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Abstract. Recent studies focused on the achievement of autonomy of
exploration spacecrafts, such as Mars rovers. The traditional approach for
on-board FDIR (Fault Detection, Identification and Recovery) is based
on the run-time observation of the system operational status in order to
detect faults, while the initiation of the corresponding recovery actions
uses static pre-compiled look-up tables. This approach is a purely reac-
tive approach, lacking of preventive recovery capabilities, and puts the
spacecraft into a known safe configuration and transfers control to the
ground operations. In the VeriFIM study, we developed ARPHA, an
on-board FDIR reasoning engine based on probabilistic graphical mod-
els. The approach followed in ARPHA provides a unified modeling and
operational framework that integrates a high level modeling formalism
(Dynamic Fault Tree (DFT)), a low level modeling formalism (Dynamic
Bayesian Network (DBN)) and an inference oriented formalism (Junction
Tree (JT)). The off-board process of ARPHA consists of the construction
of the DFT by reliability engineers, the automatic transformation into
DBN, the manual enrichment of the DBN to model the features that
DFT can not represent, and then the JT automatic generation. The JT
is the actual on-board model undergoing analysis conditioned by sensor
data and plan data. The goal is the on-board evaluation of the system
current state (diagnosis) and future state (prognosis), in order to detect
(in a probabilistic way) current or imminent anomalies or failures, and
choosing the most suitable recovery policies taking into account their
effect on the system in the near future. All of this is performed in auto-
matic way, without the assistance of the ground control. In this paper,
we present the application of this approach to a case study concerning
the power supply subsystem of a Mars rover.
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1 Introduction

In autonomous spacecraft operations, both the system behavior and the envi-
ronment can exhibit various degrees of uncertainty; control software must then
provide the suitable and timely reaction of the system to changes in its op-
erational environment, as well as in the operational status of the system. The
operational status of the system is dependent on the internal system dependabil-
ity factors (e.g. sub-system and component reliability models), on the external
environment factors affecting the system reliability and safety (e.g. thermal, ra-
diation, illumination conditions) and on system-environment interactions (e.g.
stress factors, resource utilization profiles, degradation profiles, etc.). Combina-
tions of these factors may cause mission execution anomalies, including mission
degradations and system failures. To address possible system faults and failures,
the system under examination must be provided with some form of health man-
agement procedures, usually relying on the Fault Detection, Identification and
Recovery (FDIR) process. Currently employed state-of-the-art of the FDIR is
based on the design-time analysis of the faults and failure scenarios (e.g. Failure
Mode Effect Analysis (FMEA), Fault Tree Analysis (FTA) [1]) and run-time
observation of the system operational status (health monitoring). The goal is in
general to timely detect faults and to start a predefined recovery procedure (by
using look-up tables), having the goal of putting the spacecraft into a known safe
configuration and transfer control to the ground operations for troubleshooting
and planning actual recovery.

Standard FDIR approaches have multiple shortcomings which may signifi-
cantly reduce effectiveness of the adopted procedures: 1) the system, as well as
its environment, is only partially observable by monitoring procedures; this in-
troduces uncertainty in the interpretation of observations in terms of the actual
system status, which is often disregarded in choosing the possible recovery. 2)
Recovery is essentially triggered following a reactive approach, a post-factum op-
eration, not capable of preventive measures and that cannot provide and utilise
prognosis for the imminent failures.

The main source of such limits is recognized to be the fact that knowledge
of the general operational capabilities of the system (that should potentially be
expressed in terms of causal probabilistic relations) is not usually represented
on-board, making impossible to estimate the impact of the occurred faults and
failures on these capabilities. Several studies have tried to address these prob-
lems, some by restricting attention to manned systems [2] or to systems requiring
heavy human intervention [3], some others by emphasizing the prognostic phase
and relying on heuristics techniques to close the FDIR cycle [4].

