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The Setting

Some agents own a bundle of resources that can be used for a common project

If a subset of agents agree on a fair division of the income they develop the project using their resources

Linear Production Games - Owen, 1975

An external monopolistic company offers to purchase the resources

Each agent, separately, communicates the price he wants for his whole bundle of resources

After that the company decides which bundles to buy, trying to maximize the quantity of resources rather then

the gain

The company will not accept a loss, but is indifferent among different amounts of gain

The company → buys those bundles that allow producing goods with no loss

Each agent → decides the price to ask in order to maximize the utility: not too high, but as large as possible
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Game Theoretical Approach

Cooperative game GC = (N, v)

where N = {1, ..., n} set of players

v : 2N → R characteristic function

core(v) =

{
x ∈ R

n s.t.
∑
i∈N

xi = v(N),
∑
i∈S

xi ≥ v(S), ∀S ⊂ N

}

Non-cooperative game GNC = (N, (Σi)i∈N, (πi)i∈N)

where N = {1, ..., n} set of players

Σi non-empty set of strategies of player i ∈ N

πi :
∏

j∈N Σj → R payoff function of player i ∈ N

A Nash equilibrium is a strategy profile σ∗ = (σ∗
1, ..., σ

∗
n) s.t.

πi(σ
∗
1, ..., σ

∗
i , ..., σ

∗
n) ≥ πi(σ

∗
1, ..., σi, ..., σ

∗
n), ∀σi ∈ Σi, ∀i ∈ N
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Our case

Starting situation: cooperative game

Players the agents

Worth of coalition S the value of the goods that the players in S may obtain using just their own resources

Final situation: non-cooperative game

Players the agents

Strategies the possible selling prices

Payoff the asked price if the bundle is purchased, 0 otherwise

Two questions

How to associate a non-cooperative game to a given cooperative game with the same set of players?

Is it possible to exploit the characteristics of the cooperative game in order to solve the non-cooperative one?
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Previous approaches

• Von Neumann and Morgenstern, 1944 : transforming a game in characteristic form into a game in strategic

form, in a general framework

• Borm and Tijs, 1992 : cooperative games with non transferable utility

• Gambarelli, 2000 : general transformation procedure taking into account the probability that a coalition in

which he takes part forms

• Feltkamp, Tijs and Muto, 1999 : in a minimum cost spanning tree situation, construct edges minimizing cost

but looking for connection to the source
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Linear programming games (Samet and Zemel, 1984)

The players control a bundle of resources and the worth of a coalition is the best output that the players can obtain

using just their resources:

v(S) = max{cTy s.t. Ay ≤ bS}, ∀S ⊆ N

where c = {c1, ..., cm} vector of the prices of the goods y = {y1, ..., ym}
A = (alh)l=1,...,m;h=1,...,k matrix of the coefficients of the constraints

bS =
∑

i∈S bi, S ⊆ N vector of the resources available for coalition S,

where bi = {bi
1, ..., b

i
k} is the vector of the resources owned by player i ∈ N

Owen, 1975: linear programming games are balanced and a core allocation x can be obtained starting from an

optimal solution z∗ of the dual program

min{(bN )T z s.t. ATz = c; z ≥ 0}

as

xi = (bi)T z∗, ∀i ∈ N

van Gellekom et al., 2000: Owen set = subset of core allocations associated to dual optimal solutions
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The Intertwined Games

The cooperative game is a linear programming game

In the associated non-cooperative game player i ∈ N are may ask a price p(i) s.t.

v(i) ≤ p(i) ≤ max


v(S) −

∑
j∈S\{i}

v(j), S 	 i


 , ∀i ∈ N

or, by balancedness:

v(i) ≤ p(i) ≤ v(N) −
∑

j∈N\{i}
v(j), ∀i ∈ N
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Example 1 (Production situation) Consider the production situation associated to the following technology

matrix:
units of resource R1 units of resource R2 value

itemA 3 1 4

itemB 2 1 3

Let N = {I, II}; the game is described in the following table:

S R1 R2 A B v(S)

I 2 2 0 1 3

II 5 1 1 0 4

I, II 7 3 1 2 10

The selling prices have to satisfy the following constraints:

3 ≤ p(I) ≤ 6

4 ≤ p(II) ≤ 7

The non-cooperative game is (only integer values of prices appear):

I/II 4 5 6 7

3 (3, 4) (3, 5) (3, 6) (3, 7)

4 (4, 4) (4, 5) (4, 6) (0, 0)

5 (5, 4) (5, 5) (0, 0) (0, 0)

6 (6, 4) (0, 0) (0, 0) (0, 0)



A Note on the Owen Set of Linear Programming Games and Nash Equilibria 10

The Core and the Nash Equilibria

Core allocations are Nash equilibria: if a player unilaterally reduces his price, then his payoff decreases

if a player unilaterally increases his price then his bundle is not sold

The Owen set allows to find very easily core allocations, ending in efficient Nash equilibria

In Example 1 core(v) = {(α, 10 − α) ∈ R
2 s.t. 4 ≤ α ≤ 7} coincides with the set of Nash equilibria

The equilibrium profile (4, 6) corresponds to the optimal dual solution (1, 1)

In general the core and the set of Nash equilibria do not coincide
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Example 2 (Flow situation)

N = {I, II, III} (the notation is owner/capacity):
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Taglio ottimo
Taglio ottimo

The associated game is:

S {I} {II} {III} {I, II} {I, III} {II, III} N

v(S) 0 2 0 2 2 2 5

The selling prices that players may ask for have to satisfy:

0 ≤ p(I) ≤ 3

2 ≤ p(II) ≤ 5

0 ≤ p(III) ≤ 3
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The non-cooperative game is (only integer values of prices appear):

III = 0 I/II 2 3 4 5

0 (0, 2, 0) (0, 3, 0) (0, 4, 0) (0, 5, 0)

1 (1, 2, 0) (1, 3, 0) (1, 4, 0) (1, 0, 0)

2 (2, 2, 0) (2, 3, 0) (2, 0, 0) (2, 0, 0)

3 (3, 2, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)

III = 1 I/II 2 3 4 5

0 (0, 2, 1) (0, 3, 1) (0, 4, 1) (0, 0, 1)

1 (1, 2, 1) (1, 3, 1) (1, 0, 1) (1, 0, 1)

2 (2, 2, 1) (0, 0, 0) (0, 0, 0) (0, 0, 0)

3 (0, 2, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)

III = 2 I/II 2 3 4 5

0 (0, 2, 2) (0, 3, 2) (0, 0, 2) (0, 0, 2)

1 (1, 2, 2) (0, 0, 0) (0, 0, 0) (0, 0, 0)

2 (0, 2, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)

3 (0, 2, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)

III = 3 I/II 2 3 4 5

0 (0, 2, 3) (0, 0, 0) (0, 0, 0) (0, 0, 0)

1 (0, 2, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)

2 (0, 2, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)

3 (0, 2, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)

Equilibrium profiles (2, 3, 0) and (0, 2, 3) correspond to the optimal cuts, {(v1, v2), (v1, v3)} and {(v2, v4), (v3, v4), (v3, v5)},
that are core allocations, according to the result of Kalai-Zemel, 1982

The Nash equilibrium (0, 2, 0) is not efficient and does not correspond to a core allocation
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