
1

Business Process Verification with Constraint
Temporal Answer Set Programming ∗

Laura Giordano

DISIT, Università del Piemonte Orientale, Italy

Alberto Martelli, Matteo Spiotta

Dipartimento di Informatica, Università di Torino, Italy

Daniele Theseider Dupré

DISIT, Università del Piemonte Orientale, Italy

submitted 10 April 2013; revised 23 May 2013; accepted 23 June 2013

Abstract

The paper provides a framework for the verification of business processes, based on an extension
of answer set programming (ASP) with temporal logic and constraints. The framework allows
to capture expressive fluent annotations as well as data awareness in a uniform way. It allows
for a declarative specification of a business process but also for encoding processes specified
in conventional workflow languages. Verification of temporal properties of a business process,
including verification of compliance to business rules, is performed by bounded model check-
ing techniques in Answer Set Programming, extended with constraint solving for dealing with
conditions on numeric data.

1 Introduction

The verification of business process compliance to business rules and regulations has

gained a lot of interest in recent years, leading to the development of a process annota-

tion approach (Governatori and Sadiq 2009; Weber et al. 2010; Hoffmann et al. 2009):

information relevant for compliance verification is added, capturing the semantics of

atomic tasks execution through preconditions and effects. The treatment of data in pro-

cess verification has also attracted growing interest, with the definition of artifact-centric

and data-centric process models (Nigam and Caswell 2003; Deutsch et al. 2009).

In this paper we combine the two perspectives and propose a framework, based on

Answer Set Programming (ASP) (Gelfond 2007), for the specification and verification of

business processes, which integrates the treatment of data in business processes with an

expressive treatment of annotations, that allows for the specification of conditional effects

of atomic tasks as well as for the definition of causal dependencies among annotations.

This semantic specification provides background knowledge common to the process and

to the compliance rules to be verified. Following (D’Aprile et al. 2010), annotations

are specified by an action theory which defines the direct and indirect effects and the

∗ This research has been partially supported by Regione Piemonte, Project ICT4LAW, and by the
Compagnia di San Paolo.

2 Laura Giordano et al.

Fig. 1. Example business process in YAWL

preconditions of atomic tasks; effects are fluents representing properties of the world that

are affected by the execution of the tasks and are subject to the compliance rules. We

adopt a similar approach to capture data properties. Formulas involving conditions on

such data may be verified, and to deal with numeric data we rely on constraint solving.

In particular, we combine two extensions of ASP: Temporal ASP in (Giordano et al.

2013a), which allows for the specification of temporal action domains, and the Constraint

ASP approach in (Gebser et al. 2009) where ASP is enriched with constraint solving in a

modular way: constraints are labeled as true or false by the ASP solver, and a constraint

solver performs propagation on the constraint store possibly detecting inconsistency.

This approach is well suited for a declarative specification of the business process,

which has been advocated by many authors in the literature (van der Aalst and Pesic

2006; Singh 2000; Montali et al. 2010), but it also allows for encoding processes specified

in current business process management systems. In the paper we concentrate on the

latter option, showing how a model in a subset of the YAWL language (van der Aalst

and ter Hofstede 2005), and its annotations, can be mapped into the framework.

Verification of business process properties, including compliance to business rules, is

done through Bounded Model Checking (Biere et al. 2003) and exploits the approach

in (Giordano et al. 2013a) for DLTL bounded model checking in ASP, which extends

Bounded LTL Model Checking with Stable Models in (Heljanko and Niemelä 2003).

2 Example

As a motivating example, let us consider a variation of the order-production-delivery

business process model in (Knuplesch et al. 2010) whose model in YAWL is in Figure

1. It involves net variables (i.e., global variables) like the piece number of an order, an

integer pn; the model provides information on which atomic task has the variable as

output (“Process Order”, in the example) and XOR splits include conditions on such a

variable (Appendix A illustrates the basic control flow elements used). The process in

Figure 1 should be checked to be compliant with respect to business rules such as:

(a) After confirming an order, goods have to be shipped eventually.

Business Process Verification with Constraint Temporal ASP 3

(b) An order shall either be confirmed or declined.

(c) Orders with a piece number beyond 50000 shall be approved before they are con-

firmed.

(d) For orders of a non-premium customer with a piece number beyond 80000 a solvency

check is necessary before assessing the order.

Such rules hold, except for the last one: for orders of a non-premium customer with a

piece number between 80000 and 100000, flow goes from “Check PN” to “Assess Order”

without executing “Check Solvency”.

Rule verification requires establishing a link between atomic tasks in the business

process and domain properties in rules, especially in case different tasks have effect on the

same property, or tasks have effects on properties that are related to the ones occurring

in the rules. This issue motivates the idea of a semantic annotation of the atomic tasks,

in terms of their effects and preconditions (Governatori and Sadiq 2009). As background

knowledge, in (Weber et al. 2010; Hoffmann et al. 2009) process annotation includes a

domain ontology, namely a theory in clausal form. Our approach to process annotation

builds on work in reasoning about actions and change (Reiter 2001) and, specifically, is

based on the temporal action language in (Giordano et al. 2013a) enriched with constraint

atoms (Gebser et al. 2009) to express conditions on process variables both in the process

model and in rules to be verified, as detailed in the next section.

3 A Constraint Temporal Action Language

In this section we recall the temporal logic DLTL (Henriksen and Thiagarajan 1999) and

the temporal ASP language in (Giordano et al. 2013a), extending them with constraints

in the line of (Gebser et al. 2009).

DLTL extends LTL with temporal operators enriched with program expressions; the

next state modality can be indexed by actions, and the until operator Uπ can be indexed

by a program π which, as in PDL (Harel 1984), can be a regular expression built from

atomic actions using sequence (;), nondeterministic choice (+) and finite iteration (∗).
We further extend DLTL allowing, as a base case of formulae, constraints in a lan-

guage C. Such constraints involve a set V of variables, and suitable function and re-

lation symbols, but we will refer to them as constraint atoms since, as in (Gebser

et al. 2009), they will be treated as atoms at the answer set level, and at the tem-

poral logic level. Similarly to (Gebser et al. 2009), a function γ : C → C maps con-

straint atoms to constraints in the sense of (Dechter 2003): each x ∈ V has a domain

dom(x) (which in this paper we assume to be finite), and a constraint c ∈ C is a pair

(S,R) where R is a k-ary relation on a vector S of variables in V: for S = (x1, . . . , xk),

R ⊆ dom(x1)× . . . × dom(xk). For a constraint c = (S,R), let S(c) = S and R(c) = R.

Given an assignment A : V →
⋃
x∈V dom(x), where A(x) ∈ dom(x), for a constraint

(S,R), with S = (x1, . . . , xk), let A(S) = (A(x1), . . . , A(xk)). The mapping γ provides a

predefined interpretation of the constraint language, i.e., it defines whether an assignment

A satisfies a g ∈ C, which we write A |=γ g and holds iff A(S(γ(g))) ∈ R(γ(g)). E.g., for

the constraint language with variables {x, y, z, . . .}, all with the integer domain, and the

usual arithmetic operators and relations, for which γ provides the usual interpretation,

for the assignment A((x, y, z)) = (10, 20, 15) we have that A |=γ x+ y > z.