The goal of the VeriFIM study is an innovative approach to on-board FDIR:
the FDIR engine exploits an on-board probabilistic graphical model which must
take into account the system architecture, the system environment, the system-
environment interaction, and the dynamic evolution in presence of uncertainty
and partial observability. Moreover, the on-board FDIR engine must provide the
system with diagnosis (fault detection and identification) and prognosis (fault
prediction) on the operational status to be taken into account for autonomous



reactive or preventive recovery actions. To this aim, inside VeriFIM, we devel-
oped the software prototype called ARPHA (Anomaly Resolution and Prognostic
Health management for Autonomy).

Before the execution of ARPHA (on-board process), the on-board model
must be prepared. Because of the several aspects to be represented by the on-
board model, the modelling phase (off-board process) integrates a high level
modeling formalism (Dynamic Fault Tree (DFT) [5]), a low level modeling for-
malism (Dynamic Bayesian Network (DBN) [6]) and an inference oriented for-
malism (Junction Tree (JT) [7]). Basic notions about these formalisms are re-
ported in Sec. 2. The on-board model (JT) is obtained through a sequence of
model conversions and model enrichment. In Sec. 3, we present a case study con-
cerning the power supply subsystem of a Mars rover. In Sec. 4, this case study
provides a running example for the off-board process (modelling phase) and the
on-board process (diagnosis, prognosis and recovery of the system, conditioned
by sensor data and plan data).

2 Basic notions about DFT, DBN, JT

DFT. Fault Tree (FT) [1] is the most diffused and popular model in Reliability
analysis. A FT is a direct acyclic graph (DAG) representing how several combi-
nations of Basic Events (BE) lead to the occurrence of a particular event called
Top Event (TE). Each BE (component failure) has a certain probability to oc-
cur according to its failure rate. So, it is possible to compute the probability of
occurrence of TE (system failure). In FT, BEs are assumed to be independent
and the combinations of BEs leading to TE can only be expressed by means of
Boolean gates (AND, OR). Therefore the modeling power of FT is rather limited,
so several extensions have been proposed in the literature, such as DFT (Fig. 2)
introducing dynamic gates representing dependencies: a dependency arises when
the failure behavior of a component depends on the state of another component
or subsystem. Dynamic gates represent several kinds of dependencies: functional
dependencies, dependencies concerning the events order, and the presence of
spare components.
DBN. Bayesian Networks (BN) [8] have become a widely used formalism for
representing uncertain knowledge in probabilistic systems. BN are defined by a
DAG in which discrete random variables are assigned to each node, together with
the conditional dependence on the parent nodes. In particular, each node has
associated a Conditional Probability Table (CPT) specifying the probability of
each value of the node, conditioned by every instantiation of parent nodes. Root
nodes are nodes with no parents, and marginal prior probabilities are assigned
to them. In this way, it is possible to include local conditional dependencies, by
directly specifying the causes that influence a given effect. This allows computing
the probability distribution of any variable given the observation of the values
of any subset of the other variables. DBN (Fig. 3) extend BN by providing an
explicit discrete temporal dimension. A DBN is essentially the replication of a
BN over two time slices, t − ∆ and t, where ∆ is the time discretization step.



In other words, each variable has two instances, one for each time slice. If a
variable is characterized by a temporal evolution, its instance in the time slice t
depends on its instance in t−∆. Moreover, it is possible to establish intra-slice
dependencies involving different variables in the same time slice, or inter-slice
dependencies involving different variables in different time slices. Given a set of
observations up to the current time t, it is possible to compute the probability
distribution of a variable at t, in the future, or in the past, conditioned by the
observations.
JT. A way to efficiently compute conditioned probabilities on a (D)BN, consists
of generating and analyzing the JT according to the procedures detailed in [7].
A JT is an undirected unrooted tree where each node (also called a cluster)
corresponds to a set of nodes in the original (D)BN. The Boyen-Koller (BK) al-
gorithm [9] is a parametric JT-based inference strategy: the algorithm depends
on some input parameters (set of nodes) called “bk-clusters”; according to the
bk-clusters provided, it can produce approximate inference results with different
degrees of accuracy. In particular, if the input is a unique bk-cluster containing
all the so-called “interface nodes” of the DBN, the BK algorithm performs exact
inference (see [9] for the details). The main reason for implementing approxi-
mate inference is that, in case of network models which are particularly hard to
solve with exact inference, a reasonable approximation can trade-off time/space
complexity and quality of the results4.

