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Abstract

The paper presents the evaluation of a benchmark on dy-
namic reliability. Such system consists of a tank containing
some liquid, two pumps and one valve to renew the liquid in
the tank, a heat source warming the liquid, and a controller
acting on the state of the components. Three failure con-
ditions are possible: the dry out, the overflow or the high
temperature of the liquid. Due to the presence of continu-
ous variables, such as the liquid level and temperature, the
system is modelled as a Fluid Stochastic Petri Net which is
the object of simulation obtaining the unreliability evalua-
tion of the system.

1 Introduction

The term performability was coined in [6] to account
for the degradation of some performance index in a dis-
tributed redundant system when the failure of some of its
parts reduces its capacity. However, in process industry per-
formance and reliability may show a mutual influence in
a different way through the common dependence on some
process parameter. As an example, a temperature increase
speeds up the chemical reactions through the Arrhenius law,
but, at the same time, may have a detrimental effect on the
component reliability. A hybrid system is a system whose
behaviour is described by means of both discrete and con-
tinuous variables. In the dependability literature, the case in
which the reliability characteristics vary continuously ver-
sus a process parameter is sometimes referred to as dynamic
reliability [5]. The modelling and analysis of hybrid dy-
namic systems is an open research area.

Based on the example in [5], a benchmark was proposed
to compare different methodologies [7]. The benchmark
consists of a hybrid dynamic system composed by a tank
containing some liquid whose level is influenced by a con-
troller acting on two pumps and one valve with the aim of
avoiding the dry out or the overflow of the liquid. Several
versions of this system have been proposed and evaluated
by means of Monte Carlo simulation in [5]. In this paper,
we concentrate on the case in which a heat source is present
to warm the liquid in the tank, and the component failure

Figure 1. System scheme.

rates depend on the temperature (section 2).
Due to the presence of discrete and continuous variables,

in section 3 we model the dynamic behaviour of the system
by means of a Fluid Stochastic Petri Net (FSPN) [3, 4]; the
simulation of the FSPN model provides the system unreli-
ability for each failure condition versus the mission times
(section 4).

FSPNs are an extension of Generalized Stochastic Petri
Nets (GSPN) [1]. With respect to GSPNs, FSPNs contain
new primitives: fluid places, that contain a continuous level
of fluid (instead of a discrete number of tokens), and fluid
arcs that connect a timed transition to a fluid place (or vice-
versa). Flow rates are associated to fluid arcs to increase
(or decrease) the level inside the fluid place while the timed
transition is enabled. FSPNs extend the modelling power
and flexibility of GSPNs, and are a useful modelling frame-
work for hybrid systems.

2 The case study

The system [5] is composed by a tank containing some
liquid, two pumps (P1 and P2) to fill the tank, one valve (V)
to remove fluid from the tank, and a controller (C) monitor-
ing the fluid level (L) and turning ON or OFF the pumps or
the valve, if L is too low or too high. P1, P2 and V have
the same liquid level variation rate (Q = 1.5m/h) and can
be in one of these four states: ON, OFF, stuck ON, stuck



Boundary P1 P2 V
L ≤ HLA ON ON OFF
L ≥ HLB OFF OFF ON

Table 1. Control boundaries and laws.

OFF. Fig. 1 shows the system scheme: the system is work-
ing correctly if L is inside the region of correct functioning
(HLA < L < HLB).

Initially L = 7 with P1 and V in state ON, and P2 in
state OFF; in this situation, the liquid is renewed, but L
does not change. The failure of P1, P2 or V consists on
a state transition towards the state stuck ON or stuck OFF,
and causes a variation of L: Tab. 2 indicates how L changes
according to the current state of the components.

The controller orders the components to change their
state if L is not inside the region of correct functioning,
according to the control boundaries in Tab. 1, with the pur-
pose of avoiding two failure conditions of the system: the
liquid dry out (L ≤ HLV ) or overflow (L ≥ HLP ). If a
component is stuck (ON or OFF), it does not respond to the
controller orders, so it does not change its state.

Config. P1 P2 V effect on L
1 ON OFF OFF ↑
2 ON ON OFF ↑↑
3 ON OFF ON =
4 ON ON ON ↑
5 OFF OFF OFF =
6 OFF ON OFF ↑
7 OFF OFF ON ↓
8 OFF ON ON =

Table 2. Variation of L for each configuration.