4 Laura Giordano et al.

Let Σ = {a1, . . . , an} be a finite non-empty alphabet of actions. Let Σ∗ and Σω be the

set of finite and infinite words on Σ. Let Σ∞ =Σ∗∪Σω. We denote by σ, σ′ the words over

Σω and by τ, τ ′ the words over Σ∗. Moreover, we denote by ≤ the usual prefix ordering

over Σ∗, namely, τ ≤ τ ′ iff ∃τ ′′ such that ττ ′′ = τ ′, and τ < τ ′ iff τ ≤ τ ′ and τ 6= τ ′. For

u ∈ Σ∞, we denote by prf(u) the set of finite prefixes of u.

Let the set of programs (regular expressions) generated by Σ be Prg(Σ) ::= a | π1 +π2

| π1;π2 | π∗, where a ∈ Σ and π1, π2, π range over Prg(Σ). A set of finite words can be

associated with each program by the mapping [[]] : Prg(Σ)→ 2Σ∗ in the usual way.

Let P = {p1, p2, . . .} be a countable set of atomic propositions, let C be a constraint

language, such that, for g ∈ C, γ(g) ∈ C is a constraint on a subset of variables V, with

domains dom(x) for x ∈ V, where D =
⋃
x∈V dom(x). The set of formulas of DLTL(Σ, C)

is:

DLTL(Σ, C) ::= > | ⊥ | p | g | ¬α | α ∨ β | αUπβ

where > and ⊥ stand for true and false, p ∈ P, g ∈ C, π ∈ Prg(Σ) and α, β range

over DLTL(Σ, C). From the until operator, the derived modalities 〈π〉, [π], © (next), U ,

3 and 2 can be defined as follows: 〈π〉α ≡ >Uπα, [π]α ≡ ¬〈π〉¬α, ©α ≡
∨
a∈Σ〈a〉α,

αUβ ≡ αUΣ∗β, 3α ≡ >Uα, 2α ≡ ¬3¬α, where, in UΣ∗ , Σ is taken to be a shorthand

for the program a1 + . . .+ an.

A model of DLTL(Σ, C) is a triple M = (σ, V, v) where σ ∈ Σω, V : prf (σ) → 2P

is a valuation function for propositions, and v : prf (σ) → (V → D) provides, for each

τ ∈ prf (σ), an assignment v(τ) for constraint variables. A prefix τ of σ identifies the

state reached after executing τ . Given a model M = (σ, V, v), a prefix τ ∈ prf (σ) and a

formula α, the satisfiability of a formula α at τ in M , written M, τ |= α, is defined as

usual for boolean formulas, and as follows for p ∈ P, g ∈ C and until formulas:

• M, τ |= p iff p ∈ V (τ);

• M, τ |= g iff v(τ) |=γ g;

• M, τ |= αUπβ iff there exists τ ′ ∈ [[π]] such that ττ ′ ∈ prf(σ) and M, ττ ′ |= β.

Moreover, for every τ ′′ such that ε ≤ τ ′′ < τ ′, M, ττ ′′ |= α.

A formula α is satisfiable iff there is a model M = (σ, V, v) and a finite word τ ∈ prf (σ)

such that M, τ |= α.

Observe that, although the extended DLTL language includes (constraint) variables,

we assume that such variables have finite domains; hence, the language is, essentially,

a propositional language, and its decidability follows from the decidability of DLTL

(Henriksen and Thiagarajan 1999).

A domain description is a pair (P,Q), where P is a set of laws describing the effects

and executability preconditions of actions, and Q is a set of DLTL formulas.

Laws in P are defined as follows1. A fluent literal l is a p ∈ P or its negation ¬p. A

constraint literal is a g ∈ C. If l is a fluent literal, or ⊥, representing the inconsistency,

then [a]l,©l (for a ∈ Σ) are temporal fluent literals. If l is a constraint literal, then [a]l,©l
(for a ∈ Σ) are temporal constraint literals. We use temporal literal as a shorthand for

temporal (fluent or constraint) literal. Dynamic constraint literals are constraint literals

1 To avoid confusion with constraint variables, we do not define laws with variables, which, as usual in
ASP, would be a shorthand for the set of their ground instances.

Business Process Verification with Constraint Temporal ASP 5

in the language C extended with variables V◦ = {x◦, for x ∈ V}; variable x◦ represents

“x in the next state”. Given a literal l of any of the types above, not l represents the

default negation of l. A literal, possibly preceded by a default negation, will be called an

extended literal. Laws in P have the form

l0 ← l1, . . . , lm, not lm+1, . . . , not ln (1)

where l0 is a fluent literal or temporal fluent literal, and l1, . . . , ln are fluent literals,

constraint literals, temporal literals or dynamic constraint literals, with the following

restrictions: (i) If l0 is a fluent literal, then the body cannot contain temporal literals or

dynamic constraint literals; (ii) If l0 = [a]l, then the temporal literals in the body must

have the form [a]l′; (iii) If l0 =©l, then the temporal literals in the body must have the

form ©l′.
A state is a set of fluent literals and an assignment to constraint variables. A state is

said to be consistent if it is not the case that both f and ¬f belong to the state, or that

⊥ belongs to the state. The execution of an action in a state may possibly change the

values of fluents in the state through its direct and indirect effects, as well as the values

of constraint variables, thus giving rise to a new state. We assume that a law as (1) can

be applied in all states while, when prefixed with Init, it only applies to the initial state.

With the restrictions (i) - (iii) on (1), possible successors of a state S only depend on S.

In (Giordano et al. 2013a) the semantics of a domain description is defined by extending

the notion of answer set (Gelfond 2007) to temporal answer sets, so to capture the linear

structure of temporal models. In particular, the notion of temporal literals is extended

to those of the form [a1; . . . ; ak]l for an action sequence a1; . . . ; ak and a fluent literal l;

a partial temporal interpretation over σ, where σ ∈ Σω, is defined as a pair (σ, S) where

S is a set of temporal literals [a1; . . . ; ak]l, such that a1 . . . ak is a prefix of σ, and S is

required not to contain [a1; . . . ; ak]l where l is the complementary literal of l. Membership

of [a1; . . . ; ak]l in S means that l is true in the state after executing a1 . . . ak.

Temporal answer sets of the first component P of a domain description are defined

in (Giordano et al. 2013a) as partial temporal interpretations, extending the notion of

answer set to compute a different reduct for each prefix a1 . . . ak of a σ. Such a reduct is

a set of rules of the form [a1; . . . ; ak](H ← Body).

In order to extend temporal answer sets to take constraint literals into account, we

follow (Gebser et al. 2009), where a constraint answer set is defined with respect to an

assignment to constraint variables. We then define a constraint temporal answer set with

respect to a v : prf (σ)→ (V [P]→ D) which provides, for each prefix of σ, an assignment

for variables V [P] ⊆ V occurring in constraint atoms in P .