3 A case study

An example case study we have used to test ARPHA, concerns the power supply
subsystem of a Mars rover, with a particular attention to the following aspects.
Solar arrays. We assume the presence of three solar arrays (SA), namely SA1,
SA2, SA3. In particular, SA1 is composed by two redundant strings, while SA2
and SA3 are composed by three strings. Each SA can generate power if both the
following conditions hold: 1) at least one string is not failed; 2) the combination
of sun aspect angle (SAA), optical depth (OD), and local time (day or night)
is suitable. In particular, OD is given by the presence or absence of shadow or
storm. The total amount of generated power is proportional to the number of
SAs which are actually working.
Load. The amount of load depends on the action performed by the rover.
Battery. We assume the battery to be composed by three redundant strings.
The charge of the battery may be steady, decreasing or increasing according to
the current levels of load and generation by SAs. The charge of the battery may
be compromised by the damage of the battery occurring in two situations: all
the strings are failed, or the temperature of the battery is low.
Scenarios. We are interested in four failure or anomaly scenarios. Each scenario
4 The assumption is also that, since the networks used by ARPHA have a reasonable

number of observed variables (i.e. each relevant system component is a sensored com-
ponent and sensors have a high accuracy), then the approximation error is bounded
by conditioning on the next set of observations during a temporal inference.



can be recovered by specific policies:
- S1) low (anomaly) or very low (failure) power generation while SAA is not
optimal. Recovery policies: P1) suspension of the plan in order in order to
reduce the load; P2) change of inclination of SA2 and SA3 in order to try to
improve SAA and consequently the power generation (the tilting system cannot
act on SA1).
- S2) low (anomaly) or very low (failure) power generation while OD is not
optimal. Recovery policies: P3) movement of the rover into another position in
order to try to avoid a shadowed area and improve OD and the power generation
as a consequence; P4) modification of the inclination of SA2 and SA3, retraction
of the drill, and suspension of the plan.
- S3) low (anomaly) or very low (failure) battery level while drilling. Recovery
policies: P4) as above; P5) retraction of the drill, suspension of the plan.
- S4) low (anomaly) or very low (failure) battery level while the battery is
damaged. Recovery policies: P4) as above.

4 Modelling and operational framework

4.1 Off-board process

The off-board process starts with a fault analysis phase concerning some basic
knowledge about the system faults and failures, together with some knowledge
about environmental/contextual conditions and their effects and impacts on the
system behavior (possibly either nominal or faulty). This phase is aimed at
constructing (by standard and well-known dependability analysis procedures) a
first dependability model that we assume to be a DFT. The DFT produced can
then be automatically compiled into a DBN: the compilation process is detailed
in [10]. The DBN model is enriched with knowledge about more specific system
capabilities and failures, with particular attention to the identification of multi-
state components and stochastic dependencies not captured at the DFT language
level. The aim is to generate a DBN representing all the needed knowledge
about failure impacts. During this phase, both knowledge about plan actions
or recovery actions can be incorporated into the DBN. In ARPHA, we decided
to implement the DBN analysis by resorting to JT inference algorithms. So,
another role of the off-board process is the generation of the JT from the DBN.
This is performed according to the procedures presented in [7].

The DFT definition, its compilation into DBN, and the enrichment of the
DBN are supported by the Radyban tool [10], previously realized and exploiting
Draw-Net [11] as graphical interface in order to edit both the DFT and the
DBN. An ad-hoc JT generator has been implemented inside VeriFIM, and the
resulting JT can be visualized still by means of Draw-Net. The XML interchange
format [11] of Draw-Net has been exploited to define the formalisms DFT, DBN,
JT, and generate the respective models.

