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The Problem

What a rare disease is.

In Europe a disease is considered rare if it affects no more than 5
individuals out of 10,000 people.

There exist in between 6,000 and 8,000 rare diseases which may affect
30 million of European Union citizens.

Medical products for prevention, diagnosis or treatment of this kind of
disorders are called orphan drugs.

Research and development (R&D) of such drugs can have great costs.

Incentives to production.

In 2000 in Europe, the Regulation on Orphan Medicinal Products
(following the Orphan Drug Act of 1983 in the United States) provided
fee reductions and 10 years monopoly on the production of an orphan
drug.

Our question.

How to enhance the research on rare diseases?
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A Possible Solution: Coordination

The R&D assignment problem.

A set of companies allow a decision-maker to coordinate their R&D
processes on a set of diseases (common and rare).

Formally, the setting is given by:

a set F = {f1, . . . , fn} of n companies;

a set D = {d1, . . . , dm} of m diseases;

the maximum budget bi of the firm i, i = 1, . . . , n;

the cost kj and the profit gj of the R&D on disease j,
j = 1, . . . ,m;

a preference profile �i for company i, i = 1, . . . , n, on the set of
diseases;

a preference profile Aj for disease j, j = 1, . . . ,m, on the set of
companies.
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The Multiple Knapsack Problem (MKP)

Integer linear programming problem introduced by Martello and
Toth (1980).

Given a set of objects and a set of knapsack, it consists in
assigning the objects to the knapsacks (an object to only one
knapsack) without violating capacity constraints and maximizing
the total value of the selected items.

We consider the MTM algorithm (Martello and Toth, 1980) to
solve the problem.
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The Multiple Knapsack Problem (MKP)

Given a set M = {1, . . . ,m} of items and a set N = {1, . . . , n} of
knapsacks, with n ≤ m, let be

pj the value of item j ∈M ;

wj the weight of item j ∈M ;

ai the capacity of knapsack i ∈ N .

Let us assume:

(1) wj , pj , and ai are positive integer numbers;

(2) wj ≤ maxi∈N{ai}, j ∈M ;

(3) ai ≥ minj∈M{wj}, i ∈ N ;

(4)
∑m

j=1 wj > ai, i ∈ N .
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The Multiple Knapsack Problem (MKP)

The 0-1 multiple knapsack problem (MKP) [6] consists in assigning the
objects to the knapsacks (an object to only one knapsack) without
violating capacity constraints and maximizing the total value of the
selected items. Formally,

maximize z =
∑n

i=1

∑m
j=1 pjxij

subject to
∑m

j=1 wjxij ≤ ai∑n
i=1 xij ≤ 1

xij ∈ {0, 1} i ∈ N, j ∈M

where

xij =

{
1 if item j is assigned to knapsack i

0 otherwise
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The College Admission Problem (CAP)

Matching problem introduced by Gale and Shapley (1962).

Given a set of colleges and a set of students, it consists in
matching students to colleges taking into account their preferences
to each other and without exceeding the quota of students each
college can admit.

We consider the algorithm proposed by Gale and Shapley (1962)
to solve the problem.
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The College Admission Problem (CAP)

Given C the set of colleges and S the set of students, a matching µ is a
function from the set C ∪ S into the set of unordered families of
elements of C ∪ S such that

1 |µ(s)| = 1 for every s ∈ S and µ(s) = s if µ(s) /∈ C;

2 |µ(c)| = qc for every c ∈ C and if |µ(c) ∩ S| = r < qc then µ(c)
contains qc − r copies of c;

3 µ(s) = c if and only if s is in µ(c).

An assignment of applicants to colleges is called stable if it does not
occur that there are two applicants s and t who are assigned to colleges
A and B, respectively, although t prefers A to B and A prefers t to s.

A stable assignment is called optimal if every applicant is at least as
well off under it as under any other stable assignment.
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R&D Models

The MKP Model.

Knapsacks are the firms: N = F

Capacities are their budgets: a = b

Objects are the diseases: M = D

Values are their profits: p = g

Weights are their costs: w = k

In this model, preferences are fixed: firms are only interested in
monetary profits, diseases in being studied.

The CAP Model.

Colleges are the firms: C = F

Students are the diseases: S = D

Objective parameters (budgets, profits and costs) are not explicitely
taken into account.
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Toy-Model

Basing on realistic data (see DiMasi et al. 2003, Gites et al. 2010,
Grabowski 2005, Love 2003), we built the following model:

n = 2 companies, fI and fII and m = 6 diseases, d1, . . . , d6, among
which d1 to d4 are common, d5 and d6 are rare;

the budgets of the companies are b = (1650, 2900);

the costs kj and the profits gj of the diseases are:

k = ( 950 1050 950 900 450 650 )

g = ( 55000 80000 10000 40000 300 800 )

the preference profiles for the firms and the ones for the diseases
are:

fI : d2 �I d1 �I d4 fII : d2 �II d1 �II d4 �II d6 �II d3 �II d5

d1 : fII A1 fI d4 : fII A4 fI

d2 : fI A2 fII d5 : fI A5 fII

d3 : fII d6 : fII A6 fI

Without coordination: f1 ←→ d2, fII ←→ d2, d1, d4
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The MKP Solution

Branching Tree.

l
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x =

(
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1 0 1 1 0 0

)
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MKP solution.

fI ←→ d1, d6

fII ←→ d2, d3, d4
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The CAP Solution

Gale-Shapley Algorithm.

1 d2 and d5 “visit” fI , which could accept both of them but is not
interested in d5, then it chooses to accept only d2;
d1, d3, d4 and d6 “visit” fII , which could accept no more than 3 of them
and accepts d1, d4 and d6 according to its preferences.

At the end of the first step, the assignment is given by (0, 1, 0, 0, 0, 0) for
fI and (1, 0, 0, 1, 0, 1) for fII .

2 d3 “visits” fI , which could accept one more disease but is not interested
in d3, so it decides not to accept it;
d5 “visits” fII , which could accept no more diseases and decide not to
change its current assignment because it prefers it to any other
containing d5 (which is its less preferred disease).

At the end of the second step, the assignment is given by (0, 1, 0, 0, 0, 0)
for fI and (1, 0, 0, 1, 0, 1) for fII and the algorithm stops (each
non-assigned disease has “visited” all the firms).

CAP solution.

fI ←→ d2

fII ←→ d1, d4, d6
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Solutions to the Toy-Model

Solutions.

Without coordination: fI ←→ d2 fII ←→ d2, d1, d4

MKP solution: fI ←→ d1, d6 fII ←→ d2, d3, d4

CAP solution: fI ←→ d2 fII ←→ d1, d4, d6

Discussion.

Both the MKP and CAP solutions are more efficient.

In particular, the MKP solution is the most efficient one, but gives
“too much power” to the decision maker.

The CAP solution “suffers” from the constraint given by the
preferences and can provide non-feasible solutions.

Both the solutions allows recovering one of the two rare diseases
(d6).

S. Gagliardo (UNIGE) Enhancing Rare Diseases Alessandria - 16/01/2012 13 / 15



Enhancing
Rare

Diseases

S. Gagliardo

Concluding Remarks

A greedy variation of CAP based on marriage problems has been
implemented to recover the objective parameters.

MKP is rooted in the idea of efficiency, but does not take into
account preferences.

CAP is strongly oriented into preferences, but can be inefficient.

The greedy variation is in the middle, but also suffers from
inefficiency.

A collaboration with Ospedale Giannina Gaslini of Genova has
recently started.
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