Satisfiability of literals is defined extending (Giordano et al. 2013a). Note that while for

temporal (fluent and constraint) literals we take into account the next state, for dynamic

constraint literals the assignments at both the current state and the next one have to be

considered. To simplify the definition, we extend v to v̂ which, for each prefix a1 . . . ak
of σ, provides an assignment also to variables x◦ ∈ V◦ as follows: v̂(a1 . . . ak)(x◦) =

v(a1 . . . akak+1)(x) , where a1 . . . akak+1 is a prefix of σ. Then, satisfiability of literals in

(σ, S) at k (where σ = a1 . . . ak, . . .), wrt to a v, is defined as follows, where l is a fluent

literal, g is a constraint or dynamic constraint literal, h is a fluent or constraint literal,

not m is an extended literal:

6 Laura Giordano et al.

(σ, S), v, k 6|= ⊥
(σ, S), v, k |= l iff [a1; . . . ; ak]l ∈ S,

(σ, S), v, k |= g iff v̂(a1 . . . ak) |=γ g

(σ, S), v, k |= [a]h iff (σ, S), v, k + 1 |= h, or a 6= ak+1

(σ, S), v, k |=©h iff (σ, S), v, k + 1 |= h

(σ, S), v, k |= not m iff (σ, S), v, k 6|= m

The following definitions are similar to the definition of constraint reduct in (Gebser

et al. 2009), simplifying or eliminating rules based on the interpretation of constraint

literals; we start by defining the reduct of a single rule for a sequence a1, . . . , ak.

Definition 1
The constraint reduct of a rule 2(H ← Body) in P , wrt to (σ, S), to v : prf (σ) →
(V [P]→ D) and to the prefix a1, . . . , ak of σ, is:

• none, if for some (temporal, extended, dynamic) constraint literal l in Body,

(σ, S), v, a1 . . . ak 6|= l
• [a1, . . . , ak](H ← Body′) otherwise, where Body′ is Body with (temporal, extended,

dynamic) constraint literals removed.

Definition 2
The constraint reduct, P

(σ,S),v
a1,...,ak , of P relative to (σ, S), to the prefix a1, . . . , ak of σ and

to v : prf (σ)→ (V [P]→ D), is the set of all the rules

[a1; . . . ; ak](H ← t1, . . . , tm)

such that [a1; . . . ; ak](H ← t1, . . . , tm, not tm+1, . . . , not tn) is the constraint reduct

of a rule in P wrt (σ, S), v and a1, . . . , ak; moreover, (σ, S), a1, . . . , ak 6|= ti, for all

i = m+ 1, . . . , n. The constraint reduct P (σ,S),v of P relative to (σ, S) and v is the union

of all reducts P
(σ,S),v
a1,...,ak for all prefixes a1, . . . , ak of σ.

Definition 3
A partial temporal interpretation (σ, S) is a constraint temporal answer set of P wrt v if

(σ, S) is a temporal answer set (Giordano et al. 2013a) of the constraint reduct P (σ,S),v,

i.e., S is minimal among the R such that (σ,R) satisfies the rules in P (σ,S),v.

Well-defined domain descriptions are defined in (Giordano et al. 2013a) as the ones for

which P has total temporal answer sets, and it is observed that total temporal answer

sets correspond to temporal models (as in the semantics of DLTL). The same holds for

the case with constraints, given a v which provides, for the temporal answer set and the

temporal model, the same interpretation for constraint atoms. I.e., given a constraint

temporal answer set (σ, S) of P wrt v, the corresponding temporal model is (σ, VS , v)

where p ∈ VS(a1, . . . , ah) if and only if [a1; . . . ; ah]p ∈ S, for all propositions p ∈ P. This

leads to the following definition of extension of a domain description.

Definition 4
An extension of a well-defined domain domain description (P,Q) wrt v is a (total) con-

straint temporal answer set (σ, S) of P wrt v such that the corresponding temporal model

(σ, VS , v) satisfies the formulae in Q.

Verifying that a DLTL(Σ, C) formula α is valid in a well-defined domain description

(P,Q) means checking that there is no extension of (P,Q) satisfying ¬α, i.e., there are

no σ, S, v such that (σ, S) is an extension of (P,Q∪ {¬α}) wrt v.

Business Process Verification with Constraint Temporal ASP 7

4 Process Modeling and Annotation

In (D’Aprile et al. 2010) we proposed to specify annotations in the action theory in

(Giordano et al. 2013a) to define direct and indirect effects of atomic tasks, as well as

their preconditions. In the following we describe how the extended action language with

constraints introduced in section 3 can be used as an annotation language.

An action law has a temporal literal [a]l as head:

[a]l← l1, . . . , lmnot lm+1, . . . , not ln

In case l is a fluent literal, it specifies that, under the conditions in the body, an action

a (a task in the process) has l as a direct effect. In case l is a constraint literal (e.g.,

0 ≤ x ≤ 1000 to represent that a provides a value to x in its domain, or in a subset of a

common domain for all variables) it specifies an effect on process data2.

Nonmonotonic persistence of fluents can also be specified with action laws such as:

[a]f ← f, not [a]¬f

A precondition law is an action law with [a]⊥ as head and it specifies that action a

cannot be executed under the conditions in the body, which can be conditions on fluents,

or constraints on process variables, e.g.:

[a]⊥ ← x ≥ 10000

means that a cannot be executed if x ≥ 10000, i.e., it has x < 10000 as precondition.

Causal laws are used, in reasoning about actions and change, to specify relations be-

tween fluents, and therefore side effects of actions (ramifications). In the action language

in (Giordano et al. 2013a), static causal laws involve fluent literals, while dynamic causal

laws involve temporal fluent literals. For example, the static law f ← g makes f true

whenever g is true, while the dynamic law ©f ← ¬g,©g makes f true when g becomes

true; but f may later be made false while g is still true.

Dynamic causal laws are useful, among other things, for a flexible modeling of processes

with respect to rules they should be compliant with: in particular, to allow for activities

that trigger obligations (e.g., confirming an order triggers the obligation to ship goods)

and activities that cancel them (e.g., if the customer is allowed to cancel the order after

confirmation, this cancels the obligation). Then, rather than verifying that obligations,

once triggered, are eventually fulfilled (in the example, goods are shipped), one should

verify that they are eventually either fulfilled or canceled. In (Giordano et al. 2013b)

we present a general treatment, in our framework, of the types of obligations that in

(Governatori 2010) are pointed out to be relevant for business process verification.

4.1 Declarative vs workflow specification of business processes

In this section we shortly describe how our language can be used for a declarative spec-

ification of business processes as well as for encoding a workflow representation of such

processes.

2 As in (Gebser et al. 2009), a rule c ← Body with a constraint in the head is intended as the (less
readable) ⊥ ← not c,Body.

8 Laura Giordano et al.

The declarative specification of business processes has been advocated by many authors

(van der Aalst and Pesic 2006; Singh 2000; Montali et al. 2010) as opposed to the more

rigid transition based approach, which can be more constraining than necessary as regards

the order of actions. A declarative specification of a business process can be given by

exploiting the action theory above to define the effects of atomic tasks as well as their

executability preconditions and, possibly, temporal logic constraints.

For instance, the fact than an order can be processed only after it has been re-

ceived can be modeled by a precondition law: [process order]⊥ ← not order received

To guarantee that it will be eventually executed, we can add in C the DLTL formula:

2[receive order]3〈process order〉>.

Observe that, as DLTL is an extension of LTL, it is possible to provide an encoding in

our language of all constraints in the ConDec language (Pesic and van der Aalst 2006).