DFT model of the case study. The DFT model of the case study (Fig. 2)
represents the combinations of events or states leading to TE corresponding to



Fig. 1. ARPHA off-board process and on-board process.

the anomaly or failure of the whole system. TE is the output of an OR gate and
occurs if the event S1, S2, S3, or S4 happens. The event S1 represents the scenario
S1 and is the output of an AND gate. S1 occurs if both the events PowGen and
AngleSA2 occur. They represent an anomaly/failure about the power generation
(for instance, a low level of generated power) and a not optimal SAA for SA2 (we
assume that SAA of SA2 is similar to SAA of SA1 and SA3). PowGen occurs if
all the events PowGenSA1, PowGenSA2 and PowGenSA3 happen. Each of them
represents the fact that a SA is not producing energy. For example, PowGenSA1
concerns SA1 and happens if StringsSA1 occurs (all the strings of SA1 are failed)
or SA1perf occurs (the combination of local time (day or night), OD and SAA
of SA1 does not allow the generation of energy). OD is not optimal in case of
storm or shadow.

The event S2 occurs if both PowGen and OpticalDepth happen. S3 occurs if
both BattCharge and Drill occur; they represent an anomaly/failure about the
level of charge of the battery, and the drill actions in execution, respectively.
BattCharge in turns occurs if both the events Balance and BattFail happen. Bal-
ance represents the fact that the use of the battery is necessary: Balance happens
if both PowGen and Load occur. The second event represents the presence of a
load (consume of energy). The event BattFail models the damage of the battery
because of the failure of all its strings (event BattStrings) or a low temperature



Fig. 2. DFT model of the case study.



(event Temp). Finally, S4 occurs if both the events BattCharge and BattFail
happen.

The model contains two functional dependency (FDEP) [5] gates. The first
one represents the influence of ActionId on other events, such as Load, Drill
(in case of drilling actions), DrillRetract (drill in or out), AngleSA1, AngleSA2,
AngleSA3 (in case of tilting actions), Shadow (in case of travelling actions), and
MechShock (possibility of mechanical shock damaging the battery strings, in
case of drilling or travelling actions). MechShock influences in turns the events
BattString1, BattString2, BattString3 by means of the second FDEP gate.

DBN model of the case study. The DBN of the case study reported in
Fig. 3.a has been derived from the DFT model by following two steps: 1) the DFT
has been converted into the equivalent DBN: the structure of the DBN reflects
the structure of the originating DFT: each event in the DFT corresponds to the
variable in the DBN with the same name, while the DFT gates determine the
influence arcs in the DBN. 2) Then, the DBN has been enriched by increasing
the size (number of possible values) of several variables and expressing more
complicated relations among the variables, by editing the CPT of the variables.

The DFT contains Boolean (binary) events (variables) representing the state
of components or subsystems. This lacks of modeling power in several cases.
For instance, the level of power generation, battery charge, or load needs to
be represented with a variable with more than two values, if the model has to
be accurate enough to capture the aspects of the system behaviour causing its
state. Moreover, the relations or dependencies holding between variables may
be more complex than a Boolean or dynamic gate. For these reasons, the DBN
resulting from the DFT conversion has been enriched in this sense: the variables
representing SAA of each SA, and the variable Temp are ternary (good, discrete,
bad). The size of PowGen and BattCharge is 4 (we can represent 4 intermediate
levels of power generation and battery charge). The size of Load is 5 (5 levels of
consume of energy). The variable Balance is ternary and indicates if PowGen is
equal, higher or lower than Load. The size of ActionId is 8 in order to represent
8 actions of interest in the model. The variables S1, S2, S3, S4 are ternary in
order to represent the states Normal, Anomalous and Failed in each scenario
(the Normal state indicates that the scenario is not happening).

