

POLITECNICO DI MILANO

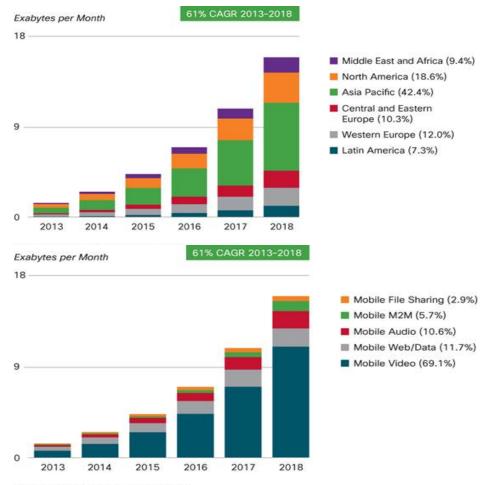
Advanced Network Technologies Laboratory

Competitive Spectrum Sharing in Cognitive Radio Networks

Summer School on Game Theory and Telecommunications Campione d'Italia, September 11th, 2014

Ilario Filippini

- Thanks to
 - Ilaria Malanchini (Bell Labs, Stuttgart, Germany)
 - Matteo Cesana (Politecnico di Milano, Italy)
 - Nicola Gatti (Politecnico di Milano, Italy)
 - Steven Weber (Drexel University, Philadelphia, USA)


- Introduction (very brief) to Cognitive Radio Networks
- Spectrum Selection Game
 - Properties
 - Practical Aspects
- Queue Theory and Game Theory at work
- Power Game

Motivation for Cognitive Radio

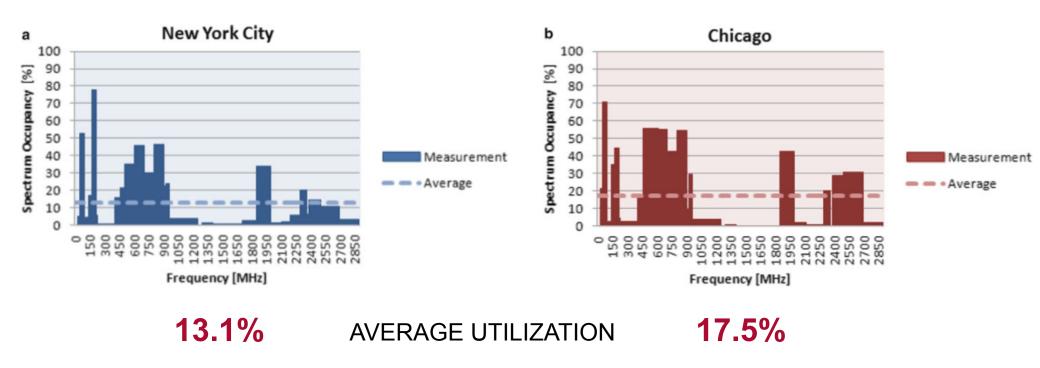
 Exponential mobile data traffic growth growth

 Fixed spectrum allocation by regulation authorities through auctions

Graduatoria CHIUSA	800_G [Blocchi generici in banda 800	MHz]	
Vincente n. 1	Vodafone Omnitel N.V.	[tornata n. 283]	496 200 000.00
Vincente n. 2	Vodafone Omnitel N.V.	[tornata n. 283]	496 200 000.00
Vincente n. 3	Telecom Italia S.p.A.	[tornata n. 283]	496 100 000.00
Vincente n. 4	Telecom Italia S.p.A.	[tornata n. 284]	496 100 000.00
Vincente n. 5	Wind Telecomunicazioni S.p.A.	[tornata n. 282]	496 000 000.00
TOTALE			2 480 600 000.00

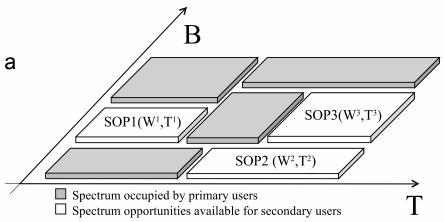
Graduatoria CHIUSA	1800_G [Blocchi generici in banda 1800 MHz]						
Vincente n. 1	Vodafone Omnitel N.V.	[tornata n. 435]	159 100 000.00				
Vincente n. 2	Telecom Italia S.p.A.	[tornata n. 434]	159 000 000.00				
Vincente n. 3	H3G S.p.A.	[tornata n. 415]	158 900 000.00				
TOTALE			477 000 000.00				

Graduatoria CHIUSA	2600_G [Blocchi FDD generici in banda	2600 MHz]	
Vincente n. 1	Telecom Italia S.p.A.	[tornata n. 456]	36 400 000.00
Vincente n. 2	H3G S.p.A.	[tornata n. 459]	36 400 000.00
Vincente n. 3	Telecom Italia S.p.A.	[tornata n. 460]	36 400 000.00
Vincente n. 4	Wind Telecomunicazioni S.p.A.	[tornata n. 456]	36 360 000.00
Vincente n. 5	Telecom Italia S.p.A.	[tornata n. 451]	36 320 000.00
Vincente n. 6	Vodafone Omnitel N.V.	[tornata n. 447]	36 060 000.00
Vincente n. 7	Vodafone Omnitel N.V.	[tornata n. 447]	36 060 000.00
Vincente n. 8	Vodafone Omnitel N.V.	[tornata n. 447]	36 060 000.00
Vincente n. 9	H3G S.p.A.	[tornata n. 459]	36 040 000.00
Vincente n. 10	Wind Telecomunicazioni S.p.A.	[tornata n. 445]	36 020 000.00
Vincente n. 11	Wind Telecomunicazioni S.p.A.	[tornata n. 445]	36 020 000.00
TOTALE			398 140 000.00


Figures in parentheses refer to traffic share in 2018. Source: Cisco VNI Mobile, 2014

September 11th, 2014

- 15%-85% of the spectrum is underutilized
- 3-day campaign in New York and Chicago in 2002 and 2005:



Cognitive Radio Networks: from Theory to Practice, Springer

- Problem Licensed frequency assignment → Underutilized spectrum portions both in time and in space.
- Solution Access spectrum "holes" in a non-intrusive manner → No interference to licensed users.
- How to do that Cognitive cycle:
 - Detect unused spectrum portions, a.k.a.
 Spectrum Opportunities, SOPs (Spectrum sensing)
 - Characterize unused portions and assign a perceived quality (Spectrum decision)
 - Select best available SOP while coordinating with other secondary users (Spectrum sharing)
 - Handover towards other SOPs when current unavailable or better one shows up (Spectrum mobility)

- External
 - Geo-location and spectrum databases
- Independent
 - Energy detector
 - Waveform-based (pattern matching)
 - Cyclostationarity-based (autocorrelation)
 - Radio identification
 - Matched-filtering
- Cooperative
 - Sharing of sensing information