The additional expressivity, which comes from the presence of program expressions in

DLTL, allows for a very compact encoding of certain declarative properties of the domain

dealing with finite iterations. For instance, the property “action b must be executed

immediately after any even occurrence of action a in a run” can be expressed by the

temporal constraint: 2[(a; Σ∗; a)∗]〈b〉>), where Σ∗ represents any finite action sequence3.

On the other hand, workflow representation is widely used in process management

systems and it represents a natural choice for modeling processes.

A translation from a workflow language to the action theory (or directly to ASP) can

be defined. In particular, the basic constructs of the YAWL language4 can be represented

in the action language as follows, based on the enabling of arcs and tasks (details are

provided in Appendix A). A precondition for the execution of a task a is its being enabled

(represented by a fluent enabled a). Causal laws define that it is enabled when its only

incoming arc is enabled (another fluent), or it is an AND-join and all incoming arcs are

enabled, or it is a XOR-join and one incoming arc is enabled. The execution of a task

disables (in action laws) the incoming arcs and enables the outgoing arcs; in case there is

a nondeterministic XOR-split (named deferred choice in YAWL), the execution of one of

the next tasks also disables arcs corresponding to other choices. For XOR-splits, which in

YAWL have conditions on net variables associated with alternative arcs, such conditions

are included in the action laws for arc enabling. In the example in section 2, the enabling

for outgoing arcs from Confirm Receipt is as follows (an implicit default is intended in

YAWL on the arc to Confirm Order):

[Confirm Receipt]en Confirm Receipt Check PN ← pn > 50000
[Confirm Receipt]en Confirm Receipt Confirm Order ← not pn > 50000

Values of a process variable x persist, except in case of tasks a which have x as output

(a piece of information which is in the YAWL model); we represent this as the task having

as effect the fluent change x which is non persistent, and false by default:

x◦ = x←©¬change x
[a]change x

3 In (D’Aprile et al. 2010) it has been shown that program expressions can be used to model the control
flow of a business process in a rigid way. However, the solution in (D’Aprile et al. 2010) does not allow
to deal with parallelism and non-structured workflows.

4 We refer to YAWL as it is an open system, but our goal is not to reproduce its full semantics, since
it includes constructs like the OR-join whose semantics is computationally complex.

Business Process Verification with Constraint Temporal ASP 9

¬change x← not change x

5 Translation to ASP

In (Giordano et al. 2013a), a translation of domain descriptions to ASP is defined, as well

as an encoding in ASP of Bounded Model Checking (BMC) (Biere et al. 2003). BMC

looks for paths representing possible executions of a system, and satisfying the required

temporal formulae (including the negation of the formula to be proved valid). It can be

shown that the search can be restricted to infinite paths which can be finitely represented

as paths of length k with a back loop from state k to a previous state in the path. BMC

then searches paths whose finite representation has a length bounded by an integer k,

iteratively increasing k until a run satisfying the required temporal formulae is found (if

one exists). The translation in (Giordano et al. 2013a) is defined so that extensions of

the domain description correspond to answer sets of its ASP translation; in this way, an

ASP solver can be used for finding extensions of (P,Q∪ {¬α}), i.e., counterexamples to

the validity of α in (P,Q).

The translation is based on a representation of states as integers, starting from 0, so

that state i is the state after a prefix a1, . . . , ai of a σ; it uses the predicates:

occurs(Action, State), which means that Action occurs in State, holds(Literal, State),

meaning that Literal is satisfied at State, and sat(Formula, State) meaning that a

DLTL Formula is satisfied at State.

For example, an action law 2([a](¬)f0 ← t1, . . . , tm, not tm+1, . . . , not tn) is translated

to

(¬)holds(f0, S
′)← state(S), S′ = S + 1, occurs(a, S), h1 . . . hm, not hm+1 . . . not hn

where hi = (¬)holds(fi, S
′) if ti = [a](¬)fi and hi = (¬)holds(fi, S) if ti = (¬)fi.

The translation can be extended to a domain description (P,Q) with constraints in

section 3 as follows, using value(x, S) to represent the value of process variable x in state

S. Following (Gebser et al. 2009), instances of value(x, S) for different instances of S will

be CSP variables in the Constraint ASP program. Each constraint literal g in (P,Q) is

given a unique name name g, and the following rule is added to the definition of sat:

sat(name g, S)← state(S), gS

where gS is g with each variable x replaced with value(x, S). Similarly, for a dynamic

constraint literal d named name d, the rule:

sat(name d, S)← state(S), S′ = S + 1, dS,S′

is added, where dS,S′ is d with variables x ∈ V replaced with value(x, S) and variables

x◦ ∈ V◦ replaced with value(x, S′).

For constraint literals g, [a]g, ©g occurring in laws in P , the translation (exemplified

above for action laws) is similar to the one for non-constraint literals, except that gS
and gS′ are used in place of holds(f, S) and holds(f, S′). For dynamic constraint literals,

dS,S′ is used5.

5 Again, as in (Gebser et al. 2009), a rule c← Body with a constraint atom in the head is intended as
← not c,Body.

10 Laura Giordano et al.

For example, the translations of the enabling condition for the XOR-split example in

section 4.1, and of the persistence of the value for variable pn are:

holds(en Confirm Receipt Check PN, S′)← state(S), S′ = S + 1,

occurs(Confirm Receipt, S), value(pn, S) $ > 50000

value(pn, S′) $ = value(pn, S)← state(S), S′ = S + 1, not holds(change pn, S′)

where, as in (Gebser et al. 2009), we emphasize with “$” relations in constraint atoms6.

The BMC encoding considers two states different if they differ on fluents (as in (Gior-

dano et al. 2013a)), or on constraint literals in the domain description. In this sense, a

state corresponds to a set of states in the sense of section 3, which assign single values

to variables.

The correspondence results in (Giordano et al. 2013a) still hold. In particular:

Proposition 1

There is a one to one correspondence between the extensions (σ, S) of a domain de-

scription, such that σ can be finitely represented as a finite path with a back loop, and

constraint answer sets (Gebser et al. 2009) of its translation.

The extension and the corresponding constraint answer set R are associated with the

same temporal model (σ, V, v), in particular, an extension wrt v corresponds to an answer

set R wrt a vR, where vR(value(x, s)) = v(a1, . . . , as)(x), with a1, . . . , as ∈ prf(σ).

6 Business process verification

The approach in (Giordano et al. 2013a) is well suited for reasoning about systems with

infinite computations. However, in a YAWL model only executions that reach the end

are considered sound (van der Aalst et al. 2008) (soundness includes other issues and

its verification is a problem by itself, but we do not address it in this paper). To model

this we include the formula 3end in the domain description, where end is a fluent which

becomes true when the end condition is reached; we also introduce a dummy action,

which does not change the state, and it is only executable (and is the only executable

action) when the end condition is reached: its infinite repetition at the end of a finite

execution transforms it in an infinite one with a loop (given by the dummy action). In

practice, as an optimization of the ASP representation of BMC, we can avoid looking for

arbitrary models with loops and restrict to computations corresponding to finite traces.

The basic iterative procedure of BMC is a partial decision procedure for checking

validity: if no model exists, it would never stop. Completeness can be obtained for general

formulae or for special classes of formulae with the techniques described in (Biere et al.

