Prova scritta di Modelli A	23/02/12			
Cognome:	Nome:	Matricola:		

Esercizio 1

Si consideri il problema di programmazione lineare:

$$\begin{array}{ll} max & z = x_1 + 3x_2 \\ s.t. & x_1 \leq 1 \\ & x_2 \leq 2 \\ & x_1 + 2x_2 \leq 5 \\ & x_1, x_2 \geq 0 \end{array}$$

- a. Risolvere il problema con l'algoritmo del simplesso, scegliendo la variabile uscente più a sinistra e la variabile entrante più in alto.
- b. Dare una rappresentazione grafica accurata del problema dato.
- c. Scrivere la forma analitica del problema duale.
- d. Scrivere la soluzione ottimale del problema duale.

TEMPO SUGGERITO 25m PUNTEGGIO 20

Prova scritta di Modelli A	23/02/12			
Cognome:	Nome:	Matricola:		

Esercizio 2

Si consideri il problema di programmazione lineare a numeri interi:

$$max \quad z = x_1 - x_2 + 22x_3 + 12x_4$$
s.t.
$$x_1 + 2x_2 + 5x_3 + 3x_4 \le 6$$

$$x_1, x_2 \in \mathbb{N}$$

Risolverlo per ispezione con semplici considerazioni.

TEMPO SUGGERITO 15m PUNTEGGIO 10

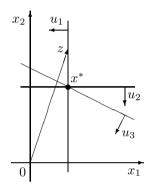
SOLUZIONI DELLA PROVA SCRITTA DEL 23/02/12

1. a. Il problema è in forma canonica, quindi la tabella iniziale è data da:

	x_1	x_2				u_1	x_2				u_1	u_2	
u_1	-1	0	1		x_1	-1	0	1		x_1	-1	0	1
u_2			2	\longrightarrow	u_2		-1	2	\longrightarrow	x_2	0	-1	2
u_3	-1	-2	5		u_3	1	-2	4		u_3	1	2	0
\overline{z}	1	3	0		z	-1	3	1		z	-1	-3	7

La tabella è ottimale e la soluzione è $x^* = (1, 2), z^* = 7$.

b.



c. Il problema duale è dato da:

$$min \quad w = u_1 + 2u_2 + 5u_3$$

 $s.t. \quad u_1 + u_3 \ge 1$
 $u_2 + 2u_3 \ge 3$
 $u_1, u_2 \ge 0$

d. Dalla tabella ottimale precedente si ricava $u^* = (1, 3, 0), w^* = 7.$

2. Osservando che x_2 consuma risorsa ma ha un profitto negativo si ottiene $x_2 = 0$. x_3 può assumere valore 0 o 1 e x_4 può assumere valore 0, 1 o 2, ma almeno una delle due deve essere nulla.

Le soluzioni candidate ottime sono allora:

$$x^{1} = (0, 0, 0, 2) \text{ con } z(x^{1}) = 24$$

 $x^{2} = (3, 0, 0, 1) \text{ con } z(x^{2}) = 15$
 $x^{3} = (1, 0, 1, 0) \text{ con } z(x^{3}) = 23$
 $x^{4} = (6, 0, 0, 0) \text{ con } z(x^{4}) = 6$

quindi la soluzione ottimale è x^1 .