Procedural Approaches for Allocation Problems in Insurance

Vito FRAGNELLI
Dipartimento di Scienze e Tecnologie Avanzate - Università del Piemonte Orientale
vito.fragnelli@mfn.unipmn.it

Joint work with Daniela AMBROSINO and Maria Erminia MARINA
Dipartimento di Economia e Metodi Quantitativi - Università di Genova
{ambrosin,marina}@economia.unige.it

Outline
Fairness in Co-Insurance
The Aims
The Problem
The Knaster's Procedure
Our Procedures
An Application

Pisa - 29 October 2004
Fairness in Co-Insurance

A risk may be too high for a single insurance company but not for a pool (if an adequate premium is paid)
The companies have different evaluations of the risks, depending on risk-aversion, information, size of the company etc.

Co-insurance problem

How to divide the risk and the premium among the companies, satisfying some fairness criteria

- \(\mathcal{X} \): set of real valued random variables on a probability space
- \(R \in \mathcal{X} \): risk (non-negative random variable)
- \(\pi \in \mathbb{R} \): premium
- \(N = \{1, ..., n\} \): set of companies

Quota share allocation

\((q_i \pi, q_i R)_{i \in N} \)

where \((q_i)_{i \in N} \) is an \(n \)-dimensional real vector, s.t. \(q_i > 0 \) and \(\sum_{i \in N} q_i = 1 \)
Is this solution fair?

- efficiency (weak Pareto optimality)
 depends only on an optimal risk decomposition (Deprez and Gerber 1985)
- individual rationality
- envy-freeness
- proportionality
- equitability

(see also Brams and Taylor 1996, 1999)
The Aims

- analyze some possible fair divisions
- give some step-by-step procedures

Brams and Taylor (1999) deal "with disputes ... in which everybody can win. For such disputes ... (they) describe and illustrate step-by-step procedures that help the disputants resolve their differences, capture the mutual gain, and reach a fair settlement"

Haake, Raith and Su (2002) "view a procedure as featuring the following characteristics: it is intuitive, meaning that each step must be easy to understand; it is plausible, meaning that each step must be simple to argue; and it is manageable, meaning that each step must be straightforward to compute ... see these subjective criteria as relevant for the practical implementation of a fair division outcome, in particular when parties in real life prefer to establish fairness by themselves, rather than trust the 'magic' of a computer algorithm"

Procedural approach to fair division

Knaster (1946)
Steinhaus (1948)
Brams and Taylor (1996, 1999)
Raith (2000)
Haake, Raith and Su (2002)
The Problem

Decomposition of $R \ (X_i)_{i \in N}$ s.t. $X_i \in \mathcal{X}, \ \forall \ i \in N$ and $\sum_{i \in N} X_i = R$

Division of $\pi \ (c_i)_{i \in N}$ s.t. $c_i \in \mathbb{R}, \ \forall \ i \in N$ and $\sum_{i \in N} c_i = \pi$

The allocation $(c_i, X_i)_{i \in N}$ of (π, R) means that company $i \in N$ gets the stochastic amount $c_i - X_i$

Company $i \in N$ assigns to $X \in \mathcal{X}$ a value $m_i(X) \in [-\infty, +\infty]$ and let $\mathcal{L}_i = \{X \in \mathcal{X} \ s.t. \ m_i(X) \in \mathbb{R}\}$

The preferences \succeq_i of company $i \in N$ over the set \mathcal{L}_i are such that:

$$X \succeq_i Y \iff m_i(X) \geq m_i(Y) \quad \forall \ X, Y \in \mathcal{L}_i$$

Hypothesis 1 For each company $i \in N$:

$$m_i(w) = w \quad \forall \ w \in \mathbb{R}$$

Hypothesis 2 For each company $i \in N$:

$$m_i(w + X) = w + m_i(X) \quad \forall \ w \in \mathbb{R}, \forall \ X \in \mathcal{L}_i$$

By Hypotheses 1 and 2 company $i \in N$ is indifferent between X and $m_i(X)$ and between $X - m_i(X)$ and a null amount, $\forall \ X \in \mathcal{L}_i$
Company $i \in N$ may insure a risk Y only if $-Y \in \mathcal{L}_i$

