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A cooperative TU game is a pair 〈N, v〉 where
N = {1, . . . , n} is a finite set of n ≥ 2 players,
v : 2N → IR, v(∅) = 0, is a characteristic function.

A subset S ⊆ N (or S ∈ 2N ) of s players is a coalition,
v(S) presents the worth of the coalition S.

GN is the class of TU games with a fixed player set N.
(GN = IR2n−1 of vectors {v(S)} S⊆N

S 6=∅
)

Any vector x ∈ IRn can be considered as a payoff vector in a game v ∈ GN ,
the real number xi is the payoff to player i .

A payoff vector x ∈ IRn is said to be efficient in a game v , if x(N) = v(N).

A subgame of a game v is a game v |T with a player set T ⊂ N, T 6= ∅, and
v |T (S) = v(S) for all S ⊆ T .

A game v is nonnegative if v(S) ≥ 0 for all S ⊆ N.

A game v is monotonic if v(S) ≤ v(T ) for all S ⊆ T ⊆ N.
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The imputation set of a game v is a set of efficient and individually rational payoff
vectors

I(v) = {x ∈ IRn | x(N) = v(N), xi ≥ v(i), for all i ∈ N}.

The core of a game v (Gillies, 1953) is a set of efficient payoff vectors that are not
dominated by any coalition

C(v) = {x ∈ IRn | x(N) = v(N), x(S) ≥ v(S), for all S ⊆ N}.

A game v is balanced if C(v) 6= ∅.

For a game v , the excess of a coalition S ⊆ N with respect to a payoff vector x ∈ IRn is

ev (S, x) = v(S)− x(S).

The nucleolus of a game v (Schmeidler, 1969) is a minimizer of the lexicographic
ordering of components of the excess vector of a given game v arranged in decreasing
order of their magnitude over the imputation set I(v):

ν(v) = x ∈ I(v) : θ(x) �lex θ(y), ∀y ∈ I(v),

where θ(x) = (e(S1, x), e(S2, x), ..., e(S2n−1, x)),
while e(S1, x) ≥ e(S2, x) ≥ ... ≥ e(S2n−1, x).

In a balanced game v the nucleolus ν(v) ∈ C(v).
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For a game v we consider a marginal worth vector mv ∈ IRn equal to the vector of
marginal contributions to the grand coalition,

mv
i = v(N)− v(N\{i}), for all i ∈ N,

and the gap vector gv ∈ IR2N
,

gv (S) =

{ ∑
i∈S mv

i − v(S), S ⊆ N,S 6= ∅,
0, S = ∅,

that for every coalition S ⊆ N measures the total coalitional surplus of marginal
contributions to the grand coalition over its worth.
In fact, gv (S) = −ev (S,mv ).

It is easy to check that in any game v , the vector mv provides upper bounds of the core:
for any x ∈ C(v),

xi ≤ mv
i , for all i ∈ N.

In particular, for an arbitrary game v , the condition

v(N) ≤
∑
i∈N

mv
i

is a necessary (but not sufficient) condition for non-emptiness of the core,
i.e., a strictly negative gap of the grand coalition gv (N) < 0 implies C(v) = ∅.
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A game v is convex if for all i ∈ N and all S ⊆ T ⊆ N\{i},

v(S ∪ {i})− v(S) ≤ v(T ∪ {i})− v(T ),

or equivalently, if for all S,T ⊆ N,

v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ).

Any convex game has a nonempty core (Shapley, 1971).

Proposition

In any convex game v ∈ GN ,
gv (N) ≥ 0,

gv (N) ≥ gv (S), for all S ⊆ N.
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A game v ∈ GN is 1-convex if

0 ≤ gv (N) ≤ gv (S), for all S ⊆ N, S 6= ∅.

As it is shown in Driessen and Tijs (1983) and Driessen (1985), in a 1-convex game v ,
• every 1-convex game has a nonempty core C(v);
• for every efficient vector x ∈ IRn,

xi ≤ mv
i , for all i ∈ N =⇒ x ∈ C(v);

in particular, the characterizing property of a 1-convex game is:

m̄v (i) = {m̄v
j (i)}j∈N ∈ C(V ),

m̄v
j (i) =

{
v(N)−mv (N\i) = mv

i − gv (N), j = i,

mv
j , j 6= i,

for all j ∈ N;

moreover, {m̄v (i)}i∈N is a set of extreme points of C(v), and
C(v) = co({m̄v (i)}i∈N );
• the nucleolus coincides with the barycenter of the core vertices, and is given by

νi (v) = mv
i −

gv (N)

n
, for all i ∈ N,

i.e., the nucleolus defined as a solution to some optimization problem that, in
general, is difficult to compute, appears to be linear and thus simple to determine.
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Proposition

In any convex game v ∈ GN ,
gv (N) ≥ 0,

gv (N) ≥ gv (S), for all S ⊆ N.