• Regulated scenario

- Spectrum broker with full knowledge of the spectrum context
 - Occupation, load, bandwidth
- Orchestrate spectrum assignment to maximize average quality perceived by SUs
- Unregulated scenario
 - Completely distributed process, competition among SUs
 - Optimizing their own experienced quality according to information on spectrum status

Regulated scenario

CODt

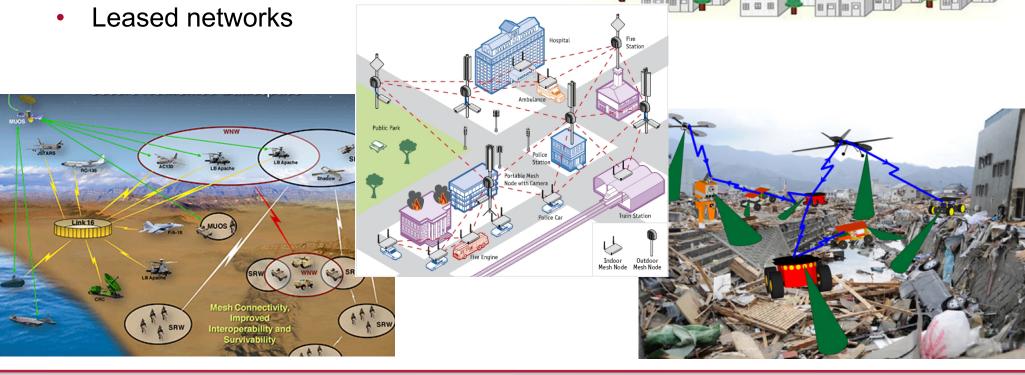
- Spectrum broker with full knowledge of the spectrum

Pay attention when using Game Theory! Don't introduce competition in scenarios where single-minded approaches are the norm.

Unregulated scenario

average quam

- Completely distributed process, competition SUs
- Optimizing their own experienced quality ac information on spectrum status


CRN applications

Internet

Node

- Cognitive mesh networks for last-mile Internet
- Public safety networks
- Disaster relief and emergency • networks
- Battlefield military networks •

September 11th, 2014

GTAT Summer School

Spectrum Selection Game

- Spectrum is divided in sub-bands: Spectrum OPportunities (SOPs)
- Secondary users (SUs) can occupy SOPs only if they are vacant, i.e., no primary user (PU) is using the SOP
- SUs tuned on the same SOP interfere each other if closer than interference range
- We define:
 - SU set N: set of secondary users

- p SOP free q
- SOP set **B**: set of available spectrum opportunities

- SSG:
 - Player set N : set of (secondary) users
 - Strategy sets B_i : set of available SOPs for user i
 - Cost functions $c_i : c_i(s, n_{s,i})$
 - *s* in *B*_i
 - $n_{s,i}$: users that interfere with *i* using SOP *s*
 - c_i is monotonically increasing in $n_{s,i}$

$$SSG = \left\langle N, \left\{ B_i \right\}_{i \in \mathbb{N}}, \left\{ C_i \left(s, n_{s,i} \right) \right\}_{i \in \mathbb{N}, s \in B_i} \right\rangle$$

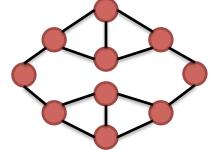
- Snapshot of spectrum status
- User *i* plays:

$$s^* = \operatorname*{argmin}_{s \in B_i} c_i(s, n_{s,i})$$

- SSG is a congestion game, specifically a crowding game
 - single-choice: only one SOP per SU
 - player-specific cost function: each SU can have different cost function
 - non-weighted: SUs congest resources with the same weight
- Theoretical result¹:
 - It admits at least one pure-strategy Nash Equilibrium for any cost function that is increasing in the level of congestion

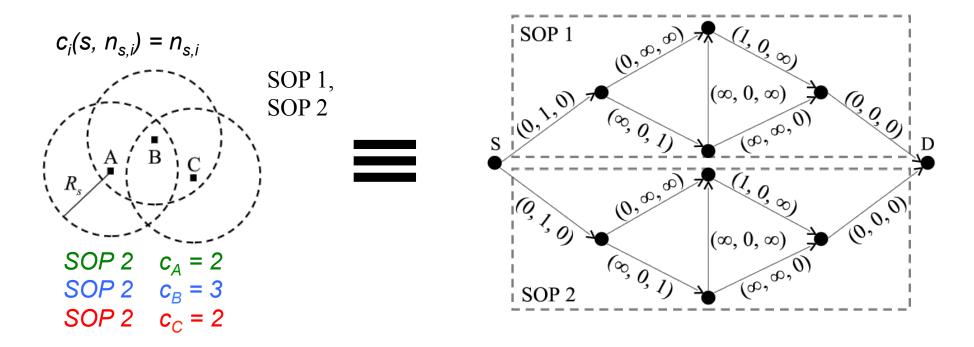
¹I. Milchtaich, "Congestion games with player-specific payoff functions," *Games and Economic Behavior*, vol. 13, no. 1, pp. 111–124, 1996.

- SSG is equivalent to a non-weighted singlechoice Crowding Game (CG)
- Subtle point
 - CG: $c_i(s,n_s)$, n_s number of players that choose resource s
 - SSG: $c_i(s, n_{s,i})$, different players can perceive different congestion levels $n_{s,i}$ due to interference range

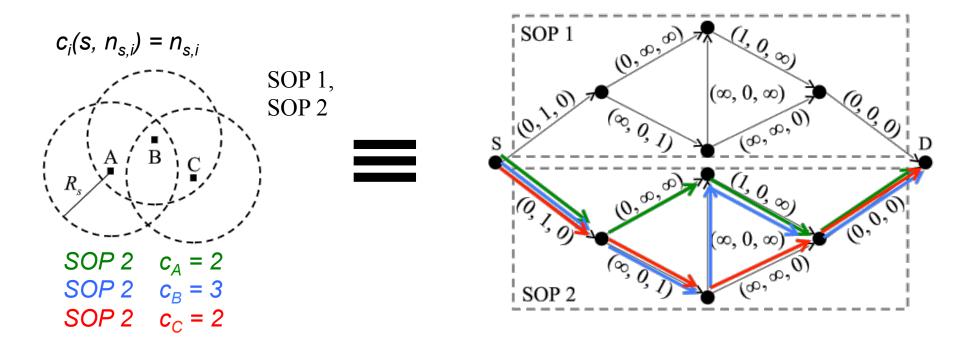

$$\begin{array}{c} \text{everyboc} \\ n_{s,A} = 2 \\ n_{s,B} = 3 \\ n_{s,C} = 2 \end{array}$$

everybody selects the same SOP s

- Players select path from a source to a destination
- Edges are resources and players' costs are the sum of the costs of the chosen resources
 - Multiple-choice congestion game



- We use linear player-specific cost function
 - $c_i(s,n_s) = a_{i,s}n_s$
- However, by opportunistically setting a_{i,s}
 - Each player makes *essentially* one choice
 - Essentially → there is a dominant choice independently of the other players in all but one node


- Edge weights are player specific parameters $(a_{A,s}, a_{B,s}, a_{C,s})$
- Only at source we have a non-trivial choice for every player
- Aim is to construct an equivalent game that produces the same costs of the original game.