In the DBN we added some support variables in order to reduce the number
of entries in the CPT of the non binary variables by applying the so-called “di-
vorcing” technique [10]. The support variables are: TravelCom, DrillCom and
RetractCom depending on ActionId, and Trend depending on Balance and Bat-
tFail. In the DBN, each variable has two instances, one for each time slice (t−∆,
t) (Sec. 2). If a variable has a temporal evolution, its two instances are connected
by a “temporal” arc appearing as a thick line in Fig. 3.a. Still in Fig. 3.a, the
observable variables are put in evidence (black nodes); the values coming from
the sensors will become observations for such variables during the analysis of the
model. The plan actions and the recovery actions will become observations for
the variable ActionId.



Fig. 3. a) DBN model of the case study. b) utility function.



Fig. 4. The UML-like diagram of the functionalities of ARPHA.

The JT (Sec. 2) is derived from the DBN model in Fig. 3.a. The utility
function in Fig. 3.b is exploited for Recovery (Sec. 4.2) and provides utility
values for the combinations of the possible actions and the balance between
power generation and load. The EU of recovery policies is computed according
to the utility function and the probability distribution of the variables involved
in such function.

4.2 On-board process

The on-board process is performed by the ARPHA prototype and operates on
a JT as actual operational model, receiving observations from both sensors and
plan actions (Fig. 1). It is intended to perform Diagnosis (current state detec-
tion), Prognosis (future state detection) and Recovery (evaluation of the best
recovery policy). Fig. 4 shows the external components (actors) that interact
with ARPHA: System Context (memory area that contains data received from
sensors, and the configuration of the system), Autonomy Building Block or ABB
(dedicated to plan execution and plan generation), Event Handler (the manager
of events, receiving from ARPHA the id of the policy to be performed to recover
the system).

ARPHA cyclically performs the following functionalities (Fig. 4). Since time
is discrete in DBN, each cycle is repeated at the begin of a new time step.
Diagnosis begins with the retrieval of data necessary for on-board reasoning.
In particular, sensor and plan data are retrieved from System Context and ABB
respectively. Both kinds of data are converted in form of observations concern-
ing specific variables of the on-board model. Observations are loaded into the
on-board model; then, the model inference (analysis) is performed at the current



time and returns the probability distribution of the variables in the model. The
inspection of the probabilities of specific variables representing the system state,
can provide the diagnosis at the current mission time: the possible system states
are Normal (no anomalies or failures are detected), Anomalous (an anomaly5 is
detected) or Failed (a failure is detected). If the current state detected is Normal,
then Prognosis is performed, else Recovery is performed (as depicted in Fig. 4).
Prognosis is performed only if the current state is Normal, and consists of the
future state detection. The on-board model is analyzed in the future according
to a specific time horizon and taking into account observations given by future
plan actions. Future state is detected according to the probability distribution
obtained for the variable representing the system state. The future state can be
Normal, Anomalous, or Failed. In case of Normal state, the ARPHA on-board
process restarts at the next time step, with the Diagnosis phase, otherwise Re-
covery is performed (Fig. 4).
Recovery can be distinguished in Reactive Recovery (performed if the current
system state is Failed) or Preventive Recovery (performed in case of Anomalous
current state, Anomalous future state, or Failed future state). In both cases,
Recovery is performed in this way: given the detected anomaly or failure, the
recovery policies facing that anomaly or failure are retrieved from System Con-
text. In particular, each recovery policy is composed by a set of recovery actions,
possibly to be executed at different times. Each policy is evaluated in this way:
1) the policy is converted into a set of observations for the on-board model
variables representing actions; 2) such observations are loaded in the on-board
model which is analyzed in the future; 3) according to the probability distri-
bution returned by the analysis, and a specific utility function, the expected
utility (EU) of the policy is computed. In other words, EU quantifies the future
effects of the recovery policy on the system. The policy providing the best EU is
selected and notified to the Event Handler for the execution. Then, the ARPHA
on-board process restarts at the next time step, with Diagnosis (Fig. 4).