$H_i(Y) = -m_i(-Y)$ can be interpreted as the minimal premium amount that company i requires for covering the risk Y without suffering losses (not including commercial loading for commissions and expenses)

Hypotheses 1 and 2 hold for many of the premium calculation principles:

- **Net premium principle**

 $H(X) = E(X)$

- **Variance principle**

 $H(X) = E(X) + \alpha V ar(X), \quad \alpha > 0$

- **Standard deviation principle**

 $H(X) = E(X) + \beta \sqrt{V ar(X)}, \quad \beta > 0$

(see Goovaerts, De Vylder and Haezendonck 1984)
Let
\[\Delta = \{(q_i)_{i \in N} \in \mathbb{R}^N \text{ s.t. } q_i > 0, \sum_{i \in N} q_i = 1\} \]
\[\mathcal{A} = \{(q_i R)_{i \in N} \in \mathcal{X}^n, \text{ s.t. } (q_i)_{i \in N} \in \Delta, -q_i R \in \mathcal{L}_i \ \forall \ i \in N\} \]

To reduce computational difficulties, consider a non-empty set of risk decompositions, \(\mathcal{B} \subseteq \mathcal{A} \), s.t. if \((q_i R)_{i \in N} \in \mathcal{B}\) then \((q_{\sigma(i)} R)_{i \in N} \in \mathcal{B}\) for each \(\sigma : N \to N\), permutation of \{1, ..., n\}

Hypothesis 3 There exists a vector \((q^*_i)_{i \in N} \in \Delta\) such that \((q^*_i R)_{i \in N} \in \mathcal{B}\) and:
\[\sum_{i \in N} H_i(q^*_i R) = \min_{(q_i R)_{i \in N} \in \mathcal{B}} \sum_{i \in N} H_i(q_i R) \]
\((q^*_i R)_{i \in N}\) is an optimal decomposition of the risk in \(\mathcal{B}\)
\[Q^*_\mathcal{B}(R) = \sum_{i \in N} H_i(q^*_i R) \]

Remark 1 In practice the companies consider a set \(\mathcal{B}\) containing a finite number of elements (Hypothesis 3 trivially holds). For an a priori fixed decomposition of the risk \((\bar{q}_i R)_{i \in N}\) then
\[\mathcal{B} = \{(\bar{q}_{\sigma(i)} R)_{i \in N}, \sigma : N \to N, \text{ permutation of } \{1, ..., n\}\} \]

An optimal allocation of the risk may be obtained via the solution of a 0-1 linear assignment problem.
Let
\[\mathcal{Z}(B) = C \times B = \text{set of the feasible allocations of } (\pi, R) \]
\[\mathcal{O}(B) = \{(c_i, q_iR)_{i \in N} \in \mathcal{Z}(B) \mid \nexists (c'_i, q'_iR)_{i \in N} \in \mathcal{Z}(B) \text{ s.t. } (c'_i, q'_iR) \sqsupseteq_i (c_i, q_iR) \forall i \in N\} \]
\[= \text{set of the feasible Pareto optimal allocations of } (\pi, R) \]

Proposition 1
\[(c_i, q_iR)_{i \in N} \in \mathcal{O}(B) \iff (c_i, q_iR)_{i \in N} \in \mathcal{Z}(B) \text{ and } \sum_{i \in N} H_i(q_iR) = Q_B^*(R) \]
Let \((c_i, q_i^* R)_{i \in N}\) be a Pareto optimal allocation

Company \(i \in N\) assigns to the pair \((c_j, q_j^* R)\) received by company \(j \in N\) the value \(m_i(c_j, q_j^* R) = c_j - H_i(q_j^* R)\)

Let \(P_i = \pi - \sum_{j \in N} H_i(q_j^* R), i \in N\) be the value of the estate to divide (for \(i\)), after that each company \(j \in N\) received \(H_i(q_j^* R)\)

Hypothesis 4 \(P_i \geq 0\), for each \(i \in N\)