At the same time, a heat source (H) increases the tempe-
rature (T ) of the liquid inside the tank which has a cross sec-
tion area of 180m2 and is assumed to be filled with water.
The heating power of H is w = 753.48MJ/h = 1m°C/h
[5]; we assume that there is no heat released outside the
tank, and that the heat is uniformly distributed on the li-
quid. The initial temperature of the liquid inside the tank is
15.6667°C; the temperature of the liquid introduced in the
tank by the pumps, is Tin = 15°C, and we assume that it
gets mixed instantaneously with the liquid in the tank. As-
suming that a pump is activated at time t0 and is still active
at time t > t0, we use the equations 1 and 2 to provide re-
spectively the liquid level and temperature at time t > t0,
where L0 is the the liquid level and T0 is the liquid tempe-
rature at time t0.

L(t) = L0 +Q · (t− t0) (1)

T (t) = T0 ·
L0

L(t)
+ Tin ·

Q

L(t)
· (t− t0) (2)

Component λ0 (h−1)
P1 0.004566
P2 0.005714
V 0.003125

Table 3. Failure rates for T = 20°C.

If we want to express the liquid temperature at time t >
t0 as T (t) = T0 − θ(t), from equation 2 we can derive
equation 3.

θ(t) = (T0 − Tin) · Q

L(t)
· (t− t0) (3)

Another failure condition of the system occurs when T
reaches 100°C. The failure rates of the components P1, P2
and V are temperature dependent; λ0 is the failure rate of
the component for a temperature equal to 20°C (Tab. 3);
the failure rate as a function of T , is given by equation 4
[5].

λ(T ) = λ0(0.2e0.005756(T−20) + 0.8e−0.2301(T−20)) (4)

Moreover, we assume that the controller C has a pro-
bability of failure on demand (FOD) equal to p = 0.2;
this means that the probability to fail of C when the liquid
reaches a control boundary (Tab. 1), is p. If C fails, it does
not execute the corresponding control rule on the compo-
nent states.

3 The FSPN model

Fig. 2 shows the FSPN model of the system. The liquid
level and temperature are represented by two fluid places,
respectively L and T ; fluid places graphically appear as
double circles. L is initially set to 7, while T is initially
set to 15.6667.

Component states. Let us consider the subnet mo-
delling the states of P1; three discrete places (appearing
as circles) are used: P1on, P1off and P1stuck. When
P1on contains one token, P1 is ON; when P1off con-
tains one token, P1 is OFF; if P1stuck contains one to-
ken, P1 is also stuck. P1on is initially marked. The com-
ponent state variations due to a failure, are modelled by
four timed transitions (they appear as white rectangles):
P1failONON , P1failONOFF , P1failOFFON and
P1failOFFOFF . The transition P1failONOFF for
instance, models the transition from the state ON to the state
stuck OFF by moving the token from P1on to P1off and
putting one token in P1stuck. The failure rate of P1 de-
pends on the temperature, but it does not depend on the
current state of P1; for this reason, the firing rate of such
timed transitions is set to λ(T )/2, where λ(T ) is defined by
equation 4, and T indicates the level inside the fluid place
representing the temperature. The failure of P2 and V is
modelled in the same way.



Variation of L and T . The action of P1, P2 and V on
the liquid level is modelled by a set of transitions and fluid
arcs (appearing as a pipe). The addition of liquid in the
tank by P1, is modelled by a fluid arc drawn from the tran-
sition P1fill to the fluid place L; the flow rate of such arc
is #P1on · Q, where #P1on is the current number of to-
ken inside the discrete place P1on (0 or 1). In other words,
while P1 is on, it injects some liquid in the tank according
to its level variation rate. The action of P2 is modelled in
the same way (transition P2fill), while the removal of li-
quid from the tank by the valve V, is modelled by a fluid arc
drawn from the fluid place L to the transition V remove.

The transitions P1fill and P2fill are connected by
means of other fluid arcs, also to the fluid place T represent-
ing the current liquid temperature. In this way, we model the
variation of the temperature of the liquid inside the tank, due
to the injection of some new liquid by the pumps. We use θ
(equation 3) as the flow rate of the fluid arcs drawn from the
fluid place T to the transitions named P1fill and P2fill,
respectively.

The temperature of the liquid in the tank is also influ-
enced by the presence of the heat source which is modelled
in the FSPN as the fluid arc drawn from the transition Heat
to the fluid place T , in order to represent the increase of
the temperature due to the heat source. The flow rate of
such fluid arc is 1/L, since the heat power is uniformly dis-
tributed on the liquid in the tank whose level is represented
by the fluid place L.