2003; Clarke et al. 2004; Biere et al. 2006; Giordano et al. 2012), and involves identifying

a completeness threshold, i.e. a value t such that validity of a formula α can be checked

without using a value > t for the bound k (i.e., if a model satisfying ¬α exists, one can

be found using bounds up to t). For example, the approach to completeness in (Giordano

6 Since our implementation is based on clingcon, the system in (Gebser et al. 2009; Ostrowski and
Schaub 2012), which deals only with the integer domain, the translation of variables with enumer-
ated type (like c in the example, for the customer type) departs from the one described above, be-
ing based on parametric fluents var(name, value), so that, e.g., a condition c = premium becomes
holds(var(c, V), S), V = premium.

Business Process Verification with Constraint Temporal ASP 11

et al. 2012) could be extended to the language with constraints in this paper. Computing

thresholds, however, is in general challenging from a computational point of view even for

special types of formulae; therefore, existing approaches would not necessarily provide a

feasible solution in a wide range of practical cases. For loop-free workflows, like the one

in the example in section 2, there is a longest run, whose length can be used as threshold.

We experimented the approach on a machine with Intel Xeon E5520 processors (2.26

Ghz) using clingcon (Gebser et al. 2009; Ostrowski and Schaub 2012), and an encoding

with an optimization for the persistence of variable values.

For the example in section 2, rules (c) and (d) can be encoded, respectively, as:

2(pn > 50000 ∧ 〈Confirm Order〉> → a = true) (2)

2(pn > 80000 ∧ c 6= premium ∧ 〈Assess Order〉> → solvency check done) (3)

where solvency check done is an effect of Check Solvency.

The length of the longest run is 21 and can be computed in 1.35 s using the translated

domain description (searching for a run of length k, not necessarily reaching the end, for

increasing values of k, and stopping when no such run is found). Using such a threshold,

validity of (2) can be proved in 0.12 s, and a counterexample for (3) can be found in 0.10

s. If clingcon is not asked to return an assignment of single values to constraint variables,

it computes a weak constraint answer set (Ostrowski 2012), where an approximation of

the restricted domain for variables is given; in this case, in the computed answer set,

the value of pn after Process Order, i.e., value(pn, s) for s ≥ 3, is given the domain

[80001..100000], because the ASP solver assigns true to value(pn, s) > 80000 and false

to value(pn, s) > 100000, and this is consistent for the constraint solver.

Similar running times were obtained for a variation of the example with run length up

to 30 and more complex constraints, where branching is conditioned on the total cost

tc of the order, given by pn ∗ uc (a unit cost, known to be in a given range), possibly

modified by a discount.

In appendix B we report more experiments on the feasibility and scalability of the

approach with current Constraint ASP technology. For the case where the process struc-

ture is a sequence of blocks similar to the one in the running example, we show problems

where verification runs in seconds for processes with up to 200 activities (a size which

is in line with the one of real-world processes in (Fahland et al. 2011)) and run length

of more than 100 activities. The additional cost of constraint solving is acceptable, even

though this does not hold when constraints involve expressions with several variables.

When there is significant parallelism in the process, all the interleavings are considered,

however, verification is shown to run in a minute or less for problems where the number

of different executions is up to 1028.

7 Conclusions and related work

The paper presents an approach to the verification of the compliance of business pro-

cesses, which allows to capture expressive fluent annotations as well as data awareness in

a uniform way. The business process, its semantic annotation and the norms are encoded

using temporal ASP rules, and temporal logic formulae. Compliance verification can be

performed using BMC techniques in Constraint ASP, based on the approach developed

12 Laura Giordano et al.

in (Giordano et al. 2013a) for DLTL bounded model checking in ASP, which extends

the approach for bounded LTL model checking with Stable Models in (Heljanko and

Niemelä 2003). This paper enhances the approach to process compliance verification in

(D’Aprile et al. 2010) by taking into consideration the data perspective, and especially

arithmetic constraints, and alternative ways of modeling business processes. The paper

concentrates on business process verification, but the proposed approach can also be

used for the verification of clinical guidelines in the line of (Bottrighi et al. 2010), where,

however, conditions on (numerical) data are not explicit modeled.

In (Knuplesch et al. 2010) a constraint solver is used to compute in advance consistent

sets of conditions on numeric data (occurring in the model and in the formula to be

verified), then performing model checking using such sets as abstractions of actual values.

In our approach, the Constraint ASP solver performs both tasks at once.

The idea of introducing annotations on business processes for compliance verification

has been proposed in (Ghose and Koliadis 2007; Governatori and Sadiq 2009; Weber

et al. 2010). In particular, in (Governatori and Sadiq 2009) annotations and normative

specifications are provided in the same logical language, the Formal Contract Language,

combining Defeasible Logic (Antoniou et al. 2001) and Deontic Logic of Violations (Gov-

ernatori and Rotolo 2006). Compliance is verified by traversing the graph describing the

process and identifying the effects of tasks and the obligations triggered by task execu-

tion. Algorithms for propagating obligations through the process graph are defined.

In (Hoffmann et al. 2009) effects and preconditions of atomic tasks are sets of atomic

formulas, and background knowledge is a theory in clausal form; I-Propagation (Weber

et al. 2010) is exploited for computing annotations. In our approach the domain theory

contains, rather than general clauses, directional causal rules (which avoid unintended

conclusions when reasoning about side effects), and domain annotations are combined

with data properties in a uniform approach.

An annotation approach is also used in (Lu et al. 2006) for the automatic verification

of correctness of workflow models based on Hoare semantics.

In (Deutsch et al. 2009) a service over an artifact schema is defined as a triple: a

precondition, a post-condition and a set of rules in a first-order temporal logic, which

define changes on state relations. The authors identify a class of guarded artifacts for

which verification of properties in a (guarded) first-order extension of LTL is decidable.

In (Damaggio et al. 2011) decidability results are provided for verification with arithmetic

constraints on infinite domains. Our (decidable) language is less expressive, not allowing

for explicit quantification and assuming finite domains for variables.

In (Montali et al. 2010) the Abductive Logic Programming framework SCIFF (Alberti

et al. 2008) is exploited in the declarative specification of business processes as well as in

the verification of their properties. CLP is used for constraints on the timing of events.

In (Alberti et al. 2005) expectations are used for modelling obligations and prohibitions

and norms are formalized by abductive integrity constraints.

In (Roman and Kifer 2008) Concurrent Transaction Logic (CTR) is used to model

and reason about general service choreographies. Service choreographies and contract

requirements are represented in CTR. The paper addresses the problem of deciding if

there is an execution of the service choreography that complies both with the service

policies and the client contract requirements.

Business Process Verification with Constraint Temporal ASP 13

References

Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., and Torroni, P. 2008.
Verifiable agent interaction in abductive logic programming: the SCIFF framework. ACM
Trans. Comput. Log. 9, 4.

Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Torroni, P., and Sartor, G. 2005.
Mapping of Deontic Operators to Abductive Expectations. NORMAS , 126–136.

Antoniou, G., Billington, D., Governatori, G., and Maher, M. J. 2001. Representation
results for defeasible logic. ACM Trans. on Computational Logic 2, 255–287.

Biere, A., Cimatti, A., Clarke, E. M., Strichman, O., and Zhu, Y. 2003. Bounded model
checking. Advances in Computers 58, 118–149.