Corollary

A convex game v ∈ GN is 1-convex, if and only if

gv (N) = gv (S), for all S ⊆ N, S 6= ∅.
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Consider the problem in which a risk is evaluated too much heavy for a single
insurance company, but it can be insured by the finite set N of companies that share
the risk and the premium.

By hypothesis it is assumed that

• every company i ∈ N evaluates an insurable risk X through a real-valued
nonnegative function Hi (X) such that Hi (0) = 0;

• for any nonempty set S ⊆ N of companies an optimal decomposition of the given
risk exists, and therefore,

min
X∈A(S)

∑
i∈S

Hi (Xi ) := P(S) is well-defined;

here A(S) = {X ∈ IRS |
∑

i∈S Xi = R} represents the (non-empty) set of feasible
decompositions of the risk R over companies in S.

The real-valued set function P(S) can be seen as the evaluation of the optimal
decomposition of the risk R by the companies in coalition S as a whole.

P is nonnegative and non-increasing, i.e., for all S⊆T ⊆N, S 6=∅, 0≤P(T )≤P(S).
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In case of constant quotas specified by a priori given quotas qi >0, i∈N,
∑

i∈N qi =1,
it is assumed that for each insurable risk R,
• for every insurance company i ∈ N,

Hi (R) = qi H
(R

qi

)
,

where H is a certain a priori fixed convex function,

• for any S⊆N, S 6=∅, there exists the optimal decomposition
(

qi
q(S)
R
)

i∈S
∈ IRS .

In this case the evaluation function P is simply given by

P(S) =
∑
i∈S

Hi

( qi

q(S)
R
)

= q(S)H
( R

q(S)

)
, for all S ⊆ N,S 6= ∅.

If insurance companies evaluate the risk R according to the variance principle

Hi (R) = E(R) + ai Var(R), ai > 0, for all i ∈ N,

(E(R) and Var(R) denote the expectation and variance of a random variable R)
then we are in case of a priori given quotas

qi =
a(N)

ai
, a(N) =

(∑
i∈N

1
ai

)−1

(cf. Deprez and Gerber (1985), Fragnelli and Marina (2004)).
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P is nonnegative and non-increasing, i.e., for all S⊆T ⊆N, S 6=∅, 0≤P(T )≤P(S).

For a given premium Π and an evaluation function P : 2N \ ∅ → IR, the associated
co-insurance game vΠ,P ∈ GN is defined in Fragnelli and Marina (2004) by

vΠ,P (S) =

{
max{0,Π− P(S)}, S ⊆ N,S 6= ∅,

0, S = ∅.

The co-insurance game vΠ,P is nonnegative and monotonic, i.e.,
0 ≤ vΠ,P (S) ≤ vΠ,P (T ), for all S ⊆ T ⊆ N.

Let the evaluation function P be fixed and consider the co-insurance game vΠ,P with
respect to the variable premium Π.
To avoid trivial situations we suppose Π > P(N).

The following results are already shown in Fragnelli and Marina (2004):
• If Π is small enough, Π ≤ maxi∈N P(N\{i}), then vΠ,P is balanced:

C(vΠ,P ) contains the efficient allocation ξ = {ξi}i∈N , where ξi∗ = vΠ,P (N),
i∗ = arg maxi∈N P(N\{i}), and ξi = 0, for all i 6= i∗.
• If Π > ᾱP =

∑
i∈N
[
P(N\{i})− P(N)

]
+ P(N), then C(vΠ,P ) = ∅.

• For all Π ≤ ᾱP , under the hypothesis of reduced concavity of function P:

P(S)− P(S ∪ {i}) ≥ P(N\{i})− P(N), for all i ∈ N\S, S & N, S 6= ∅,
C(vΠ,P ) 6= ∅.
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To ensure strictly positive worth vΠ,P (S) > 0 for every S ⊆ N, S 6= ∅, we assume that
Π ≥ αP = maxi∈N P({i}).

m
vΠ,P
i = vΠ,P (N)− vΠ,P (N\{i}) = P(N\{i})− P(N), for all i ∈ N,

gvΠ,P (S) =
∑
i∈S

m
vΠ,P
i −vΠ,P (S) =

∑
i∈S

[
P(N\{i})−P(N)

]
+P(S)−Π, ∀S ⊆ N, S 6= ∅.