ARPHA is composed by several modules: System Context Manager, Auton-
omy BB Manager, Observation Generator, JT Handler, State Detector, Policy
Evaluator, Event Manager, Logger. In particular, JT Handler implements the
BK inference algorithm (Sec. 2) with the goal of providing the posterior prob-
abilities over the variables of interest to the other components that need them
(e.g. State Detector and Policy Evaluator). The details about the internal ar-
chitecture of ARPHA are provided in [12]. In order to perform an empirical
evaluation of the approach, ARPHA has been deployed in an evaluation plat-
form composed by a workstation linked to a PC via Ethernet cable. A rover
simulator (called ROSEX) has been installed on the workstation. On the PC
we installed the TSIM environment, emulating the on-board computing hard-
ware/OS environment (LEON3/RTEMS), and the ARPHA executable. ARPHA
will run in parallel to other processes of the on-board software.

5 An anomaly is a malfunctioning possibly leading to a failure in the near future.



Executing ARPHA on the case study. We provide an example of ARPHA
execution during a simulated mission; for the sake of brevity, we describe only
the initial steps of the mission. Sensors data and plan data that simulator pro-
vides are the following: OD, power generated by each SA, SAA of SA1, SA2, SA3,
charge of the battery, temperature of battery, mission elapsed time, action under
execution, plan under execution. Fig. 5.a shows a graphical representation of the
plan. In Fig. 5.b we show the OD profile generated by rover simulator. Fig. 5.c
shows the power generation profile related to the OD profile in Fig. 5.b. At the
begin of each cycle of the on-board process (Fig. 4), the current sensor data and
plan data are retrieved and converted into current or future observations for
specific variables in the on-board model. Such observations are expressed as the
probability distribution of the possible variable values. For example, the “wait”
action in the plan at time step 3, is converted in the probability distribution
1, 0, 0, 0, 0, 0, 0, 0 concerning the variable ActionId in the same step. The first
value of the distribution indicates that the first possible value of the variable (0)
has been observed with probability 1. This is due to the fact that ActionId repre-
sents in the model the current plan action (or recovery action). In particular, the
value 0 corresponds to the “wait” action. An example about sensor data is the
sensor pwrsa1 providing the value 17.22273 at time step 3. This value becomes
the probability distribution 1, 0 for the values of the variable PowGenSA1. In
other words, PowGenSA1 is observed equal to 0 with probability 1 at the same
mission step, in order to represent that SA1 is generating power in that step
(the value 1 represents instead the absence of power generation).
Diagnosis. At time steps 0, 1, 2, ARPHA detects Normal state as the re-
sult of both diagnosis and prognosis. Fig. 5.d shows the output of ARPHA
at time step 3 (218 sec.): lines 01-04 contain the values of the sensors (gener-
ated by the rover simulator) and the plan action under execution (SVF action);
lines 06-16 concern the diagnosis. In particular, at lines 07-08, the plan action
(SVF action=1=“wait”) performed in the current time step, is converted into
the observation ActionId = 0; at lines 09-12, the sensor values are mapped into
observations of the corresponding variable values: pwrsa1 = 17.22273 becomes
PowGenSA1 = 0 (power generation by SA1 is high), pwrsa2 = 26.67850 be-
comes PowGenSA2 = 0 (power generation by SA2 is high), pwrsa1 = 26.67641
becomes PowGenSA3 = 0 (power generation by SA3 is high), saa1 = 0.51575
becomesAngleSA1 = 0 (SAA1 is optimal), saa2 = 0.515750 becomesAngleSA2 =
0 (SAA2 is optimal), saa3 = 0.515750 becomes AngleSA3 = 0 (SAA3 is opti-
mal), opticaldepth = 4.50000 becomes OpticalDepth = 1 (OD is not optimal),
etc. Given such observations, ARPHA performs the inference of the model at
the current time step (line 13), querying the variables S1#, S2#, S3#, S4#
representing the occurrence of the scenarios (lines 14-15). The probability that
S1# = 1 (anomaly) or S1# = 2 (failure) is lower than a predefined threshold,
so S1 is not detected. The same condition holds for scenarios S2, S3, S4, so the
result of diagnosis is Normal state (line 16).
Prognosis. Since Diagnosis has returned Normal state, Prognosis is activated
(lines 17-26). The future actions in the plan become observations for the vari-