- Edge weights are player specific parameters $(a_{A,s}, a_{B,s}, a_{C,s})$
- Only at source we have a non-trivial choice for every player
- Aim is to construct an equivalent game that produces the same costs of the original game.

- Cost function
 - How to translate SOP quality in costs?
 - Engineering

- Characterization of Equilibria
 - Find Equilibria
 - Investigate about Price of Stability and Price of

Anarchy

Mathematics

Parameters

- SOP Bandwidth: Total bit/s
- SOP Holding Time: the longer the less SU has to switch
- SOP Congestion: number of interfering users
- We define
 - $-W_{s,i}$ proportional to inverse of the Bandwidth
 - $-T_{s,i}$ proportional to inverse of the Holding Time
- Three cost functions
 - **1)** Simple: $c_i(s, n_{s,i}) = n_{s,i}$
 - **2)** Additive: $c_i(s, n_{s,i}) = \lambda_i n_{s,i} W_{s,i} + (1 \lambda_i) T_{s,i}$
 - **3)** Multiplicative: $c_i(s, n_{s,i}) = n_{s,i}W_{s,i}T_{s,i}$

- Parameters
 - SOP Bandwidth: Total bit/s

Pay attention to the objective of your cost function!!!

Have clear in mind the behavior of a rationale player!

- We denne
 - $-W_{s,i}$ proportional to inverse of the Bandwidth
 - $-T_{s,i}$ proportional to inverse of the Holding Tim
- Three cost functions
 - **1)** Simple: $c_i(s, n_{s,i}) = n_{s,i}$
 - **2)** Additive: $c_i(s, n_{s,i}) = \lambda_i n_{s,i} W_{s,i} + (1 \lambda_i) T_{s,i}$
 - **3)** Multiplicative: $c_i(s, n_{s,i}) = n_{s,i}W_{s,i}T_{s,i}$

- Several alternative ways
 - Representing the game with a table
 - Drawing best response curves
 - Play the game
 - f.i., best response dynamics, if the game admits Finite Improvement Property with best response
 - Solving a set of equations
 - Using a Mathematical Programming Model

- Three main ingredients
 - Decision variables
 - SOP selected by each SU
 - Constraints
 - Each SU can choose a single SOP
 - Solution must be a Nash Equilibrium
 - Objective function
 - Define the quality of equilibrium
- This linear Integer Programming (IP) model can be solved with standard tools
 - AMPL/OPL modeling language
 - CPLEX/GUROBI solver engine

 $y_{i,k} \begin{bmatrix} 1 & \text{if SU } i \text{ selects SOP } k \\ 0 & \text{otherwise} \end{bmatrix}$

$$\min/\max\sum_{k\in B_i}y_{ik}c_i(k,n_{k,i})$$

such that

$$\begin{split} &\sum_{k \in B_i} y_{ik} = 1 \quad \forall i \in N \\ & y_{im} c_i \left(m, n_{m,i} \right) \leq c_i \left(k, n_{k,i} \right) \quad \forall i \in N, m, k \neq m \in B_i \\ & y_{i,m} \in \{0,1\} \quad \forall i \in N, m \in B_i \end{split}$$

MIN gives you the best NE MAX gives you the worst NE

- Solve the centralized problem optimally using previous IP model
 - MIN objective function
 - remove NE constraint
- Compare
 - Best NE against OPT: Price of Stability
 - Worst NE against OPT: Price of Anarchy

Spectrum Class			Low A	ctivity				Medi	um Activit	*		High Activity						
opecardin Ciass	Low C	Low Opportunity High Opportunity					Low (Opportunity	7 High	Opportur	iity	Low	v Opportu	inity	High Opportunity			
Spectrum band k	1	2	3	4	5	6	7	8 9	10	11	12	13	14	15	16	17	18	
p	0.2	0.2	0.2	0.2	0.2	0.2	0.5	0.5 0	5 0.5	0.5	0.5	0.8	0.8	0.8	0.8	0.8	0.8	
q	0.1	0.1	0.1	0.5	0.5	0.5	0.3	0.3 0	3 0.8	0.8	0.8	0.3	0.3	0.3	0.9	0.9	0.9	
Bandwidth [KHz]	250	100	70	250	100	70	250	100 7	0 250	100	70	250	100	70	250	100	70	
W^k	1	2.5	3.5	1	2.5	3.5	1	2.5 3.	5 1	2.5	3.5	1	2.5	3.5	1	2.5	3.5	
Holding Time [sec]	5	5	5	5	5	5	2	2 2	2	2	2	1.25	1.25	1.25	1.25	1.25	1.25	
T^k	1	1	1	1	1	1	2.5	2.5 2	5 2.5	2.5	2.5	4	4	4	4	4	4	
v is		AINEI	D ON A	UNIFO	RM TO	POLO			SECONDA		00	= 500) AND r	= 100 r		0		
v is		AINEI	D ON A	UNIFO	RM TO	POLO			SECONDA		00	= 500) AND r	ו 100 =		0		
y is _{Resu}	LTS OBT						GY WITH	n = 20	SECONDA (2)	ARY USEF	RS, L				METERS		(3)	
y is Resu			D ON A	UNIFO	RM TOP				SECONDA		RS, L	= 500) AND <i>r</i>	= 100 r 0.9)	(3)	
y is Results of Function \overline{x}_{i}^{k}	LTS OBT	λ				2	GY WITH	n = 20	SECONDA (2)	ARY USEF					METERS)	(3) 1.220	
y is Resu	LTS OBT	λ	. = 0	0.1	0.	2	OGY WITH	n = 20	SECONDA (2) 0.5	ARY USEF	es, L	.7	0.8	0.9	METERS)		
y is Result of t function \overline{x}_{i}^{k} Bandwidth [KHz]	LTS OBT (1) 1.000	λ 3	h = 0 3.250	0.1 1.220	0.	2 20 35	0.3 1.220	n = 20 0.4 1.220	(2) 0.5 1.220	0.6 1.030	es, L	.7)30)00	0.8 1.000	0.9	1.00 1.00	0	1.220	
y is Result of t is the function $\frac{\overline{x}_{i}^{k}}{W^{k}}$	LTS OBT (1) 1.000 2.186	λ 3 1 3 2	a = 0 3.250 1.008	0.1 1.220 1.135	0.1	2 20 35 5.50	0.3 1.220 1.135	n = 20 0.4 1.220 1.135	(2) 0.5 1.220 1.098	0.6 1.030 1.000	es, L	.7)30)00	0.8 1.000 1.000	0.9 1.000 1.000	1.00 1.00) 10 10 10 20 2	1.220 1.060	
y is Result of t function \overline{x}_{i}^{k} Bandwidth [KHz]	(1) 1.000 2.186 150.83 2.250	λ 3 1 3 2 4 1 5	a = 0 3.250 1.008 49.25	0.1 1.220 1.135 236.50	0.1 1,2 1,1 236	2 20 35 5.50 00 00	0.3 1.220 1.135 236.50	n = 20 0.4 1.220 1.135 236.50	(2) 0.5 1.220 1.098 240.25	0.6 1.030 1.000 250.00	0. 1.0 1.0 250 1.2 4.4	.7)30)00).00	0.8 1.000 1.000 250.00	0.9 1.000 1.000 250.00	1.00 1.00 250.0	0 00 00 2 5 0 4	1.220 1.060 244.00	