We distinguish the two cases ᾱP ≥ αP and ᾱP < αP respectively.

Theorem

If ᾱP ≥ αP , then the following statements are equivalent:

(i) the evaluation function P meets 1-concavity condition

P(S)− P(N) ≥
∑

i∈N\S

[
P(N\{i})− P(N)

]
, for all S ⊆ N, S 6= ∅;

(ii) vᾱP ,P is balanced;

(iii) C(vᾱP ,P ) is a singleton and coincides with the marginal worth vector mvᾱP ,P ;

(iv) the co-insurance game vᾱP ,P is 1-convex.

Remark
The 1-concavity condition is weaker then the condition of reduced concavity used in
Fragnelli and Marina (2004).
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Theorem

If for some fixed premium Π∗ ≥ αP , the co-insurance game vΠ∗,P is 1-convex, then for
all variable premium αP ≤ Π ≤ Π∗, the corresponding co-insurance games vΠ,P are
1-convex as well.

As a corollary to both theorems above, we obtain

Theorem

If ᾱP ≥ αP and the evaluation function P is 1-concave, then for any premium
αP ≤ Π ≤ ᾱP ,

(i) the corresponding co-insurance game vΠ,P is 1-convex;

(ii) the core C(vΠ,P ) 6= ∅;
(iii) the nucleolus ν(vΠ,P ) is the barycenter of the core C(vΠ,P ) and is given by

νi ((vΠ,P )) = P(N\{i})− P(N) +
Π− ᾱP

n
, for all i ∈ N.

Remark
The statement of the last theorem remains in force if the 1-concavity condition for the
evaluation function P is replaced by any one of the equivalent conditions given by the
first theorem, in particular if C(vᾱP ,P ) 6= ∅ or if the co-insurance game vᾱP ,P is
1-convex.
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If ᾱP < αP , then even if the co-insurance game vᾱP ,P is 1-convex, for the
co-insurance game vΠ,P with Π < ᾱP the 1-convexity may be lost because the
co-insurance worth of at least one coalition turns out to be at zero level.

Example

Let the evaluation function P for 3 insurance companies be
P({1})=5,P({2})=4,P({3})=3,P({12})=P({13})=P({23})=2,P({123})=1.
In this case, 4 = ᾱP < αP = 5.

• If the premium Π = 4, then the co-insurance game v4,P :
v4,P ({1})=v4,P ({2})=0, v4,P ({3})=1,
v4,P ({12})=v4,P ({13})=v4,P ({23})=2, v4,P ({123})=3,
is a 1-convex game with the minimal for a 1-convex game gap gv4,P ({123})=0
=⇒ the unique core allocation mv4,P =(1, 1, 1).

• If the premium Π = 3, then the co-insurance game v3,P :
v3,P ({1})=v3,P ({2})=v3,P ({3})=0,
v3,P ({12})=v3,P ({13})=v3,P ({23})=1, v3,P ({123})=2,
is a symmetric
1-convex and convex, since the gap gv3,P (S)=1 is constant for all S ⊆ N, S 6= ∅,
C(v3,P ) is the triangle with three extreme points (1, 1, 0), (1, 0, 1), (0, 1, 1).

• However, for any 2 ≤ Π < 3, in the zero-normalized and symmetric vΠ,P :
vΠ,P (i)=0, vΠ,P (ij)=Π− 2, vΠ,P (123)=Π− 1,
1-convexity fails because the gap of singletons is strictly less than the gap of N:

gvΠ,P (i)=1 < 4− Π=gvΠ,P (123).
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is a symmetric
1-convex and convex, since the gap gv3,P (S)=1 is constant for all S ⊆ N, S 6= ∅,
C(v3,P ) is the triangle with three extreme points (1, 1, 0), (1, 0, 1), (0, 1, 1).

• However, for any 2 ≤ Π < 3, in the zero-normalized and symmetric vΠ,P :
vΠ,P (i)=0, vΠ,P (ij)=Π− 2, vΠ,P (123)=Π− 1,
1-convexity fails because the gap of singletons is strictly less than the gap of N:

gvΠ,P (i)=1 < 4− Π=gvΠ,P (123).
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Relation between co-insurance games and bankruptcy games

If for each insurance company i ∈ N there exists a fixed "claim" di ≥ 0 such that
P(S) =

∑
i∈N\S di , for all S ⊆ N, S 6= ∅, then the co-insurance game

vΠ,P (S) =

{
max{0,Π− P(S)}, S ⊆ N,S 6= ∅,

0, S = ∅.

reduces to the bankruptcy game (Aumann and Maschler, 1985)

vE ;d (S) =

{
max{0, E − d(N\S)}, S ⊆ N,S 6= ∅,

0, S = ∅,

with estate E = Π and vector of claims d = {di}i∈N .