Biere, A., Heljanko, K., Juntila, T., Latvala, T., and Schuppan, V. 2006. Linear En-
codings of Bounded LTL model checking. Logical Methods in Computer Science 2, 1–64.

Bottrighi, A., Giordano, L., Molino, G., Montani, S., Terenziani, P., and Torchio,
M. 2010. Adopting model checking techniques for clinical guidelines verification. Artificial
Intelligence in Medicine 48, 1, 1–19.

Clarke, E., Kroening, D., Ouaknine, J., and Strichman, O. 2004. Completeness and
complexity of bounded model checking. In VMCAI. 85–96.

Damaggio, E., Deutsch, A., and Vianu, V. 2011. Artifact systems with data dependencies
and arithmetic. In ICDT.

D’Aprile, D., Giordano, L., Gliozzi, V., Martelli, A., Pozzato, G. L., and Theseider
Dupré, D. 2010. Verifying business process compliance by reasoning about actions. In CLIMA
XI. 99–116.

Dechter, R. 2003. Constraint processing. Elsevier Morgan Kaufmann.

Deutsch, A., Hull, R., Patrizi, F., and Vianu, V. 2009. Automatic verification of data-
centric business processes. In ICDT. 252–267.

Fahland, D., Favre, C., Koehler, J., Lohmann, N., Völzer, H., and Wolf, K. 2011.
Analysis on demand: Instantaneous soundness checking of industrial business process models.
Data Knowl. Eng. 70, 5, 448–466.

Gebser, M., Ostrowski, M., and Schaub, T. 2009. Constraint answer set solving. In ICLP.
235–249.

Gelfond, M. 2007. Answer Sets. Handbook of Knowledge Representation, chapter 7, Elsevier .

Ghose, A. and Koliadis, G. 2007. Auditing business process compliance. ICSOC, LNCS
4749 , 169–180.

Giordano, L., Martelli, A., and Theseider Dupré, D. 2012. Achieving completeness in
bounded model checking of action theories in ASP. In Proc. KR 2012.

Giordano, L., Martelli, A., and Theseider Dupré, D. 2013a. Reasoning about actions
with temporal answer sets. Theory and Practice of Logic Programming 13, 201–225.

Giordano, L., Martelli, A., and Theseider Dupré, D. 2013b. Temporal deontic action
logic for the verification of compliance to norms in ASP. In Proc. ICAIL 2013.

Governatori, G. 2010. Law, logic and business processes. In Third International Workshop
on Requirements Engineering and Law. IEEE.

Governatori, G. and Rotolo, A. 2006. Logic of Violations: A Gentzen System for Reasoning
with Contrary-To-Duty Obligations. Australasian Journal of Logic 4, 193–215.

Governatori, G. and Sadiq, S. 2009. The journey to business process compliance. Handbook
of Research on BPM, IGI Global , 426–454.

Harel, D. 1984. Dynamic logic. In Handbook of Philosophical Logic, vol. 2. 497–604.

Heljanko, K. and Niemelä, I. 2003. Bounded LTL model checking with stable models. Theory
and Practice of Logic Programming 3, 4-5, 519–550.

14 Laura Giordano et al.

Henriksen, J. and Thiagarajan, P. 1999. Dynamic Linear Time Temporal Logic. Annals of
Pure and Applied logic 96, 1-3, 187–207.

Hoffmann, J., Weber, I., and Governatori, G. 2009. On compliance checking for clausal
constraints in annotated process models. Information Systems Frontiers.

Knuplesch, D., Ly, L. T., Rinderle-Ma, S., Pfeifer, H., and Dadam, P. 2010. On en-
abling data-aware compliance checking of business process models. In Proc. ER 2010, 29th
International Conference on Conceptual Modeling. 332–346.

Lu, S., Bernstein, A. J., and Lewis, P. M. 2006. Automatic workflow verification and
generation. Theor. Comput. Sci. 353, 1-3, 71–92.

Montali, M., Torroni, P., Chesani, F., Mello, P., Alberti, M., and Lamma, E. 2010.
Abductive logic programming as an effective technology for the static verification of declarative
business processes. Fundam. Inform. 102, 3-4, 325–361.

Nigam, A. and Caswell, N. S. 2003. Business artifacts: An approach to operational specifi-
cation. IBM Systems Journal 42, 3, 428445.

Ostrowski, M. 2012. What is this thing called “clingcon”? A language description. Available
at potassco.sourceforge.net.

Ostrowski, M. and Schaub, T. 2012. ASP modulo CSP: The clingcon system. TPLP 12, 4-5,
485–503.

Pesic, M. and van der Aalst, W. M. P. 2006. A declarative approach for flexible business
processes management. In Business Process Management Workshops, LNCS 4103. Springer,
169–180.

Reiter, R. 2001. Knowledge in action. MIT Press.

Roman, D. and Kifer, M. 2008. Semantic web service choreography: Contracting and enact-
ment. In International Semantic Web Conference, LNCS 5318. 550–566.

Singh, M. P. 2000. A social semantics for Agent Communication Languages. Issues in Agent
Communication, LNCS(LNAI) 1916 , 31–45.

van der Aalst, W. and ter Hofstede, A. 2005. YAWL: Yet Another Workflow Language.
Information Systems 30, 4, 245–275.

van der Aalst, W., van Hee, K., ter Hofstede, A., Sidorova, N., Verbeek, H., Voorho-
eve, M., and Wynn, M. 2008. Soundness of Workflow Nets: Classification, Decidability, and
Analysiss. BPM Center Report BPM-08-02, BPMcenter.org .

van der Aalst, W. M. P. and Pesic, M. 2006. Decserflow: Towards a truly declarative service
flow language. In The Role of Business Processes in Service Oriented Architectures. Dagstuhl
Seminar Proceedings, vol. 06291.

Weber, I., Hoffmann, J., and Mendling, J. 2010. Beyond soundness: On the verification of
semantic business process models. Distributed and Parallel Databases (DAPD).

1

Online appendix for the paper

Business Process Verification with Constraint
Temporal Answer Set Programming

published in Theory and Practice of Logic Programming

Laura Giordano

DISIT, Università del Piemonte Orientale, Italy

Alberto Martelli, Matteo Spiotta

Dipartimento di Informatica, Università di Torino, Italy

Daniele Theseider Dupré

DISIT, Università del Piemonte Orientale, Italy

submitted 10 April 2013; revised 23 May 2013; accepted 23 June 2013

Appendix A Representation of control flow

In this appendix we describe the action language representation of the basic control flow

elements in YAWL (figure A 1).