1.000 | 1.030 | 1.059 | 1.086 | 1.111 | 1.116 | 1.206 | 1.091 | 1.042 |

SPECTRUM OPPORTUNITIES FEATURES

September 11th, 2014

PoA

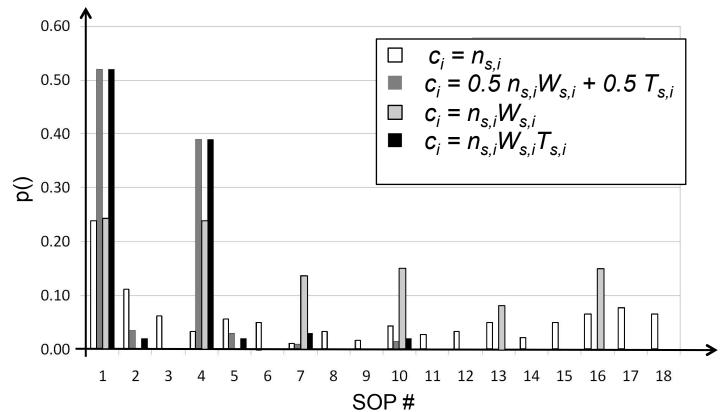
1.000

Anaro

rat effici

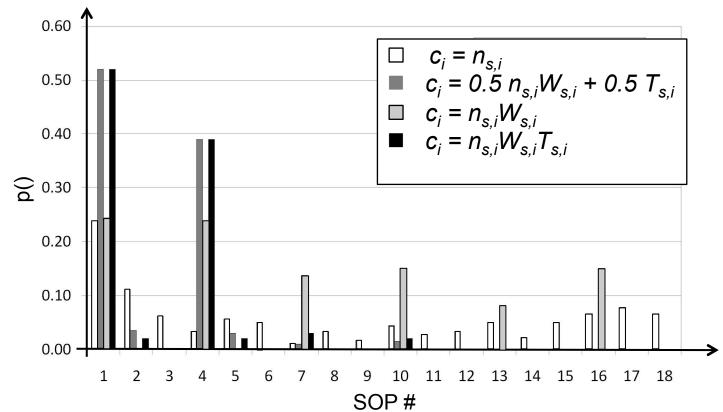
GTAT Summer School

1.092


1.022

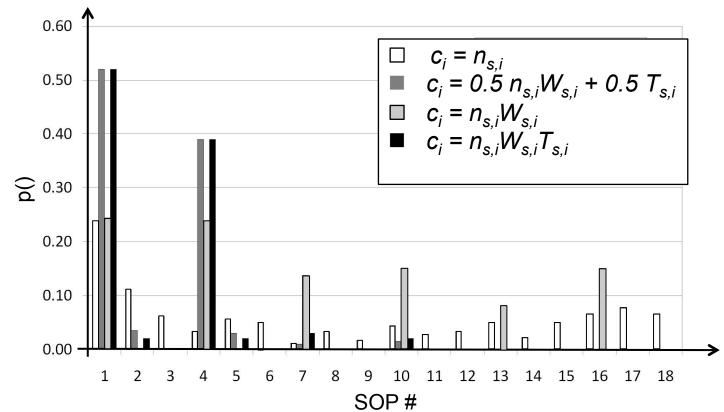
1.000

• Probability of a generic user to occupy a SOP


Spectrum Class		Low Activity						Ν	Aedium	Activity	y		High Activity						
spectrum class	Low	Opport	unity	High	Opport	unity	Low	Opport	unity	High	Opport	unity	Low	Opportu	unity	High	o Opport	unity	
Spectrum band k	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
p	0.2	0.2	0.2	0.2	0.2	0.2	0.5	0.5	0.5	0.5	0.5	0.5	0.8	0.8	0.8	0.8	0.8	0.8	
q	0.1	0.1	0.1	0.5	0.5	0.5	0.3	0.3	0.3	0.8	0.8	0.8	0.3	0.3	0.3	0.9	0.9	0.9	
Bandwidth [KHz]	250	100	70	250	100	70	250	100	70	250	100	70	250	100	70	250	100	70	
W^k	1	2.5	3.5	1	2.5	3.5	1	2.5	3.5	1	2.5	3.5	1	2.5	3.5	1	2.5	3.5	
Holding Time [sec]	5	5	5	5	5	5	2	2	2	2	2	2	1.25	1.25	1.25	1.25	1.25	1.25	
T^k	1	1	1	1	1	1	2.5	2.5	2.5	2.5	2.5	2.5	4	4	4	4	4	4	

September 11th, 2014

• Probability of a generic user to occupy a SOP

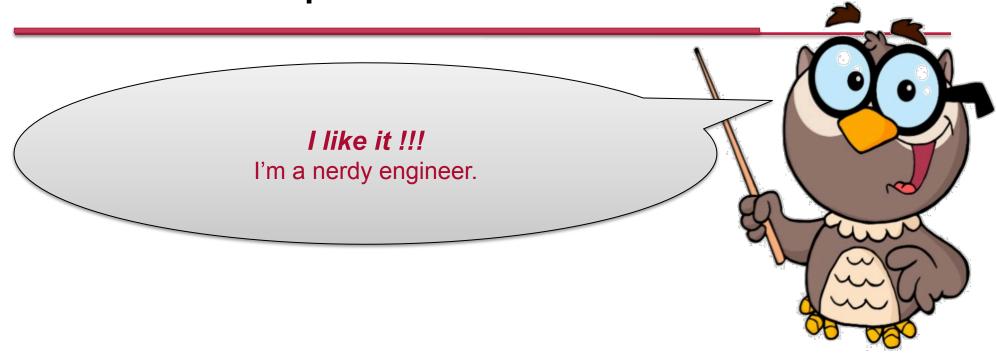

Spectrum Class		Low Activity						N	/ledium	Activity	/		High Activity						
Spectrum Class	Low	Opport	unity	High	Opport	unity	Low	Opport	unity	High	Opport	unity	Low	Opportu	unity	High	Opport	unity	
Spectrum band k	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
p	0.2	0.2	0.2	0.2	0.2	0.2	0.5	0.5	0.5	0.5	0.5	0.5	0.8	0.8	0.8	0.8	0.8	0.8	
q	0.1	0.1	0.1	0.5	0.5	0.5	0.3	0.3	0.3	0.8	0.8	0.8	0.3	0.3	0.3	0.9	0.9	0.9	
Bandwidth [KHz]	250	100	70	250	100	70	250	100	70	250	100	70	250	100	70	250	100	70	
W^k	(1)	2.5	3.5	(1)	2.5	3.5	(1)	2.5	3.5	(1)	2.5	3.5	(1)	2.5	3.5	(1)	2.5	3.5	
Holding Time [sec]	5	5	5	9	5	5	2	2	2	2	2	2	1.25	1.25	1.25	1.25	1.25	1.25	
T^k	1	1	1	1	1	1	2.5	2.5	2.5	2.5	2.5	2.5	4	4	4	4	4	4	