Let \(P^* = \pi - Q^*_B(R)\) be the net profit to be shared after that each company \(i \in N\) received \(H_i(q_i^* R)\)

Proposition 2 \(P^* \geq \frac{1}{n} \sum_{i \in N} P_i\)

If the companies reach an agreement on an optimal decomposition of the risk \((q_i^* R)_{i \in N}\) for which Hypothesis 4 holds, then by Proposition 2 \(P^* \geq 0\) and there exist allocations \((c_i, q_i^* R)_{i \in N} \in \mathcal{O} (\mathcal{B})\) that are:

- **individually rational**: \(m_i(c_i - q_i^* R) = c_i - H_i(q_i^* R) \geq 0, \forall i \in N\)
- **proportional**: \(c_i - H_i(q_i^* R) \geq \frac{1}{n} P_i, \forall i \in N\)
- **equitable**: \(\frac{c_i - H_i(q_i^* R)}{P_i} = \frac{c_j - H_j(q_j^* R)}{P_j}, \forall i, j \in N\)
- **envy-free**: \(m_i(c_i - q_i^* R) \geq m_i(c_j - q_j^* R), \forall i, j \in N\)
A simple proportional allocation

\[(c^p_i, q^*_i R)_{i \in N} = \left(H_i(q^*_i R) + \frac{1}{n} P_i + \frac{1}{n} \left(P^* - \sum_{j \in N} \frac{1}{n} P_j \right), q^*_i R \right)_{i \in N} \] \hspace{1cm} (1)

The unique equitable allocation

\[(c^e_i, q^*_i R)_{i \in N} = \left(H_i(q^*_i R) + \frac{P_i}{\sum_{h \in N} P_h} P^*, q^*_i R \right)_{i \in N} \] \hspace{1cm} (2)

This allocation is also proportional:

\[c^e_i - H_i(q^*_i R) = \frac{P^*}{\sum_{h \in N} P_h} P_i \geq \frac{1}{n} P_i \]

where the inequality holds by Proposition 2
The Knaster’s Procedure

Input: \(m \) indivisible objects \(b_1, \ldots, b_m \) \((M = \{1, \ldots, m\})\) to divide among the players of the set \(N = \{1, \ldots, n\} \)

Output: assignment of each object to just one player and monetary compensations

Step 1 each player \(i \in N \) evaluates each object \(b_k, k \in M \) as \(v_{ik} \); let \(E_i = \frac{1}{n} \sum_{k \in M} v_{ik} \) \((E_i \text{ is the initial proportional share according to the evaluations of } i)\);

Step 2 each object \(b_k, k \in M \) is assigned to the player \(j(k) \) that gives the maximal evaluation \((j(k) = \arg \max (v_{ik}, i \in N))\); let \(v_k = v_{j(k),k} \) \((\text{if more players give the same evaluation of an object it is assigned randomly})\);

Step 3 let \(G_i = \sum_{k:j(k)=i} v_k \) \((G_i \text{ is the value of the objects received by player } i)\);

Step 4 let \(s = \sum_{i \in N} (G_i - E_i) \) \((s \text{ is the surplus})\);

Step 5 let \(V_i = E_i + \frac{s}{n} \) \((V_i \text{ is the adjusted fair share})\);

Step 6 for each player \(i \in N \), if the monetary amount \(V_i - G_i \) is positive the player \(i \) receives it in addition to his objects;

\[\text{otherwise he has to pay } G_i - V_i; \text{ STOP.} \]
Remark 2

- The surplus s is non-negative
- The division is proportional
- The division is equitable $\iff E_i = E_j, \forall i, j \in N$
- The sum of the compensations is zero (no money is required or produced)
Our Procedures

The proportional procedure
Each company \(i \in N \) submits, independently, its function \(H_i \) to a mediator, which selects an optimal decomposition of the risk \((q_j^* R)_{j \in N}\) for which the Hypothesis 4 holds.