Fig. A 1. Basic control flow elements in YAWL

Fluents enabled a are used to represent that a task named a is enabled, fluents en arc a b

are used to represent that the arc from a to b is enabled. The rules are as follows:

Sequence:

[a]en arc a b

[b]¬en arc a b

2 Laura Giordano et al.

enabled b← en arc a b

¬enabled b← ¬en arc a b

AND-split:

[a]en arc a b [a]en arc a c

[b]¬en arc a b [c]¬en arc a c

enabled b← en arc a b ¬enabled b← ¬en arc a b

enabled c← en arc a c ¬enabled c← ¬en arc a c

AND-join:

[b]en arc b c [a]en arc a c

[c]¬en arc b c [c]¬en arc a c

enabled c← en arc b c, en arc a c

¬enabled c← ¬en arc b c ¬enabled c← ¬en arc a c

Nondeterministic XOR-split:

[a]en arc a b [a]en arc a c

[b]¬en arc a b [b]¬en arc a c

[c]¬en arc a b [c]¬en arc a c

enabled b← en arc a b ¬enabled b← ¬en arc a b

enabled c← en arc a c ¬enabled c← ¬en arc a c

XOR-split:

Analogous to the nondeterministic one, except for the first two rules which become:

[a]en arc a b← Cond [a]en arc a c← not Cond

XOR-join:

[b]en arc b a [c]en arc c a

[a]¬en arc b a [a]¬en arc c a

enabled a← en arc b a enabled a← en arc c a

¬enabled a← ¬en arc b a,¬en arc c a

Online appendix 3

Appendix B Experiments

In this appendix we report some experiments on the feasibility and scalability of the

approach in the paper with current Constraint ASP technology. In particular, we run

in clingcon (Gebser et al. 2009; Ostrowski and Schaub 2012) version 2.0.2 (and in some

cases clingo, version 3.0.3), on a machine with Intel Xeon E5520 processors (2.26Ghz)

and 32 GB RAM, an encoding with an optimization for the persistence of variable values:

rather than propagating values of variables across tasks which do not set their value, a

fluent lastchange(V ar, S, S1) is propagated from S to the next state, representing that

S1 is the last state where the value of V ar was set; therefore, the value of a variable in a

state is actually evaluated in the state where it last changed. This eliminates a number of

equalities on constraint variables (e.g. value(pn, S′) $ = value(pn, S) in section 5) that

should be processed by the constraint solver.

Experiment 1 is based on the process structure in figure B 1 as a basic block, which

has a structure similar to the one of the running example; in particular, process models

are as follows:

• The process structure is (see figure B 2) a sequence of r blocks with the structure

in figure B 1 (i.e., for i < r, task 19 of the i-th block is followed by task set of the

i + 1-th block). We use li to denote the instance, in the i-th repetition, of a task

or condition labeled l in figure B 1.

• Conditions in different elements of the sequence vary; e.g., condition c1i (c1 in block

i) is different from c1j for i 6= j.

Different classes of process models are checked; each class has r as a parameter and

classes differ in branching conditions. Depending on the logical relations among such

conditions, there can be up to 24r alternative runs of the process (since there are 24 in a

single block).

In problem class 1.1 we further have:

• The task set1 sets two integer variables v, v′;

Fig. B 1. Basic process model

Fig. B 2. Models for experiment 1; each block has the structure in figure B 1

4 Laura Giordano et al.

Problem class 1 2 3 4 5 6 7 8 9 10

1.1 V 0.05 0.19 0.51 1.03 1.71 2.70 4.01 5.08 6.91 8.74

1.1 NV 0.05 0.20 0.51 1.03 1.73 2.83 4.17 6.10 8.13 10.53

1.2 V 0.05 0.23 0.61 1.29 2.38 4.14 8.12 12.98 21.57 25.61

1.2 NV 0.05 0.21 0.60 1.31 2.50 4.10 6.67 11.68 17.38 24.57

1.3 V 0.04 0.13 0.30 0.58 1.19 1.82 2.58 3.42 4.44 5.65

1.3 NV 0.04 0.13 0.31 0.59 1.13 1.75 2.38 3.25 4.13 5.18

1.4 V 0.03 0.16 0.41 0.87 1.26 2.06 2.36 4.60 6.79 11.02

1.4 NV 0.05 0.16 0.38 0.73 1.18 1.78 2.47 3.33 4.64 5.39

Table B 1. Running times for experiment 1

0,00	

2,00	

4,00	

6,00	

8,00	

10,00	

12,00	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

1.1	 V	

1.1	 NV	

1.3	 V	

1.3	 NV	

0,00	

5,00	

10,00	

15,00	

20,00	

25,00	

30,00	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

1.2	 V	

1.2	 NV	

1.4	 V	

1.4	 NV	

Fig. B 3. Running times compared for experiment 1

• Conditions c1i are v > ki, where ki, for i = 1, . . . , r are constants such that ki >

ki+1.

• Conditions c4i are v > ki/2.

• Conditions c2i and c3i are v′ < k′ (so they are independent from the other condi-

tions)

• Task 4i has fluent ai as effect, task 5i has effect di, task 14i has effect bi.

Note that c1i implies c4i which in turn implies c1i+1. This makes branching quite con-

strained, in particular there are only O(r) different runs.

The following formulae are checked for validity:

• 2(a1 → 3br), which is valid, because c11 implies c4r.

• 2(d1 → 3br), which is not valid.

Table B 1, provides, in lines labeled 1.1 V (resp. 1.1 NV) the running times in seconds

to verify the validity (resp., non-validity) of the two formulae for values of r up to 10,

using the length of the longest run as completeness threshold (for r = 10 it is 112 and it

Online appendix 5

requires 567 seconds to be computed, with more than half time spent to check that there

are no runs of length 113).

In problem class 1.2 we have more complex dependencies among branching conditions;

in particular, we have the following differences wrt 1.1:

• The task seti sets an integer variable vi;
• Conditions c1i are vi > ki.
• Conditions c2i, c3i are as in 1.1 (and v′ is set by set1).
• Conditions c4i are vi > ki/2 for i 6= r

• Condition c4r is
r∧

i=1

vi > k′i/2 where k′i < ki (and then vi > ki implies vi > k′i)

In this case, for i 6= r, c1i implies c4i, while
r∧

i=1

c1i implies c4r. The number of different

runs is exponential in r (12r).

The following formulae are checked for validity:

• 2(
r∧

i=1

ai → 3br), which is valid, because
r∧

i=1

c1i implies c4r.

• 2(
r∧

i=1

di → 3br), which is not valid.

and running times are in lines 1.2 V and 1.2 NV of table B 1.

The approach is sensitive to the way a branching condition is implied by other ones.

For example, if in problem class 1.2 we change c4r to:

r∑
i=1

vi >

r∑
i=1

ki

which is implied by
r∧

i=1

c1i as before, the verification is only feasible up to r = 3.

This behavior is apparently due to the solver integration and the constraint solver

itself (running times increase significantly with the actual size of the numerical domain).

We then further measure the cost of relying, in general, on an integrated solver that

calls a constraint solver for constraint atoms. In two further problem classes, in fact,

we use branching conditions that do not involve constraint atoms, but conditions on

variables with enumerated type; as stated in the paper, their translation does not involve

constraint atoms but just ASP atoms. Therefore, the encoding can be run in clingo.

In particular, problem class 1.3 should be compared with 1.1, in the sense that the

same logical relations hold between branching conditions, but in 1.1 the constraint solver

is responsible for detecting such logical relations.

• set1 sets r + 1 variables v1, . . . , vr+1 with domain {false, true};
• Conditions c1i are

r∧
j=i∗2−1

vj = true .

• Conditions c2i, c3i are as in 1.1 (and v′ is set by set1).

• Conditions c4i are
r∧

j=i∗2
vj = true.