Actions by C. The discrete place named CORRECT
indicates whether the liquid level is inside the region of
correct functioning (HLB < L < HLA) or not; such
place is initially marked because the liquid level is 7 at
the begin. If the liquid level reaches HLA, the transi-
tion called tooLOW fires, since its firing rate is set to
Dirac(L − 6). The Dirac delta function returns +∞ if
its argument is equal to 0, else it returns 0; so, the transi-
tion tooLOW fires if L = 6. The effect of the firing of
tooLOW is moving the token from the place CORRECT
to the place dangerLOW , enablig the firing of two im-
mediate transitions (graphically appearing as black rect-
angles): LAW1 and FOD1. The probability to fire of
such transitions is ruled by their weights; the transition
LAW1 models the correct functioning of the controller
and its weight is 1 − p; the transition FOD1 models the
failure on demand of the controller, and its weight is p
(FOD probability). The effect of the firing of the tran-
sition LAW1 is moving the token from dangerLOW to
ORDER1. If such place is marked, several immediate
transitions (P1offon, P2offon, V onoff ) representing
the first control law in Tab. 1, fire changing the state of the
components which are not stuck. The token is moved from
the place ORDER1 to the place CORRECT by means
of the transition enoughHIGH , when the liquid level L
comes back to the region of correct functioning. If the im-
mediate transition FOD1 fires instead of LAW1, the token
inside the place dangerLOW is simply removed and no ac-

tion on the state of the components is performed. The action
of the controller when L reaches HLB (second control law
in Tab. 1), is modelled analogously.

System failure. The detection of the system failure con-
ditions (dry out, overflow, high temperature) is achieved by
means of three transitions. The transition Empty detects
the dry out condition (L = 4), so its firing rate isDirac(L−
4); if this transition fires, one token appears in the place
DRY OUT , in order to represent the dry out state of the
system. The overflow condition (L = 10) is detected by
the transition Full whose firing rate is Dirac(L− 10); this
transition puts one token inside the place OV ERFLOW
to represent the overflow state. Finally, the transition Boil
fires when the temperature of the liquid inside the tank
reaches 100°C, so its firing rate is Dirac(T − 100); the
effect of its firing is the presence of one token inside the
place HIGHTEMP in order to model the failure of the
system due to the condition of high temperature.

4 Unreliability evaluation

In order to evaluate the unreliability of the system, we
computed via simulation of the FSPN model, the cumula-
tive distribution function (cdf) for the dry out, the overflow
and the high temperature failure condition; this means com-
puting the probability that the system is in such conditions,
as a function of the time. The dry out cdf has been computed
as the mean number of tokens inside the place DRY OUT ,
at the given time; since such place can contain zero or one
token, the mean number of tokens inside this place will be
a value inside the continuous range (0,1). Analogously, the
overflow cdf is computed as the mean number of tokens in-
side the place OV ERFLOW , while the high temperature
cdf is computed as the mean number of tokens inside the
place HIGHTEMP .

The FSPN model has been drawn and simulated by
means of the FSPNEdit tool [2]. The obtained cdf values
for each failure condition and for a mission time varying
between 0 and 1000 hours, are shown in Tab. 4 and in Fig.
3, where it is possible to compare them with the results ob-
tained in the case with a null probability of FOD of C [5]
(dashed lines).

5 Conclusions

In this paper, we have proposed FSPNs as a formalism
suitable to model cases of hybrid and dynamic systems.
The validity of FSPNs has been verified by comparing our
results with those reported in [5] and returned by Monte
Carlo simulation. The use of FSPN models can be extended
from the analysis of the dynamic reliability to the analysis
of the performability, when performance indices and relia-
bility features are related to the variation of common pro-
cess parameters.



Figure 2. FSPN model of the system.

hours dry out overflow high temp.
100 0.1178 0.3558 0.0002
200 0.1578 0.4722 0.0006
300 0.1724 0.5166 0.0008
400 0.1844 0.5372 0.0008
500 0.1892 0.5484 0.0008
600 0.1906 0.552 0.0194
700 0.1916 0.5528 0.0456
800 0.1916 0.553 0.065
900 0.1918 0.5534 0.0678

1000 0.1918 0.5534 0.0682

Table 4. cdf values for each failure condition.

Figure 3. cdf of each failure condition
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