Step 1 each company \(i \in N \) receives \(\frac{1}{n} \pi \);

Step 2 each company \(i \in N \) pays \(\frac{1}{n} \sum_{j \in N} H_i(q_j^* R) \);

Step 3 each company \(i \in N \) receives the quota of risk \(q_i^* R \) and the amount \(H_i(q_i^* R) \);

Step 4 the surplus \(s = \frac{1}{n} \sum_{j \in N} \sum_{i \in N} H_i(q_j^* R) - \sum_{i \in N} H_i(q_i^* R) \) is equally shared among all the companies; STOP.

The output of the procedure is the proportional allocation (1):

\[
\left(\frac{1}{n} \pi \right)_{i \in N} - \left(\frac{1}{n} \sum_{j \in N} H_i(q_j^* R) + H_i(q_i^* R) + \frac{1}{n} s, q_i^* R \right)_{i \in N} = \left(H_i(q_i^* R) + \frac{1}{n} P_i + \frac{1}{n} \left(P^* - \frac{1}{n} \sum_{j \in N} P_j^* \right), q_i^* R \right)_{i \in N}
\]
Remark 3

- The surplus s is non negative by Proposition 2
- In Step 2 each company pays one n-th of its evaluation of each quota of risk $q_j^* R, j \in N$
- After Step 2 each company has received the amount $\frac{1}{n} P_i^*$ that is non negative by Hypothesis 4
- In Step 3 each company receives its quota of risk $q_i^* R$ and its evaluation of it. Note that the sum of the amounts received by the companies in Step 3 is not greater than the sum of the amounts paid in Step 2 by Proposition 2
The equitable procedure (see Adjusted Knaster by Raith 2000)

Modifying the Step 4 of the previous procedure as:

Step 4’ the surplus s is shared among all the companies proportionally to $P_i^*, i \in N$; STOP.

The output of the procedure is the equitable allocation (2):

$$\frac{1}{n} \frac{\pi}{n} - \frac{1}{n} \sum_{j \in N} H_i(q_j^* R) + H_i(q_i^* R) + \frac{P_i^*}{\sum_{j \in N} P_j^*} s, q_i^* R$$

$$= \left(\frac{H_i(q_i^* R) + \frac{P_i^*}{\sum_{j \in N} P_j^*} P_i^*, q_i^* R}{i \in N} \right)$$

Each company can be sure of the equitability of the solution only if it knows the evaluations of the other companies.
The envy-free procedure (see Fragnelli and Marina 2003) (the ordering of the companies is such that for each quota of risk they have decreasing evaluations)

Step 1 let $b_1 = 0$ and for $i = 2, \ldots, n$ let $b_i = \sum_{k=1}^{i-1} H_k(q_k^* R) - H_{k+1}(q_k^* R);$

Step 2 for $i = 1, \ldots, n$ let $r_i = \frac{P^* - \sum_{j \in N} b_j}{n};$

Step 3 for $i = 1, \ldots, n$ let $c_i^* = H_i(q_i^* R) + b_i + r_i$ this is the final amount given to company $i.$

The output of the procedure is the envy-free allocation:

$$\left(H_i(q_i^* R) + b_i + \frac{1}{n} \left(P^* - \sum_{j \in N} b_j \right), q_i^* R \right)_{i \in N}$$
An Application

Environmental risks in Italy
The sole responsibility is given to a pool of 61 insurance companies whose evaluation of a random variable \(X \) is according to the variance principle:

\[
H_i(X) = E(X) + a_i \text{Var}(X), \quad \forall \ i \in N
\]

where \(a_i = \frac{a(N)}{\bar{q}_i}, \ i \in N \) with \(a(N) = 0.1 \)

The distribution function of \(R \) is \(F(x) = 1 - e^{-\mu x} \), with \(\mu = \frac{1}{1.05} \), so \(E(R) = 1.05 \) and \(\text{Var}(R) = 1.1025 \)

Let \(\mathcal{B} = \{(\bar{q}_{\pi(i)}R)_{i \in N}, \pi : N \to N\} \) then the unique optimal decomposition of the risk is \((q_i^* R)_{i \in N} = (\bar{q}_i R)_{i \in N} \)