As in 1.1, c1i implies c4i which implies c1i+1. The formulae to be verified are as in 1.1

and running times are in lines 1.3 V and 1.3 NV of table B 1; a graphical comparison

for 1.1 and 1.3 is in figure B 3 (left).

Then, in problem class 1.4 (to be compared with 1.2), we have

6 Laura Giordano et al.

• seti sets three variables vai, vbi, vci with domain {false, true};
• Conditions c1i are vai = true ∧ vbi = true ∧ vci = true.

• Conditions c2i, c3i are as in 1.1 (and v′ is set by set1).

• Condition c4r is
r∧

i=1

vai = true and is implied by
r∧

i=1

c1i.

Conditions are related as in 1.2. The formulae to be verified are as in 1.2 and results

are in lines 1.4 V and 1.4 NV of table B 1; a graphical comparison for 1.2 and 1.4 is in

figure B 3 (right).

The results show that the additional cost of relying on a constraint solver is acceptable

for 1.1 and 1.2.

In experiment 2 we tested the case where r blocks, each with the structure in figure

B 1, are in parallel (using AND-split and AND-join), with a single set task that assigns

variables before the split (see figure B 4). Parallel execution means that all interleavings

of every possible execution of each block should in general be considered (no reduction

technique is introduced in our current approach), then the number of possible executions

becomes extremely high even for low values of r.

In problem class 2.1, set assigns variables v1, v2 and for block i we have:

• Conditions c1i are v1 > k1.

• Conditions c2i and c3i are v2 > k2.

• Conditions c4i are v1 > k1/2.

• Task 4i has fluent ai as effect, task 5i has effect di, task 14i has effect bi.

and the following formulae are checked for validity:

• 2
r∧

i=1

(ai → 3bi), which is valid.

• 2
r∧

i=1

(di → 3bi), which is not valid.

In problem class 2.2, set assigns variables v1,i, v2,i for i = 1, . . . , r and conditions in

block i are as in 2.1, but on v1,i, v2,i.

Fig. B 4. Models for experiment 2; block are as in Figure B 1 with no initial “set” task

Online appendix 7

Problem class 2 3 4 5

2.1 8.4 · 106 1.6 · 1015 1.3 · 1025 1.5 · 1036

2.2 1.0 · 108 2.4 · 1017 2.2 · 1028 3.1 · 1040

Table B 2. Number of different runs for process models in experiment 2

Problem class 2 3 4 5

2.1 V 0.34 2.01 39.48 269.66

2.1 NV 0.23 0.63 72.01 94.24

2.2 V 0.28 2.12 22.79 1239.76

2.2 NV 0.26 0.86 17.46 11594.07

Table B 3. Running times for experiment 2

The number of different executions for r up to 5 is in table B 2.

In spite of such a large search space, verification is feasible (running times are in table

B 3) if the length of the longest run is used as a bound. What is not feasible is computing

such a bound with the approach used in other cases. Of course, if a process model is

hierarchical, e.g. using composite tasks in YAWL, the bound (or an overestimate of it)

can be computed by separately computing the longest activity sequence for component

blocks (composite tasks).

In experiment 3 the process structure is fixed, the one in figure B 5, while branching

conditions of increasing complexity are used, however each variable expression in con-

straint atoms involves a constant and low (3) number of variables. In this case running

times do not explode.

In particular, we have the following conditions which depend on a parameter r and

involve 3r variables set by activity 0:

• Condition c1 is
r∧

i=1

v1,i > k1.

• Condition c2 is
r∧

i=1

v2,i > k2.

• Condition c6 is
r∧

i=1

v3,i > k3.

• Condition c12 is
r∧

i=1

v1,i + v2,i + v3,i > k1 + k2 + k3.

• Task 10 has fluent d as effect, task 11 has effect b, task 34 has effect a.

The following formulae are checked for validity:

8 Laura Giordano et al.

Fig. B 5. Process model

r 1 2 3 4 5 6 7 8 9 10

valid formula 0.81 1.61 2.46 3.28 4.01 4.82 5.68 6.59 8.67 8.45

non-valid formula 0.82 1.64 2.49 3.28 4.21 4.97 6.00 6.59 7.63 8.49

Table B 4. Running times for experiment 3

• 2(d→ 3a), which is valid, because c1 ∧ c2 ∧ c6 implies c12.

• 2(b→ 3a), which is not valid.

Table B 4 provides the results for this experiment.

As stated in the paper, completeness of BMC is a problem, since, while solutions for

computing completeness thresholds for general formulae exist, as well as for formulae of

a given form, the actual computation of such thresholds tends to be unfeasible.

In Experiment 4 we report some results on a variation, with a non-loop-free work-

flow, of the running example in the paper. The process is in figure B 6: if the assessment

Online appendix 9

Fig. B 6. Process model with loop

of the order is negative, then, nondeterministically (abstracting input from the customer),

either the order is declined or the piece number is changed, restarting evaluation of the

modified order. In a single execution, the state (in terms of fluents and constraint atoms)

S′ reached after “Change pn” is in general different from the state S reached after “Pro-

cess order” (because of a different boolean value of constraint atoms such as pn > 50000),

even though S′ is reachable (in a different run) from the initial state in the same number

of steps as S.

For checking the validity of formulae 2p, where p is propositional (or, more generally,

p can be evaluated in a single state), i.e. searching counterexamples satisfying 3¬p,

the completeness threshold is ((Biere et al. 2003), section 5.1) the number of steps to

reach all states (reachability diameter, rd) which can be overapproximated by the length

of the longest loop-free path starting from an initial state. In our case, the reachability

diameter cannot be computed in a single answer set with the ASP encoding, since different

executions correspond to different answer sets. The length of the longest loop-free path

can indeed be computed, searching, for increasing values of k, for a simple run of length k,

i.e., a run made by different states, where two states differ if they assign a different value

to a fluent or a constraint atom in the process model or in the formula to be checked.

Such a threshold can be used for checking formulae 2p, relaxing the requirement 3end

(e.g., checking later that an end state can be reached from the state satisfying 2¬p, if

found); before knowing such a threshold, empirically “large” bounds can be used, possibly

finding a counterexample in a time smaller than the one to compute the threshold (of

course, validity is not guaranteed if no counterexample is found).

For the non-valid formula (3) in section 6, such a threshold (51) can be found in 108

seconds. Using it as the bound, a counterexample can be found in 0.32 seconds. Using

100, 200 or 300 as bounds, the counterexample can be found in 1, 3.1 and 6.7 seconds

respectively.

For the valid formula (2) in section 6, the threshold (36) can be found in 20 seconds;

using it, 0.95 seconds are needed to check the validity. In this case, using larger bounds

is only feasible up to 60.

10 Laura Giordano et al.

References

Biere, A., Cimatti, A., Clarke, E. M., Strichman, O., and Zhu, Y. 2003. Bounded model
checking. Advances in Computers 58, 118–149.

Gebser, M., Ostrowski, M., and Schaub, T. 2009. Constraint answer set solving. In ICLP.
235–249.

Ostrowski, M. and Schaub, T. 2012. ASP modulo CSP: The clingcon system. TPLP 12, 4-5,
485–503.

	ICLP2013GiordanoEtAlWithAppendix.pdf
	ICLP2013GiordanoEtAlAppendix