September 11th, 2014

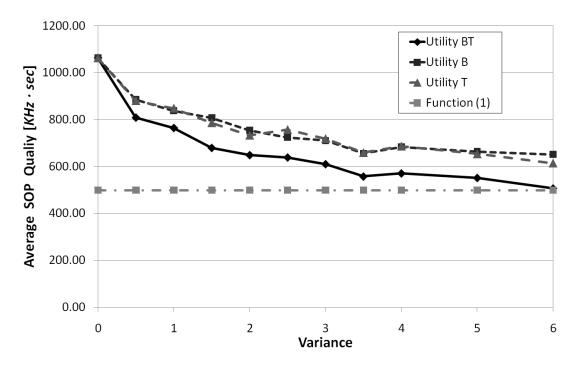
• Probability of a generic user to occupy a SOP

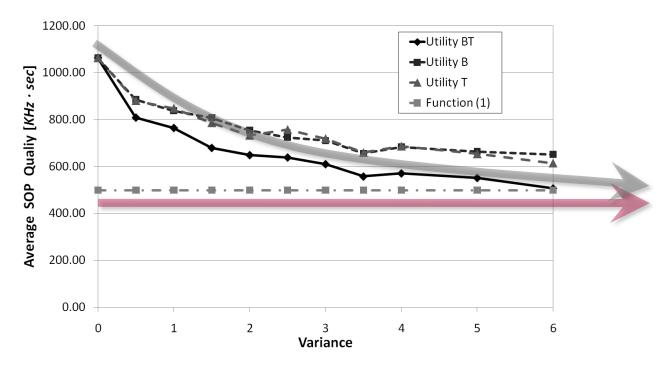
Spectrum Class		Low Activity						Ν	/ledium	Activity	y		High Activity						
Spectrum Class	Low	Opport	unity	High	Opport	unity	Low	Opport	unity	High	Opport	unity	Low	Opportu	unity	High	o Opport	unity	
Spectrum band k	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
p	0.2	0.2	0.2	0.2	0.2	0.2	0.5	0.5	0.5	0.5	0.5	0.5	0.8	0.8	0.8	0.8	0.8	0.8	
q	0.1	0.1	0.1	0.5	0.5	0.5	0.3	0.3	0.3	0.8	0.8	0.8	0.3	0.3	0.3	0.9	0.9	0.9	
Bandwidth [KHz]	250	100	70	250	100	70	250	100	70	250	100	70	250	100	70	250	100	70	
W^k	(1)	2.5	3.5	(1)	2.5	3.5	(1)	2.5	3.5	(1)	2.5	3.5	1	2.5	3.5	1	2.5	3.5	
Holding Time [sec]	\mathbf{X}	X	5	\mathbf{X}	$\boldsymbol{\times}$	5	\mathbf{X}	2	2	X	2	2	1.25	1.25	1.25	1.25	1.25	1.25	
T^k	(1)	(1)	1	(1)	(1)	1	2.5	2.5	2.5	2.5	2.5	2.5	4	4	4	4	4	4	
L					$\overline{\mathbf{\nabla}}$														

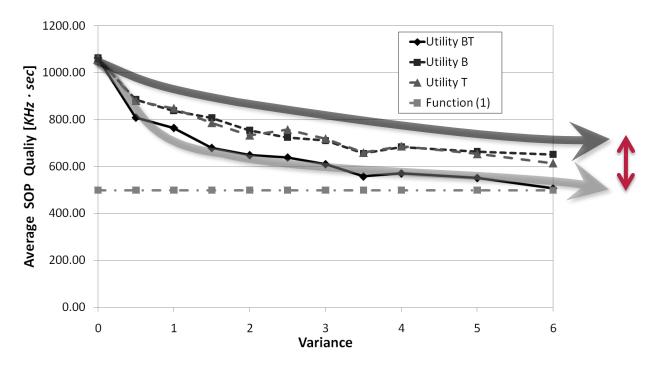
September 11th, 2014



Practical Aspects

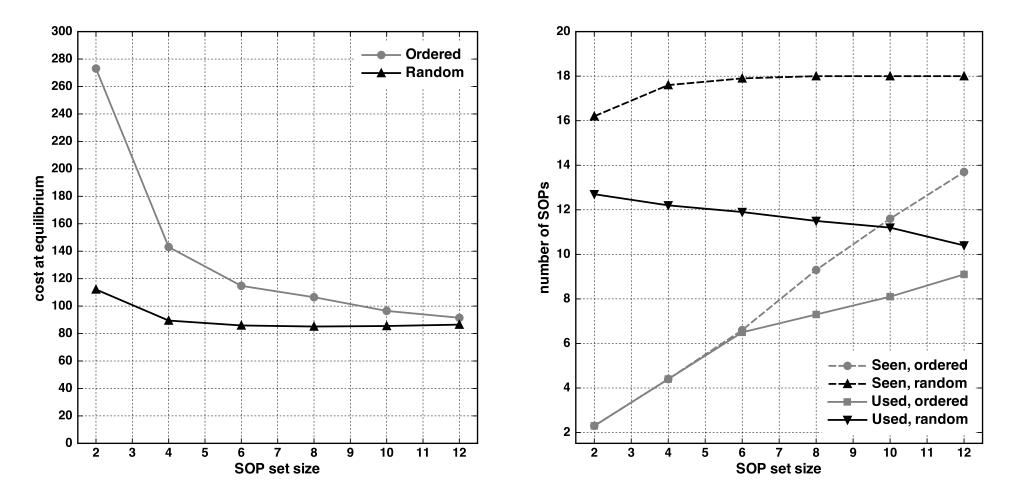

Practical Aspects


- Users get information by spectrum sensing, monitoring radio transmissions and exchanging data with neighbors
- Parameters are in general obtained from the average on multiple values
 → Imperfect Knowledge
- Performance degradation in terms of perceived SOP quality ([Bandwidth · Holding Time/Interfering Users])


- Users get information by spectrum sensing, monitoring radio transmissions and exchanging data with neighbors
- Parameters are in general obtained from the average on multiple values
 → Imperfect Knowledge
- Performance degradation in terms of perceived SOP quality ([Bandwidth · Holding Time/Interfering Users])

- Users get information by spectrum sensing, monitoring radio transmissions and exchanging data with neighbors
- Parameters are in general obtained from the average on multiple values
 → Imperfect Knowledge
- Performance degradation in terms of perceived SOP quality ([Bandwidth · Holding Time/Interfering Users])

- Different knowledge on SOP → users play using different cost functions.
- Example:
 - Users using (1) $c_i = n_{s,i}$ only know congestion levels
 - Users using (3) $c_i = n_{s,i} W_{s,i} T_{s,i}$ have complete information


- Sometimes the whole spectrum cannot be entirely scanned before transmitting due to time constraints.
- Only up to B of all the available SOPs can be used in each user's set.
- Selection schemes:
 - Ordered: every user uses (almost) the same SOP set, first best B
 SOPs (lowest cost).
 - Random: users randomly and independently select which SOPs to include, up to *B*.
- Users play choosing SOPs only within the B SOPs in their sets.