The "bankruptcy" evaluation function P is nonnegative and non-increasing, P(N) = 0.
Moreover, ᾱP =

∑
i∈N di , αP =

∑
i∈N di −mini∈N di , and so, always αP ≤ ᾱP .

For the bankruptcy situation with the estate (premium) varying between
d(N)−mini∈N di and d(N), the last theorem expresses the fact that the nucleolus
provides equal losses to all creditors (insurance companies) with respect to their
individual claims, which agrees fully with the Talmud rule for bankruptcy situations
studied exhaustively in Aumann and Maschler (1985).
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Now we introduce an algorithm providing the comparatively easy computation of the
nucleolus of a co-insurance game not only in cases when it is a linear function of a
given premium as it is stated by the latter theorem. To do that,

1. we uncover the relation between the classes of co-insurance games, in
particular bankruptcy games, and of the so-called veto-removed games that are
the Davis-Maschler reduced games of monotonic veto-rich games obtained by
deleting a veto-player with respect to the nucleolus;

2. we provide an algorithm for computing the nucleolus of a veto-removed game.

A player i is a veto-player in the game v ∈ GN if v(S) = 0, for every S ⊆ N \ i . A game
v ∈ GN is a veto-rich game if it has at least one veto-player.

For a game v ∈ GN , a coalition S ⊆ N, S 6= ∅, and an efficient payoff vector x ∈ IRn,
the Davis-Maschler reduced game with respect to S and x is the game vS,x ∈ GS
defined in Devis and Maschler (1965) by

vS,x (T ) =


0, T = ∅,

v(N)− x(N\S), T = S,
maxQ⊆N\S

(
v(T ∪ Q)− x(Q)

)
, otherwise,

for all T ⊆ S.
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Denote a veto-player by 0 and let N0 := N ∪ {0}.
Gm

N0
is the class of monotonic veto-rich games with a player set N0

With any monotonic game v ∈GN we associate the monotonic veto-rich game v0∈Gm
N0

,

v0(S) =

{
0, S 63 0,

v(S\{0}), S 3 0, for all S ⊆ N0.

RN is the class of veto-removed games v ∈ GN that are the Davis-Maschler reduced
games of games v0 ∈ Gm

N0
obtained by deleting the veto-player 0 in accordance to the

nucleolus payoff.

As it follows from Arin and Feltkamp (1997)

• All veto-removed games are balanced since every monotonic veto-rich game is
balanced and the Davis-Maschler reduced game inherits the core property.

• the nucleolus payoff to a veto-player ν0(v0) > 0 in every v0 ∈ Gm
N0

, since the
nucleolus gives maximal payoff to a veto-player and because the worth of the
grand coalition in any nontrivial monotonic game is strictly positive.
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Theorem

(i) Every game v ∈RN can be presented as a co-insurance game vΠ,P ∈GN ;

(ii) if vΠ∗,P ∈ RN , then for all premium Π ≤ Π∗, vΠ,P ∈ RN as well;
(iii) for every evaluation functionP : 2N\{∅}→ IR, for every premium Π,

Π ≤ Π∗P = P(N) +
n2

n + 1
min
S$N
S 6=∅

P(S)− P(N)

n − s + 1
,

the co-insurance game vΠ,P ∈RN .

The above estimation of Π∗P is rather rough.

In the particular bankruptcy case it guarantees vE ;d ∈RN only if E≤
n2

2(n + 1)
min
i∈N

di .

We may impose weaker conditions on the parameters of vE ;d to guarantee vE ;d ∈ RN .

Theorem

For any estate E ∈ IR+ and any vector of claims d ∈ IRn
+ such that

E ≤
∑n

i=1 di

2
,

the corresponding bankruptcy game vE ;d ∈ RN .
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For any game w ∈ GM , for every S $ M we define a number

κw (S) =


w(M)−w(S)

m−s+1 , S 6= ∅,
w(M)

m , S = ∅.

Algorithm 1 of constructing a payoff vector, say x ∈ IRN, in a veto-removed game v ∈RN :
0. Set M = N and w = v .
1. Find a coalition S $ M with minimal size such that κw (S) = min

T$M
κw (T ).