The maximum of \(\sum_{j \in N} H_i(q_j^* R), \ i \in N \) and is 2.413, so according to Hypotheses 4 let \(\pi = 2.5 \)

\[
\sum_{i \in N} H_i(q_i^* R) \text{ is } 1.160
\]
COMPANY	$\bar{q}_i \times 100$	COMPANY	$\bar{q}_i \times 100$
LE ASSICURAZIONI DI ROMA	0.286	ROYAL & SUN ALLIANCE	0.857
BNC ASSICURAZIONI	0.286	WINTERTHUR ASSICURAZIONI	0.857
GIULIANA ASSICURAZIONI	0.286	NAVELE ASSICURAZIONI	0.963
MAECI - SOC. MUTUA DI ASS.NI E RIASS.NI	0.286	LEVANTE NORDITALIA ASSICURAZIONI	1.029
RISPARMIO ASSICURAZIONI	0.286	AURORA ASSICURAZIONI	1.071
S.E.A.R.	0.286	METE ASSICURAZIONI	1.143
TICINO	0.306	SOCIETA' CATTOLICA DI ASSICURAZIONE	1.186
ASSIMOCO	0.429	ALLIANZ SUBALPINA	1.286
BERNESE ASS.NI-COMP. ITALO-SVIZZERA	0.429	LLOYD ADRIATICO	1.340
LIGURIA	0.429	F.A.T.A.	1.429
LLOYD ITALICO ASSICURAZIONI	0.429	SOCIETA' REALE MUTUA DI ASSICURAZIONI	1.429
MAECI ASSICURAZIONI E RIASSICURAZIONI	0.429	NUOVA TIRRENA	1.743
LA MANNHEIM	0.429	PADANA ASSICURAZIONI	2.143
MEDIOLANUM ASSICURAZIONI	0.429	COMPAGNIA ASSICURATRICE UNIPOL	2.231
LA NATIONALE	0.429	AXA ASSICURAZIONI	2.460
NATIONALE SUISSE	0.429	NEW RE (*)	2.571
NUOVA MAA ASSICURAZIONI	0.429	SCOR ITALIA RIASSICURAZIONI (*)	2.571
LA PIEMONTESE SOC. MUTUA DI ASS.NI	0.429	SOREMA (*)	2.571
LA PIEMONTESE ASSICURAZIONI	0.429	GENERAL & COLOGNE RE (*)	2.714
SARA ASSICURAZIONI	0.429	BAYERISCHE RUCK (*)	2.857
SASA	0.429	TORO ASSICURAZIONI	2.857
SIAT-SOCIETA' ITALIANA ASS.NI E RIASS.NI	0.429	MUNCHENER RUCK ITALIA (*)	3.286
UNIVERSO ASSICURAZIONI	0.429	ASSICURAZIONI GENERALI	5.263
ITAS ASSICURAZIONI	0.529	ASSITALIA-LE ASSICURAZIONI D’ITALIA	5.263
ITAS SOC. DI MUTUA ASSICURAZIONE	0.529	COMPAGNIA DI ASSICURAZIONE DI MILANO	5.263
IL DUOMO	0.574	LA FONDIARIA ASSICURAZIONI	5.263
UNIASS ASSICURAZIONI	0.686	RIUNIONE ADRIATICA DI SICURTA’	5.263
AUGUSTA ASSICURAZIONI	0.717	SAI	5.263
GAN ITALIA	0.791	ERC - FRANKONA AG (*)	5.714
VITTORIA ASSICURAZIONI	0.840	SWISSE RE - ITALIA	7.714
ITALIANA ASSICURAZIONI	0.857	TOTAL	100.000