able ActionId (lines 18-20); then, the model inference is executed (line 21), still
querying the variables S1, S2, S3, S4 (lines 22-25), but analyzing the model in
the future (next four time steps). At line 22, Pr(S2 = 2) is greater than a given
threshold, so ARPHA detects S2 and in particular, the Failed state (line 26).
Recovery. Preventive recovery is activated (lines 27-42) due to Prognosis re-
sult, with the aim of evaluating the policies P3 and P4, suitable to deal with
S2. At lines 28-30, the actions inside P3 become observations in the next time
steps, for the variable ActionId. In particular, we observe the “move” action in
the future time steps 4 and 5 (line 30). Given such observations, the model is
inferenced for 10 time steps in the future (line 31) and EU is computed (line
32). The same procedure is applied to P4 (lines 33-41). The actions inside P4
become evidences for ActionId (lines 34-39): the “tilt” action (SA inclination) is
observed at time steps 4 and 5, “retract drill” is observed at time steps 6 and 7,
“wait” is observed at time steps from 8 to 13 6. According to such observations,
the model is analyzed in the future, still for the next 10 time steps (line 40)
and EU is computed (line 41). P4 provides a better EU, so P4 is suggested by
ARPHA for execution (line 42)7.

5 Conclusions

ARPHA aims at keeping as much standard as possible the fault analysis phase,
by allowing reliability engineers to build their fault models using an intuitive
and familiar modelling language such as DFT. By the enrichment of the DBN
obtained from the DFT, we are able to address issues that are very important
in the context of innovative on-board FDIR: multi-state components with dif-
ferent fault modes, stochastic dependencies among system components, system-
environment interactions. A case study has been presented in order to show the
steps of the modelling phase and the innovative capabilities of ARPHA: diagno-
sis under partial observability of the system and the environment, possibility to
perform the prognosis, dealing with recovery policies composed by several actions
performed at different times, evaluation of the future effects of recovery policies.
Actually, ARPHA is a reasoning based FDIR system: diagnosis, prognosis and
recovery decisions derive from the analysis (inference) of the on-board model,
while traditional FDIR is simply based on sensor monitoring for diagnosis, and
look-up tables for recovery actions, without any prognosis capability.

The DFT formalism is rather simple, so the design of the DFT model does
not require a modeller with particular skills. The DBN enrichment instead, ac-
tually requires a modeller with a specific experience in Bayesian modelling. In
particular, the editing of CPTs (Sec. 2) needs a particular attention in order to

6 The number of actions inside a policy is not constant. Therefore the duration of
a policy depends on the number of actions and the duration of each action. For
instance, P3 and P4 generate observations for 2 and 10 time steps in the future,
respectively, because of their internal actions.

7 This is justified, since the movement in another position (P3) does not guarantee to
improve power generation, while the tilting action in P4 is more effective.



d) ARPHA output:

00 *** MISSION STEP: 3 (MISSION TIME: 218 sec.) ***
01 *************** ROSEX VALUES ***************
02 opticaldepht = 4.50000 pwrsa1 = 17.22273 pwrsa2 = 26.67850 pwrsa3 = 26.67641
03 saa1 = 0.51575 saa2 = 0.51575 saa3 = 0.51575 batterycharge = 90.28925
04 batttemp = 273.00000 time = 10.05112 SVF_action = 1 SVF_plan = 1
05 *********************************************
06 ## Diagnosis ##
07 Propagate PLAN STREAM
08 3:ActionId#:1 0 0 0 0 0 0 0
09 Propagate SENSORS STREAM
10 3:OpticalDepth#:0 1 3:PowGenSA1#:1 0 3:PowGenSA2#:1 0 3:PowGenSA3#:1 0
11 3:AngleSA1#:1 0 0 3:AngleSA2#:1 0 0 3:AngleSA3#:1 0 0 3:BattCharge#:0 0 0 1
12 3:Temp#:0 1 0 3:Time#:1 0
13 Current inference (STEP 3)
14 Pr{S1#=2}=0.000<0.590 Pr{S2#=2}=0.000<0.590 Pr{S3#=2}=0.000<0.590 Pr{S4#=2}=0.000<0.590
15 Pr{S1#=1}=0.000<0.590 Pr{S2#=1}=0.000<0.590 Pr{S3#=1}=0.000<0.590 Pr{S4#=1}=0.000<0.590
16 SYSTEM STATE: "Normal"
17 ## Prognosis ##
18 Propagate PLAN STREAM
19 4:ActionId#:1 0 0 0 0 0 0 0 5:ActionId#:1 0 0 0 0 0 0 0
20 6:ActionId#:1 0 0 0 0 0 0 0 7:ActionId#:0 0 1 0 0 0 0 0
21 Future inference (STEP 7)
22 Pr{S1#=2}=0.38471501<0.59 Pr{S2#=2}=0.60604805>=0.59 Pr{S3#=2}=0.01966910<0.59
23 Pr{S4#=2}=0.05214530<0.59 Pr{S1#=1} excluded because under recovery or minor criticality
24 Pr{S2#=2} excluded because under recovery or minor criticality Pr{S3#=1}=0.09944675<0.59
25 Pr{S4#=1}=0.29860398<0.59
26 FUTURE SYSTEM STATE: "Failed" (S2#=2)
27 ## Preventive Recovery ##
28 Policy to convert: P3
29 Propagate POLICY STREAM
30 4:ActionId#:0 0 1 0 0 0 0 0 5:ActionId#:0 0 1 0 0 0 0 0
31 Future inference (STEP 13)
32 Utility Function = 0.0890
33 Policy to convert: P4
34 Propagate POLICY STREAM
35 4:ActionId#:0 0 0 0 0 0 1 0 5:ActionId#:0 0 0 0 0 0 1 0 6:ActionId#:0 0 0 0 0 0 0 1
36 7:ActionId#:0 0 0 0 0 0 0 1
37 8:ActionId#:1 0 0 0 0 0 0 0 9:ActionId#:1 0 0 0 0 0 0 0 10:ActionId#:1 0 0 0 0 0 0 0
38 11:ActionId#:1 0 0 0 0 0 0 0
39 12:ActionId#:1 0 0 0 0 0 0 0 13:ActionId#:1 0 0 0 0 0 0 0
40 Future inference (STEP 13)
41 Utility Function= 0.8764
42 Best policy for Preventive Recovery is P4

Fig. 5. Scenario S2: a) plan. b) Optical Depth (OD). c) Power generation by SA1, SA2,
SA3. d) ARPHA output at time step (or mission step) 3.



consider any possible case and avoid cases not compatible with observations. In
order to limit this problem, inside VeriFIM, DFT formalism has been extended
to EDFT [13]. If an automatic translator from EDFT to DBN was developed,
the effort to enrich the DBN would be less relevant because several features may
be directly modelled in EDFT form, and translated into DBN in automatic way.
In order to design an accurate stochastic model, knowledge about probability
parameters, such as component failure rates, has to be provided. Such values
may not be immediately available. Another not negligible aspect is the link be-
tween computing time and model accuracy. The complexity of the DBN model
depends on the number of entries in the CPTs of variables. This number depends
on the number of possible values and the number of parents of the variables. It is
necessary to perform a trade-off between the model accuracy and the computing
time, taking into account that on-board hardware has limited computing power.
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