Cost at equilibrium

Number of different seen/used SOPs in the entire set of users

Paradox

- Increasing size of SOP set can sometimes lead to worse equilibria in the random approach.
- Example with 6 users and initial 2-SOP sets:

User	1st #, [W T]	2nd #, [W T]
A	#4, 1.00	#13, 4.00
В	#4, 1.00	#8, 6.25
С	#4, 1.00	#13, 4.00
D	#4, 1.00	#8, 6.25
E	#4, 1.00	#13, 4.00
F	#12, 8.75	#18,14.00

Paradox

- Increasing size of SOP set can sometimes lead to worse equilibria in the random approach.
- Example with 6 users and initial 2-SOP sets:

User	1st #, [W T]	2nd #, [W T]
A	#4, 1.00	#13, 4.00
В	#4, 1.00	#8, 6.25
С	#4, 1.00	#13, 4.00
D	#4, 1.00	#8, 6.25
E	#4, 1.00	#13, 4.00
F	#12, 8.75	#18,14.00

Paradox

- Increasing size of SOP set can sometimes lead to worse equilibria in the random approach.
- Example with 6 users and initial 2-SOP sets:

User	1st #, [W T]	2nd #, [W T]
A	#4, 1.00	#13, 4.00
В	#4, 1.00	#8, 6.25
С	#4, 1.00	#13, 4.00
D	#4, 1.00	#8, 6.25
Ш	#4, 1.00	#13, 4.00
F	#12, 8.75	#18,14.00

User	1st #, [W T]	2nd #, [W T]	3rd #, [W T]
А	#4, 1.00	#13, 4.00	#18,14.00
В	#4, 1.00	#8, 6.25	#18,14.00
С	#4, 1.00	#13, 4.00	#18,14.00
D	#4, 1.00	#8, 6.25	#18,14.00
Ш	#4, 1.00	#13, 4.00	#18,14.00
F	#12, 8.75	#18,14.00	#4, 1.00

One more SOP...

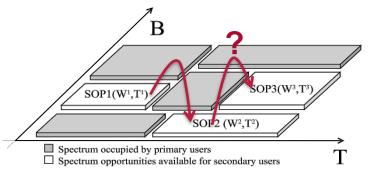
Paradox

- Increasing size of SOP set can sometimes lead to worse equilibria in the random approach.
- Example with 6 users and initial 2-SOP sets:

User	1st #, [W T]	2nd #, [W T]
A	#4, 1.00	#13, 4.00
В	#4, 1.00	#8, 6.25
С	#4, 1.00	#13, 4.00
D	#4, 1.00	#8, 6.25
Ш	#4, 1.00	#13, 4.00
F	#12, 8.75	#18,14.00

User	1st #, [W T]	2nd #, [W T]	3rd #, [W T]
А	#4, 1.00	#13, 4.00	#18,14.00
В	#4, 1.00	#8, 6.25	#18,14.00
С	#4, 1.00	#13, 4.00	#18,14.00
D	#4, 1.00	#8, 6.25	#18,14.00
Е	#4, 1.00	#13, 4.00	#18,14.00
F	#12, 8.75	#18,14.00	#4, 1.00

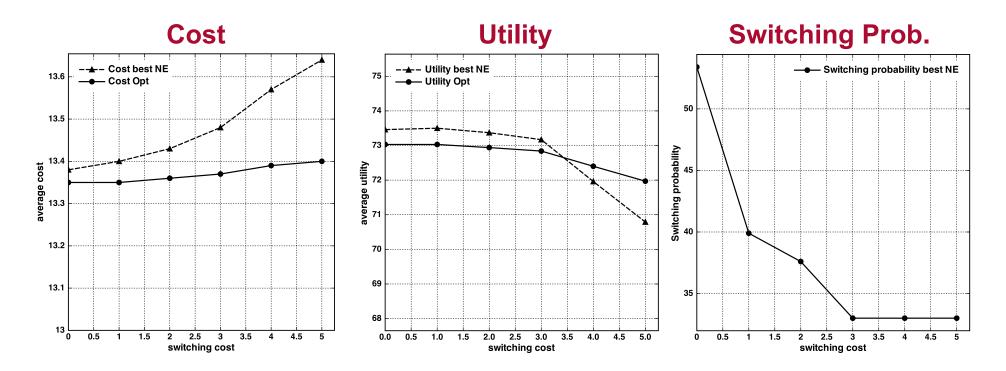
Best NE social cost = 29 > 28.75 !!!



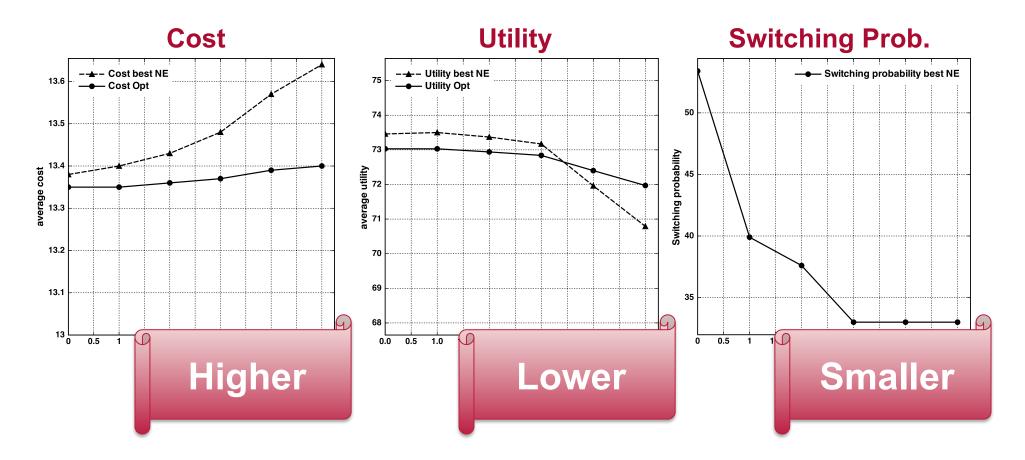
Time-varying Scenario

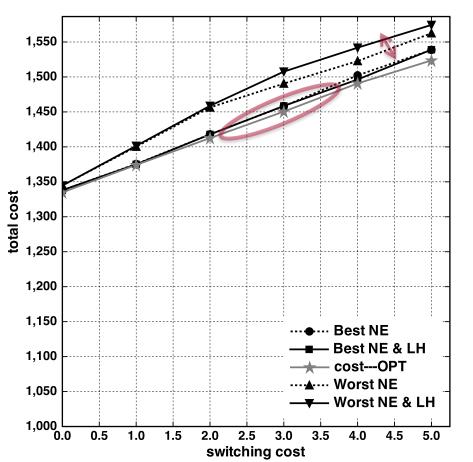
- Time varying scenario, multiple epochs:
 - Move to a new SOP when primary user shows up in the current one
 - To jump or not to jump when better SOPs appear ?