(*) Reinsurance company
<table>
<thead>
<tr>
<th>Comp</th>
<th>$\sum_{j \in N} H_i(q_j^* R)$</th>
<th>c_i^e</th>
<th>c_i^p</th>
<th>$q_i^* \pi$</th>
<th>c_i^{ef}</th>
<th>$\sum_{j \in N} H_i(q_j^* R)$</th>
<th>c_i^e</th>
<th>c_i^p</th>
<th>$q_i^* \pi$</th>
<th>c_i^{ef}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.413</td>
<td>0.005</td>
<td>0.012</td>
<td>0.007</td>
<td>0.024</td>
<td>32.005</td>
<td>0.035</td>
<td>0.034</td>
<td>0.024</td>
<td>0.021</td>
</tr>
<tr>
<td>2</td>
<td>2.413</td>
<td>0.005</td>
<td>0.012</td>
<td>0.007</td>
<td>0.024</td>
<td>33.1514</td>
<td>0.034</td>
<td>0.033</td>
<td>0.021</td>
<td>0.026</td>
</tr>
<tr>
<td>3</td>
<td>2.413</td>
<td>0.005</td>
<td>0.012</td>
<td>0.007</td>
<td>0.024</td>
<td>34.1429</td>
<td>0.039</td>
<td>0.037</td>
<td>0.026</td>
<td>0.033</td>
</tr>
<tr>
<td>4</td>
<td>2.413</td>
<td>0.005</td>
<td>0.012</td>
<td>0.007</td>
<td>0.024</td>
<td>35.1455</td>
<td>0.037</td>
<td>0.036</td>
<td>0.034</td>
<td>0.024</td>
</tr>
<tr>
<td>5</td>
<td>2.413</td>
<td>0.005</td>
<td>0.012</td>
<td>0.007</td>
<td>0.024</td>
<td>36.1414</td>
<td>0.040</td>
<td>0.038</td>
<td>0.027</td>
<td>0.034</td>
</tr>
<tr>
<td>6</td>
<td>2.413</td>
<td>0.005</td>
<td>0.012</td>
<td>0.007</td>
<td>0.024</td>
<td>37.1391</td>
<td>0.041</td>
<td>0.039</td>
<td>0.029</td>
<td>0.035</td>
</tr>
<tr>
<td>7</td>
<td>2.324</td>
<td>0.008</td>
<td>0.014</td>
<td>0.008</td>
<td>0.024</td>
<td>38.1379</td>
<td>0.042</td>
<td>0.040</td>
<td>0.030</td>
<td>0.035</td>
</tr>
<tr>
<td>8</td>
<td>1.959</td>
<td>0.018</td>
<td>0.021</td>
<td>0.011</td>
<td>0.026</td>
<td>39.1353</td>
<td>0.044</td>
<td>0.041</td>
<td>0.032</td>
<td>0.037</td>
</tr>
<tr>
<td>9</td>
<td>1.959</td>
<td>0.018</td>
<td>0.021</td>
<td>0.011</td>
<td>0.026</td>
<td>40.1341</td>
<td>0.045</td>
<td>0.042</td>
<td>0.034</td>
<td>0.037</td>
</tr>
<tr>
<td>10</td>
<td>1.959</td>
<td>0.018</td>
<td>0.021</td>
<td>0.011</td>
<td>0.026</td>
<td>41.1323</td>
<td>0.046</td>
<td>0.043</td>
<td>0.036</td>
<td>0.038</td>
</tr>
<tr>
<td>11</td>
<td>1.959</td>
<td>0.018</td>
<td>0.021</td>
<td>0.011</td>
<td>0.026</td>
<td>42.1323</td>
<td>0.046</td>
<td>0.043</td>
<td>0.036</td>
<td>0.038</td>
</tr>
<tr>
<td>12</td>
<td>1.959</td>
<td>0.018</td>
<td>0.021</td>
<td>0.011</td>
<td>0.026</td>
<td>43.1274</td>
<td>0.051</td>
<td>0.048</td>
<td>0.044</td>
<td>0.042</td>
</tr>
<tr>
<td>13</td>
<td>1.959</td>
<td>0.018</td>
<td>0.021</td>
<td>0.011</td>
<td>0.026</td>
<td>44.1232</td>
<td>0.057</td>
<td>0.053</td>
<td>0.054</td>
<td>0.047</td>
</tr>
<tr>
<td>14</td>
<td>1.959</td>
<td>0.018</td>
<td>0.021</td>
<td>0.011</td>
<td>0.026</td>
<td>45.1225</td>
<td>0.058</td>
<td>0.054</td>
<td>0.056</td>
<td>0.048</td>
</tr>
<tr>
<td>15</td>
<td>1.959</td>
<td>0.018</td>
<td>0.021</td>
<td>0.011</td>
<td>0.026</td>
<td>46.1209</td>
<td>0.061</td>
<td>0.057</td>
<td>0.062</td>
<td>0.051</td>
</tr>
<tr>
<td>16</td>
<td>1.959</td>
<td>0.018</td>
<td>0.021</td>
<td>0.011</td>
<td>0.026</td>
<td>47.1202</td>
