Sec. 3.4, the container model is the main model (m0).

Some examples of the XML representation of models are reported in [18].

Fig. 7. Submodel BN0.

Container model

Fig. 9 shows the container model conforming the BN+GSPN formalism (Sec.
5.3) and setting the interconnections among the submodels BN0 and GSPN1.
A measure named Failure Prob concerns the whole multi-formalism model and
indicates the probability of the system to be failed at a certain time.

Several instances of COMMUNICATION ARC connecting submodels,
indicate the exchange of results among submodels: in BN0 (Fig. 7), the en-
tries of the Conditional Probability Table (CPT) of the node EP contain the
variable p, while the entries of the CPT of the node C contain the variable
q. The properties of the arcs connecting GSPN1 to BN0 indicate that p and
q must be computed on GSPN1 as the mean number of tokens present in
the places called EP down and C ko respectively. Since the number of tokens
inside such places can be 0 or 1, their mean number of tokens at time t will
be the probability of these places to be marked at time t.



Defining formalisms and models in the Draw-Net Modelling System 19

Fig. 8. Screenshot of the Draw-Net tool showing the submodel GSPN1.

Fig. 9. Container model.



20 Daniele Codetta-Raiteri, Giuliana Franceschinis, and Marco Gribaudo

In the container model, the solver to be used for each submodel, is indi-
cated by means of instances of SOLV ER and SOLUTION ARC.

Finally,BN0 is connected to the measure Failure Prob relative to the whole
multi-formalism model, with the specification that such measure is equal to the
conditional probability Pr{L = off |EP = down} to be computed on BN0.
We suppose that a workflow engine (WE) is available to deal with models
conforming the BN+GSPN composed formalism; such workflow engine can
determine the order of solution of the submodels given the way they are
connected in the container model (Fig. 9). Moreover, we suppose that the
node BN solver (instance of SOLV ER) in the container model, indicates the
tool DBNet [15] as BN analyzer, while the node GSPN solver indicates that
GreatSPN [19] is the tool to analyze GSPNs. According to these assumptions
and assuming that the modeler has set t to 1000 h in the container model,
the computation of the probability of the system failure at time t, will follow
these steps:
1. the tool GreatSPN performs the analysis of the submodel GSPN1 returning
these measures: p = E(#EP down, t), q = E(#C ko, t), i. e. p is the mean
number of tokens inside the place EP down at time t, and q is the mean
number of tokens inside the place EP down at time t;
2. the WE passes the values of the variables p and q to the submodel BN0

where p and q are present in some CPTs;
3. the tool DBNet performs the analysis of BN0 returning the conditional
probability F = Pr{L = off |EP = down};
4. in the container model, the WE sets the value of the measure Failure Prob
at time t, to the value of F .

Currently, this process is executed in a semi-automatic way.

7 Conclusions and future work

This paper has presented the multi-formalism multi-solution DMS framework,
focusing on the central role played by the DDL in the open architecture of
the DMS.

The DDL offers a meta-modeling feature that allows the creation of new
formalisms: intra-inheritance and inter-inheritance allow to derive new for-
malism by extending existing ones, and to integrate different formalisms in
a composed formalism. This last possibility is the basis for multi-formalism
modeling.

According to the DDL, models conforming to a certain formalism can be
constructed by instantiating formalism elements; as mentioned above, multi-
formalism models can be constructed by instantiating (sub)models expressed
in different formalisms within a container model conforming to a composed
formalism.



Defining formalisms and models in the Draw-Net Modelling System 21

The current DMS implementation includes a library (DNlib) implementing
the DDL, and two editors, DNForGe and Draw-Net, for the manipulation of
formalisms and models respectively.

The DMS is an open and extensible framework: other DDL-based editors
may be implemented and added to the DMS, exploiting the DNlib, and solvers
can be connected to the framework by exchanging the XML interchange files
representing the different layers of a DMS model, or by exchanging solver spe-
cific files (in this last case appropriate filters or adapters must be constructed).

Future work on the DMS will be mainly devoted to interfacing the DMS
with several solvers: the first goal consists in building the connection between
the DMS and a number of miscellaneous solvers exploiting the previous version
of the XML interchange format (see Sec. 3.1).

The second goal is to interface the DMS framework with other solvers,
developed within other projects: among the others it is our intention to inter-
face the GSPN and SWN (Stochastic Well-formed Nets) [20] solvers developed
within GreatSPN and related projects [21].

ACKNOWLEDGEMENTS

This work was supported by the Italian Ministry of Education, University and Re-
search (MIUR) in the framework of the FIRB-Perf project.

References

1. Douglas C. Schmidt. Model driven engineering, guest editor’s introduction.
IEEE Computer, Special Issue on Model Driven Engineering, pages 25–31, Feb.
2006.

2. D. Deavours, G. Clark, T. Courtney, D. Daly, S. Derisavi, J. Doyle, W. Sanders,
and P. G. Webster. The Möbius Framework and its Implementation. IEEE
Transactions on Software Engineering, 28(10):956–969, 2002.