- At each epoch, users:
 - are currently using a SOP (from the previous epoch)
 - must choose if staying or moving and where moving
- Different cost function:
 - $c_i(s, n_{s,i}) = n_{s,i} W_{s,i} T_{s,i} + K_{ms}$
- K_{ms}: switching cost in terms of switching delay or energy or simply will to not move.



- Multi-stage game → Extensive-form Game
- We need a sub-game perfect equilibrium
- Strategy that is a NE in each sub-game
 - 1 sub-game for each choice of each user of each epoch:
 - [[SOPS] USERS] EPOCHS sub-games !!!
- Two approaches:
 - Playing on-line, stage-by-stage equilibrium
 - Playing with look-ahead: users know SOP availability status of the next epoch.
 - Users considers both current SOP and one in the next epoch. Next epoch, again, users compute optimal strategy taking into account current and next epoch. Sliding two-epoch window over the epoch sequence
- Smaller instances !!!


• Stage-by-stage

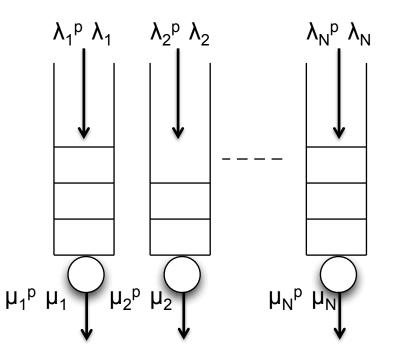

• Stage-by-stage

• Stage-by-stage and Look-ahead

Total Cost

- SOP costs include holding time
- Users prefer stable SOPs, information on next epoch is not so important

Game + Queue Theory



- Set of available channels *i*=1..N
- PU transmissions
 - PU arrivals: $Poi(\lambda_i^p)$
 - Average channel occupation time: $1/\mu_i^p$
- SU transmissions
 - Average time length over channel *i*: $1/\mu_i$
 - Arrivals split over available channels

$$\lambda_{tot} = \sum \lambda_i$$

- Ideal collision management
- Preemption-repeat strategy
 - SUs back-off at PU arrival
 - Re-tx of the entire packet as the channel frees up

- Transmission delay: time required by SU transmission to go through the channel
 - Channel quality: bandwidth and <u>retransmissions</u>
 - Congestion level: queueing
- Computed using Pollaczek-Khintchine result:

$$d_i(\lambda_i) = \frac{\frac{\lambda_i}{\mu_i} E[Z_i^s]}{1 - \frac{\lambda_i}{\mu_i}} + E[C_i^s]$$

 $E[C_i^s]$ = extended service time considering PU interruptions $E[Z_i^s]$ = residual extended service time seen by a SU packet entering at channel *i*

Closed form expressions in F. Borgonovo, M. Cesana, L. Fratta, "*Throughput and delay bounds for cognitive transmissions*", *Advances in Ad Hoc Networking,* Springer, 2008, vol. 265, pp. 179-190

- Spectrum broker optimally subdivides SUs among available channels
- Optimization problem:

minimize
$$S(\boldsymbol{\lambda}) = \sum_{i=1}^{N} \lambda_i d_i (\lambda_i)$$

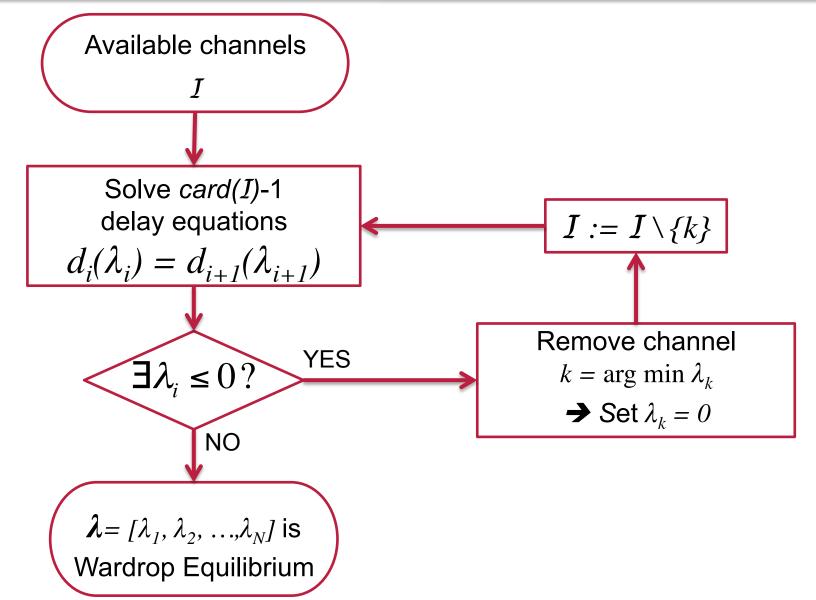
s. t. $\sum_{i=1}^{N} \lambda_i = \lambda_{tot},$
 $\lambda_i \ge 0 \ i \in \mathcal{I},$

• Solution
$$\lambda_{opt} = [\lambda_1, \lambda_2, ..., \lambda_N]$$

• Social welfare: $S(\lambda)$ average delay

- SUs selfishly select the best channel to use
 - Non-cooperative Game
- Number SUs is large, single demand is infinitesimal contribution with respect to the overall demand
- Stable repartition defined by Wardrop Equilibrium
 - All the used channels feature a transmission delay which is equal or less than the transmission delay of any other used channel
- Wardrop Equilibrium: $\lambda_w = [\lambda_1, \lambda_2, ..., \lambda_N]$

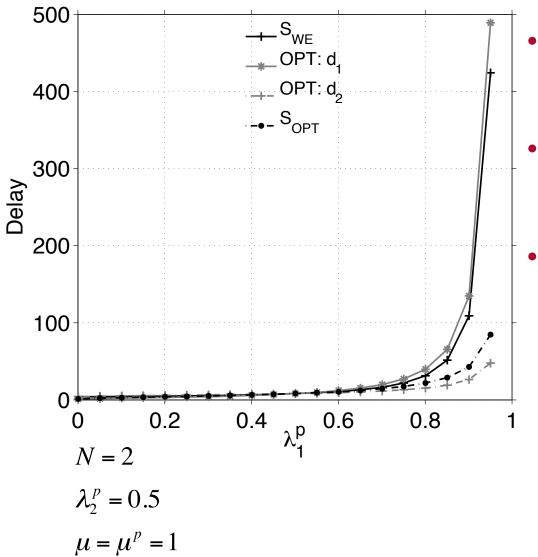
$$\lambda_k > 0$$
 iff $d_k(\lambda_k) \le d_i(\lambda_i), \quad \forall i,k \in I, i \ne k$