<td>0.062</td>
<td>0.059</td>
<td>0.064</td>
<td>0.053</td>
</tr>
<tr>
<td>17</td>
<td>1.959</td>
<td>0.018</td>
<td>0.021</td>
<td>0.011</td>
<td>0.026</td>
<td>48.1202</td>
<td>0.062</td>
<td>0.059</td>
<td>0.064</td>
<td>0.053</td>
</tr>
<tr>
<td>18</td>
<td>1.959</td>
<td>0.018</td>
<td>0.021</td>
<td>0.011</td>
<td>0.026</td>
<td>49.1202</td>
<td>0.062</td>
<td>0.059</td>
<td>0.064</td>
<td>0.053</td>
</tr>
<tr>
<td>19</td>
<td>1.959</td>
<td>0.018</td>
<td>0.021</td>
<td>0.011</td>
<td>0.026</td>
<td>50.1194</td>
<td>0.064</td>
<td>0.060</td>
<td>0.068</td>
<td>0.055</td>
</tr>
<tr>
<td>20</td>
<td>1.959</td>
<td>0.018</td>
<td>0.021</td>
<td>0.011</td>
<td>0.026</td>
<td>51.1187</td>
<td>0.066</td>
<td>0.062</td>
<td>0.071</td>
<td>0.056</td>
</tr>
<tr>
<td>21</td>
<td>1.959</td>
<td>0.018</td>
<td>0.021</td>
<td>0.011</td>
<td>0.026</td>
<td>52.1187</td>
<td>0.066</td>
<td>0.062</td>
<td>0.071</td>
<td>0.056</td>
</tr>
<tr>
<td>22</td>
<td>1.959</td>
<td>0.018</td>
<td>0.021</td>
<td>0.011</td>
<td>0.026</td>
<td>53.1169</td>
<td>0.071</td>
<td>0.068</td>
<td>0.082</td>
<td>0.062</td>
</tr>
<tr>
<td>23</td>
<td>1.959</td>
<td>0.018</td>
<td>0.021</td>
<td>0.011</td>
<td>0.026</td>
<td>54.1124</td>
<td>0.095</td>
<td>0.091</td>
<td>0.132</td>
<td>0.086</td>
</tr>
<tr>
<td>24</td>
<td>1.787</td>
<td>0.024</td>
<td>0.025</td>
<td>0.013</td>
<td>0.027</td>
<td>55.1124</td>
<td>0.095</td>
<td>0.091</td>
<td>0.132</td>
<td>0.086</td>
</tr>
<tr>
<td>25</td>
<td>1.787</td>
<td>0.024</td>
<td>0.025</td>
<td>0.013</td>
<td>0.027</td>
<td>56.1124</td>
<td>0.095</td>
<td>0.091</td>
<td>0.132</td>
<td>0.086</td>
</tr>
<tr>
<td>26</td>
<td>1.729</td>
<td>0.026</td>
<td>0.027</td>
<td>0.014</td>
<td>0.028</td>
<td>57.1124</td>
<td>0.095</td>
<td>0.091</td>
<td>0.132</td>
<td>0.086</td>
</tr>
<tr>
<td>27</td>
<td>1.594</td>
<td>0.031</td>
<td>0.031</td>
<td>0.018</td>
<td>0.029</td>
<td>58.1124</td>
<td>0.095</td>
<td>0.091</td>
<td>0.132</td>
<td>0.086</td>
</tr>
<tr>
<td>28</td>
<td>1.618</td>
<td>0.030</td>
<td>0.030</td>
<td>0.017</td>
<td>0.029</td>
<td>59.1124</td>
<td>0.095</td>
<td>0.091</td>
<td>0.132</td>
<td>0.086</td>
</tr>
<tr>
<td>29</td>
<td>1.543</td>
<td>0.033</td>
<td>0.032</td>
<td>0.020</td>
<td>0.030</td>
<td>60.1118</td>
<td>0.101</td>
<td>0.097</td>
<td>0.143</td>
<td>0.092</td>
</tr>
<tr>
<td>30</td>
<td>1.505</td>
<td>0.035</td>
<td>0.034</td>
<td>0.021</td>
<td>0.031</td>
<td>61.1101</td>
<td>0.124</td>
<td>0.120</td>
<td>0.193</td>
<td>0.117</td>
</tr>
<tr>
<td>31</td>
<td>1.505</td>
<td>0.035</td>
<td>0.034</td>
<td>0.021</td>
<td>0.031</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comp</td>
<td>(m_i(c_i^s - q_i^s R))</td>
<td>(m_i(c_i^p - q_i^p R))</td>
<td>(m_i(q_i^s\pi - q_i^s R))</td>
<td>(m_i(c_i^e^f - q_i^e^f R))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.002</td>
<td>0.009</td>
<td>0.004</td>
<td>0.021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.002</td>
<td>0.009</td>
<td>0.004</td>
<td>0.021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.002</td>
