PROVA SCRITTA DI TEORIA DEI GIOCHI A DEL 14/02/2006

1. Si consideri il seguente problema di equa divisione di quattro oggetti A, B, C e D tra tre giocatori I, II e III; le valutazioni dei giocatori sono espresse dalla seguente tabella:

	I	II	III
\overline{A}	6	5	3
B	8	9	4
C	2	6	9
D	2	7	8

- a. Determinare la divisione generata dalla procedura di Knaster.
- b. Verificare che la divisione ottenuta è proporzionale.
- c. Determinare se la divisione ottenuta è priva di invidia.

TEMPO SUGGERITO 25m

- 2. Si consideri il seguente gioco a tre giocatori a informazione imperfetta rappresentato in forma estesa:
 - I sceglie tra due alternative A e B;
 - \bullet successivamente II sceglie tra due alternative C e D, senza sapere la scelta di I;
 - \bullet successivamente III sceglie tra due alternative E e F, senza sapere la scelta di I.
 - a. Determinare la rappresentazione ad albero del gioco precedente.
 - b. Determinare la rappresentazione ad albero del gioco con la seguente variante: successivamente III sceglie tra due alternative E e F, senza sapere la scelta di II, ma conoscendo la scelta di I.

TEMPO SUGGERITO 20m

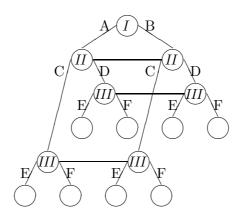
3. Si consideri una situazione di congestione, in cui gli utenti possono scegliere tra due strade alternative A e B, il cui tempo di percorrenza è espresso dalle seguenti funzioni di traffico:

$$t_A(n) = 8 + 2n$$

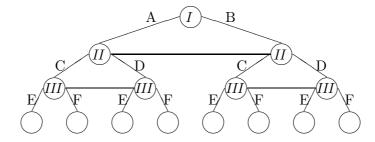
$$t_B(n) = 1 + 7n$$

dove n è il numero di utenti che percorre ciascuna strada.

- a. Rappresentare il gioco in forma strategica nel caso in cui vi siano due utenti.
- b. Rappresentare il gioco in forma strategica nel caso in cui vi siano tre utenti.
- c. Determinare gli eventuali equilibri di Nash in strategie pure dei due giochi precedenti.


TEMPO SUGGERITO 20m

SOLUZIONI DELLA PROVA SCRITTA DEL 14/02/2006


1. a. Applicando la procedura di Knaster si ha:

	I	II	III
A	6	5	3
B	8	9	4
C	2	6	9
D	2	7	8
totali	18	27	24
as segnazioni	A	B	C, D
V(ii)	6	9	17
E(i)	6	9	8
Differenze	0	0	9
s/n	3	3	3
V(i)	9	12	11
compensazioni	3	3	-6

- b. I ottiene 50.00%, II ottiene 44.44% e III ottiene 45.83%.
- c. I ritiene di aver ottenuto 9 ma valuta che II ha ottenuto 11, quindi lo invidia, per cui la divisione non è priva di invidia.
- 2. a.

b.

3. a. La forma strategica è la seguente:

I/II	A	B
A	12, 12	<u>10, 8</u>
B	<u>8, 10</u>	15, 15

b. La forma strategica è la seguente:

III = A		
I/II	A	B
A	14, 14, 14	<u>12, 8, 12</u>
B	8, 12, 12	$15, 15, \underline{10}$

III = B			
I/II	A	B	
A	<u>12, 12, 8</u>	10, 15, 15	
B	$15, \underline{10}, 15$	22, 22, 22	

c. Le migliori risposte (sottolineate) evidenziano nel caso a. due equilibri di Nash corrispondenti ai profili di strategie (A,B) e (B,A); nel caso b. ci sono tre equilibri di Nash corrispondenti ai profili di strategie (A,A,B), (A,B,A) e (B,A,A).

ERRORI FREQUENTI