3. G. Ciardo, R. L. Jones, A. S. Miner, and R. Siminiceanu. Smart: Stochastic
model analyzer for reliability and timing. In Tools of Aachen 2001 Interna-
tional Multiconference on Measurement, Modelling and Evaluation of Computer-
Communication Systems, pages 29–34, Aachen, Germany, Sept. 2001.

4. R. A. Sahner, K. S. Trivedi, and A. Puliafito. Performance and Reliability
Analysis of Computer Systems; An Example-based Approach Using the SHARPE
Software Package. Kluwer Academic Publisher, 1996.

5. G. Franceschinis, M. Gribaudo, M. Iacono, V. Vittorini, and C. Bertoncello.
DrawNet++: a flexible framework for building dependability models. In In
Proc. of the Int. Conf. on Dependable Systems and Networks, Washington DC,
USA, June 2002.

6. J. de Lara, H. Vangheluwe, and M. Alfonseca. Meta-Modeling and Graph Gram-
mars for Multi-Paradigm Modeling in ATOM3. Journal of Software and System
Modeling, 3(3):194–209, August 2004.

7. I. Bull and J. M. Favre. Visualization in the Context of Model Driven Engineer-
ing. In Proceedings of the International Workshop on Model Driven Development
of Advanced User Interfaces, Montego Bay, Jamaica, October 2005.



22 Daniele Codetta-Raiteri, Giuliana Franceschinis, and Marco Gribaudo

8. M. Gribaudo, D. Codetta-Raiteri, and G. Franceschinis. Draw-Net, a customiz-
able multi-formalism multi-solution tool for the quantitative evaluation of sys-
tems. In Proceedings of the 2nd International Conference on Quantitative Eval-
uation of Systems, pages 257–258, Turin, Italy, September 2005.

9. J. M. Doyle. Abstract models specification using the Möbius modeling tool.
Master’s thesis, University of Illinois, 2000.

10. Patrick Wuechner, Hermann de Meer, Joerg Barner, and Gunter Bolch. MOSEL-
2 – A Compact But Versatile Model Description Language And Its Evaluation
Environment. In Proc. of MMBnet’05, Hamburg, pages 51–59, 2005.

11. V.Vittorini, M. Iacono, N. Mazzocca, and G. Franceschinis. The OsMoSys ap-
proach to multi-formalism modeling of systems. Journal of Software and System
Modeling, 3(1), March 2004.

12. M. Gribaudo, N. Mazzocca, F. Moscato, and V. Vittorini. Multisolution of
Complex Performability Models in the OsMoSys/DrawNet Framework. In Proc.
2nd Int. Conf. on the Quantitative Evaluation of Systems, pages 85–94, Torino,
Italy, Sept. 2005.

13. M. Gribaudo. FSPNEdit: A fluid stochastic Petri net modeling and analysis
tool. Technical report, Tools of Aachen 2001 - International Multiconfernce on
Measurements Modelling and Evaluation of computer Communication Systems
- University of Dortmund, Bericht No. 760/2001, 2001.

14. D. Codetta-Raiteri. Extended Fault Trees Analysis supported by Stochastic Petri
Nets. PhD thesis, Dipartimento di Informatica, Università di Torino, November
2005. http://www.di.unito.it/∼phd/phd theses.html.

15. S. Montani, L. Portinale, A. Bobbio, M. Varesio, and D. Codetta-Raiteri. A tool
for automatically translating Dynamic Fault Trees into Dynamic Bayesian Net-
works. In Proceedings of the Annual Reliability and Maintainability Symposium,
pages 434–441, Newport Beach, CA USA, January 2006.

16. M. Ajmone-Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis.
Modelling with Generalized Stochastic Petri Nets. J. Wiley and Sons, 1995.

17. L. Portinale and A. Bobbio. Bayesian networks for dependability analysis: an
application to digital control reliability. In Proc. 15th Conference on Uncertainty
in Artificial Intelligence (UAI 99), pages 551–558, July 1999.

18. M. Gribaudo, D. Codetta-Raiteri, and G. Franceschinis. The Draw-Net Mod-
eling System: a framework for the design and the solution of single-formalism
and multi-formalism models. Technical Report TR-INF-2006-01-01-UNIPMN,
Dipartimento di Informatica, Università del Piemonte Orientale, January 2006.

19. G. Chiola, G. Franceschinis, R. Gaeta, and M. Ribaudo. GreatSPN 1.7: Graphi-
cal Editor and Analyzer for Timed and Stochastic Petri Nets. Performance Eval-
uation, special issue on Performance Modeling Tools, 24(1&2):47–68, November
1995.

20. G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. Stochastic Well-
Formed Colored Nets and Symmetric Modeling Applications. IEEE Transac-
tions on Computers, 42:1343–1360, 1993.

21. J-M. Ilié, S. Baarir, M. Beccuti, S. Donatelli, C. Dutheillet, G. Franceschinis,
R. Gaeta, and P. Moreaux. Extended SWN solvers in GreatSPN. In Proc. of
the 1st Int. Conference on Quantitative Evaluation of Systems (QEST’04), pages
324–325, Twente, The Netherlands, September 2004. IEEE Computer Society.