<td>0.009</td>
<td>0.004</td>
<td>0.021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.002</td>
<td>0.009</td>
<td>0.004</td>
<td>0.021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.002</td>
<td>0.009</td>
<td>0.004</td>
<td>0.021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.002</td>
<td>0.010</td>
<td>0.004</td>
<td>0.021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.014</td>
<td>0.016</td>
<td>0.006</td>
<td>0.021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.014</td>
<td>0.016</td>
<td>0.006</td>
<td>0.021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.014</td>
<td>0.016</td>
<td>0.006</td>
<td>0.021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.014</td>
<td>0.016</td>
<td>0.006</td>
<td>0.021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0.014</td>
<td>0.016</td>
<td>0.006</td>
<td>0.021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.014</td>
<td>0.016</td>
<td>0.006</td>
<td>0.021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0.014</td>
<td>0.016</td>
<td>0.006</td>
<td>0.021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0.014</td>
<td>0.016</td>
<td>0.006</td>
<td>0.021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.014</td>
<td>0.016</td>
<td>0.006</td>
<td>0.021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0.014</td>
<td>0.016</td>
<td>0.006</td>
<td>0.021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>0.014</td>
<td>0.016</td>
<td>0.006</td>
<td>0.021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>0.014</td>
<td>0.016</td>
<td>0.006</td>
<td>0.021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>0.014</td>
<td>0.016</td>
<td>0.006</td>
<td>0.021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.014</td>
<td>0.016</td>
<td>0.006</td>
<td>0.021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>0.014</td>
<td>0.016</td>
<td>0.006</td>
<td>0.021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>0.014</td>
<td>0.016</td>
<td>0.006</td>
<td>0.021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>0.014</td>
<td>0.016</td>
<td>0.006</td>
<td>0.021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>0.018</td>
<td>0.019</td>
<td>0.007</td>
<td>0.021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>0.018</td>
<td>0.019</td>
<td>0.007</td>
<td>0.021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>0.019</td>
<td>0.020</td>
<td>0.008</td>
<td>0.021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>0.022</td>
<td>0.022</td>
<td>0.009</td>
<td>0.021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>0.023</td>
<td>0.022</td>
<td>0.010</td>
<td>0.021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>0.024</td>
<td>0.023</td>
<td>0.011</td>
<td>0.021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>0.025</td>
<td>0.024</td>
<td>0.011</td>
<td>0.021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>0.025</td>
<td>0.024</td>
<td>0.011</td>
<td>0.021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
References

Thanks!