Prova scritta di Teoria dei Giochi A

6 Aprile 2009

1. Si consideri il problema di programmazione lineare a variabili intere:

$$\begin{array}{ll} max & z = 3x_1 + x_2 - x_3 \\ s.t. & 2x_1 + x_2 + 2x_3 \leq 5 \\ & 4x_1 + 2x_2 + x_3 \leq 11 \\ & x_1, x_2, x_3 \geq 0; x_1, x_2, x_3 \ intere \end{array}$$

Risolvere il problema con l'algoritmo di Gomory, scegliendo la variabile uscente più in alto e la variabile entrante più a sinistra; si generino i tagli di Gomory a partire dalla riga più in alto e si risolva il problema di volta in volta ottenuto con l'algoritmo duale del simplesso.

TEMPO SUGGERITO 30m PUNTEGGIO 18

2. Si consideri il progetto rappresentato dal seguente schema:

$Attivit\`a$				D			
Durata	3	5	7	6 <i>E</i>	5	2	3
Precedenze	B	C	E	E	G		
	D		F	F			
				G			

- a. Determinare il modello CPM di Roy.
- b. Determinare la durata minima di progetto.
- c. Determinare le attività critiche.

TEMPO SUGGERITO 20m PUNTEGGIO 12

SOLUZIONI DELLA PROVA SCRITTA DEL 06/04/09

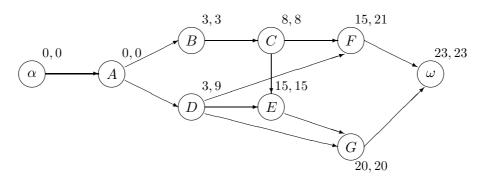
1. I coefficienti dei vincoli sono interi e il problema è in forma canonica, quindi applicando l'algoritmo richiesto si ha:

La soluzione ottimale $x^* = (\frac{5}{2}, 0, 0), z^* = \frac{15}{2}$ non è intera. Quindi a partire dalla riga di x_1 si genera il vincolo $u_3 \ge 0$:

		x_2					x_1	u_3	x_3	
x_1	$-\frac{1}{2}$					x_1	0		-1	
u_2	2	0	3	1	\longrightarrow	u_2	2	0	3	1
u_3	$\frac{1}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$		x_2	1	$\frac{1}{2}$	0	1
\overline{z}	$-\frac{3}{2}$	$-\frac{1}{2}$	-4	$\frac{15}{2}$		z	-1	-1	-4	7

La soluzione $x^* = (2, 1, 0), z^* = 7$ è ottimale e intera.

2. a. Determinare il modello CPM di Roy.



- b. La durata minima dl progetto è 23.
- c. Le attività critiche sono A, B, C, E, G.