2. For i ∈ M\S, set xi = κw (S). If S = ∅, then stop, otherwise go to Step 3.
3. Construct the Davis-Maschler reduced game wS,x ∈ GS . Set M = S and

w = wS,x and return to Step 1.

Theorem

For any veto-removed game v ∈ RN , Algorithm 1 yields the nucleolus payoff x = ν(v).

The proof is by the comparison of outputs of two algorithms yielding nucleoli,
Algorithm 1 applied to a veto-removed game v ∈ RN and another Algorithm 2 applied
to the associated monotonic veto-rich game v0 ∈ Gm

N0
. It is based on the

Davis-Maschler consistency of the prenucleolus (Sobolev, 1975) and the coincidence of
the nucleolus and the prenucleolus because of the balancedness of all games in Gm

N0
.

Remark
For application of Algorithm 1 to v ∈ RN there is no need in construction of v0 ∈ Gm

N0
.
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G+
N0

is the class of nonnegative veto-rich games with a player set N0, a veto-player 0,

that satisfies the property v0(N0) ≥ v0(S), for all S ⊆ N0.

Algorithm 2 of constructing a payoff vector, say y ∈ IRN0 , of a game v0 ∈ G+
N0

:

0. Set M = N0 and w = v0.

1. Find a coalition S0 $ M with minimal size such that κw (S0) = min
T0$M

κw (T0).

2. For i ∈ M\S0, set yi = κw (S0). If S0 = {0}, set y0 = v0(N0)−
∑
i∈N

yi and stop,

otherwise go to Step 3.

3. Construct the Davis-Maschler reduced game wS0,y ∈ GS0
. Set M = S0 and

w = wS0,y and return to Step 1.

Theorem

For any veto-rich game v0 ∈ G+
N0

, Algorithm 2 yields the nucleolus payoff y = ν(v0).

Algorithm 2 is closed conceptually to the algorithm for computing the nucleolus for
veto-rich games suggested in Arin and Feltkamp (1997).

Since Gm
N0
⊂ G+

N0
, Algorithm 2 is applicable to any game v0 ∈ Gm

N0
as well.
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Algorithm 2 of constructing a payoff vector, say y ∈ IRN0 , of a game v0 ∈ G+
N0

:

0. Set M = N0 and w = v0.

1. Find a coalition S0 $ M with minimal size such that κw (S0) = min
T0$M

κw (T0).

2. For i ∈ M\S0, set yi = κw (S0). If S0 = {0}, set y0 = v0(N0)−
∑
i∈N

yi and stop,

otherwise go to Step 3.

3. Construct the Davis-Maschler reduced game wS0,y ∈ GS0
. Set M = S0 and

w = wS0,y and return to Step 1.

The main idea of Algorithm 2 is based on the corollary to the Kohlberg’s (1971)
characterization of the prenucleolus stating that the collection of coalitions with
maximal excess values with respect to the nucleolus is balanced1. Whence it follows

• among coalitions with the maximal excess there exists S0 $ N0.

• every singleton {i}, i /∈ S0, also has the maximal excess,

and we show that this maximal excess is equal to −κv0 (S0) = − min
T0$M

κv0 (T0).

1A set of coalitions B ⊂ 2N\{N} is a set of balanced coalitions, if positive numbers λS , S ∈ B, exist such that∑
S∈B : S3i

λS = 1, for all i ∈ N.
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Concluding remarks

• A co-insurance game appears to be a very natural extension of the well-known
bankruptcy game.

• The study of 1-convex/1-concave TU games possessing a nonempty core and for
which the nucleolus is linear was initiated by Driessen and Tijs (1983) and
Driessen (1985), but until recently appealing abstract and practical examples of
these classes of games were missing. The first practical example of a 1-concave
game, the so-called library cost game, and the 1-concave complementary
unanimity basis for the entire space of TU games were introduced in Driessen,
Khmelnitskaya, and Sales (2005). A co-insurance game under some conditions
provides a new practical example of a 1-convex game. Moreover, in this paper we
also show that a bankruptcy game is not only convex but 1-convex as well when
the estate is sufficiently large comparatively to the given claims.

• The interest to the class of co-insurance games is not only because they reflect
the well defined actual economic situations but also it is determined by the fact
that every monotonic TU game may be represented in the form of a co-insurance
game:

P(S) = v(N)− v(S), ∀S ⊆ N & Π = v(N).

This allows to glance into the nature of a monotonic game from another angle.
In particular, the results of this paper are applicable to any monotonic game.
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Thank You!
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