Prova parziale di Matematica Finanziaria A		17/05/11
Cognome:	Nome:	Matricola:

SVILUPPARE I CALCOLI ALLA SECONDA CIFRA DECIMALE

Esercizio 1

Si consideri un'economia di puro scambio con tre agenti, $\mathcal{A}, \mathcal{B}, \mathcal{C}$ le cui dotazioni iniziali sono $a_1, a_2; b; c$. Le preferenze degli agenti sui 4 oggetti sono rappresentate nella seguente tabella (strettamente decrescenti da sinistra a destra):

- a. Determinare le ridistribuzioni che tutti gli agenti preferiscono debolmente ed almeno uno strettamente.
- b. Determinare le ridistribuzioni che nessun sottoinsieme di agenti può migliorare strettamente per ogni agente.

TEMPO SUGGERITO 25m PUNTEGGIO 17

Prova parziale di Matematica Finanziaria A		17/05/11
Cognome:	Nome:	Matricola:

SVILUPPARE I CALCOLI ALLA SECONDA CIFRA DECIMALE

Esercizio 2

Si consideri un problema di allocazione di costi con quattro agenti 1, 2, 3 e 4. La funzione di costo è data da:

Determinare le soluzioni ECA, ACA, CGA.

TEMPO SUGGERITO 15m PUNTEGGIO 13

SOLUZIONI DELLA PROVA PARZIALE DEL 17/05/11

Esercizio 1

a. Non avendo valutazioni quantitative, ogni agente deve avere (almeno) lo stesso numero di oggetti iniziale.

Osservando che l'agente \mathcal{A} non vuole a_2, b , l'agente \mathcal{B} non vuole a_1 e l'agente \mathcal{C} non vuole a_2 , si ha:

	\mathcal{A}	\mathcal{B}	\mathcal{C}
1	a_1, a_2	c	b
2	a_1, b	a_2	c
3	a_1, c	a_2	b
4	a_2, c	b	a_1
5	b, c	a_2	a_1

b. 1 - NO, può essere migliorata con lo scambio $a_2 \leftrightarrow c$; 2 - NO, $b \leftrightarrow c$; 3 - SI; 4 - NO, $a_2 \leftrightarrow b$; 5 - NO, $a_1 \leftrightarrow b$.

Esercizio 2

I costi separabili sono m = (2, 8, 5, 12); il costo non separabile è g(N) = 9; i risparmi sono r = (8, 1, 7, 3). I costi non separabili dei sottoinsiemi sono:

e quindi i gap sono g = (5, 1, 6, 2). Per cui:

$$ECA = (4.250, 10.250, 7.250, 14.250)$$

$$ACA = (5.789, 8.474, 8.316, 13.421)$$

$$CGA = (5.214, 8.643, 8.857, 13.286)$$