- Delay function is continuous and non-decreasing in λ
 → Unique Equilibrium
- Practically:
 - Find a non-negative flow repartition where the delay at each used channel is equal

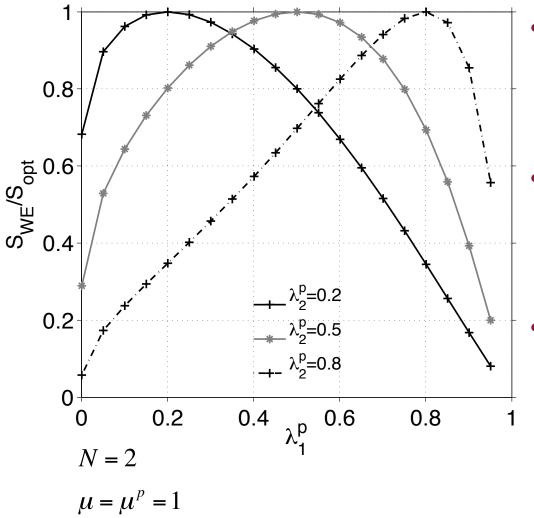
$$\begin{cases} d_i(\lambda_i) = d_k(\lambda_k) & \forall i, k \in \mathcal{I} : \lambda_i > 0, \lambda_k > 0\\ \sum_{i \in \mathcal{I}} \lambda_i = \lambda_{tot} \end{cases}$$

Finding the Wardrop Equilibrium



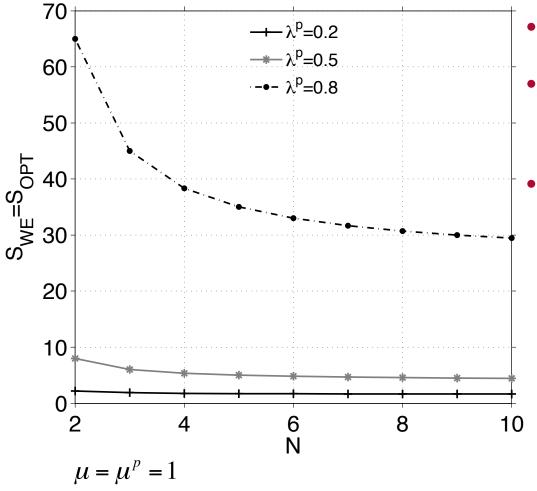
Ē.

Delay: Optimal vs Wardrop

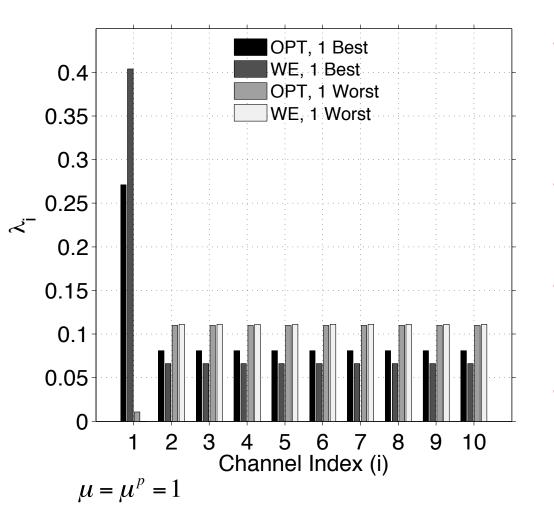


- Optimal Social Welfare is better than at Wardrop Equilibrium
- Optimization:
 - delay channel 1 \neq delay channel 2
- Wardrop:
 - delay channel 1 =
 - delay channel 2 =
 - Social welfare S_{WE}

Quality of Equilibria

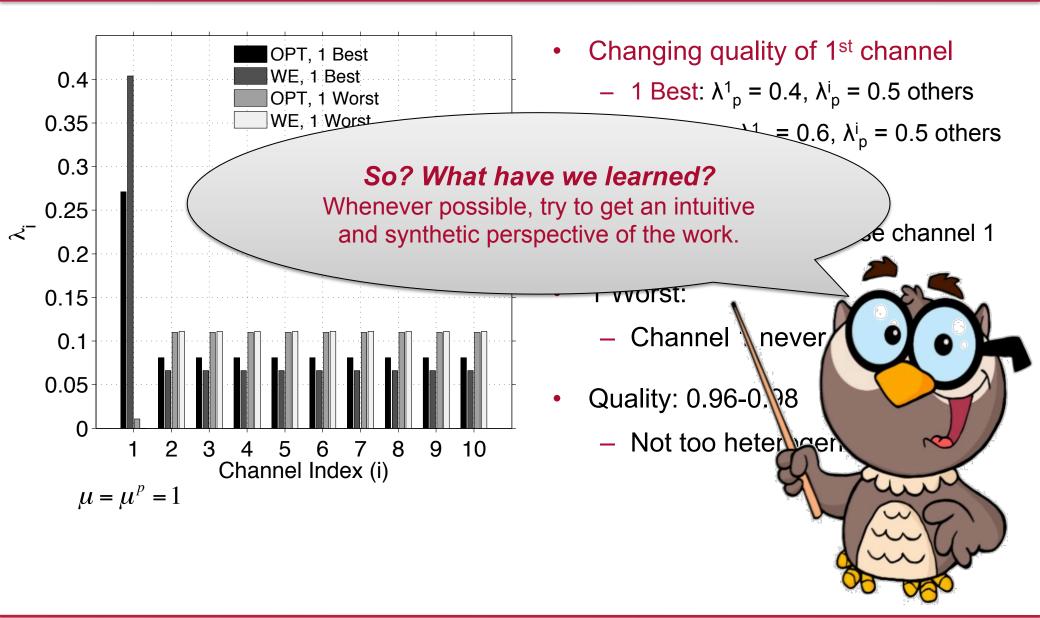


- Ratio between Social Welfare
 at Wardrop equilibrium and at
 the optimum
- Wardrop repartition is optimal when PU traffic is homogeneous
- Heterogeneity can severely harm efficiency of the unregulated scenario



- Homogeneous PU behavior
- Wardrop Equilibrium is always optimal
- Adding channels decreases
 SU delay, in particular when
 PU are aggressive

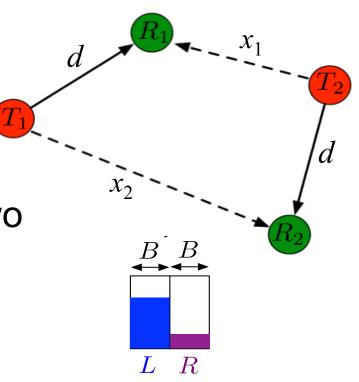
Spectrum Heterogeneity

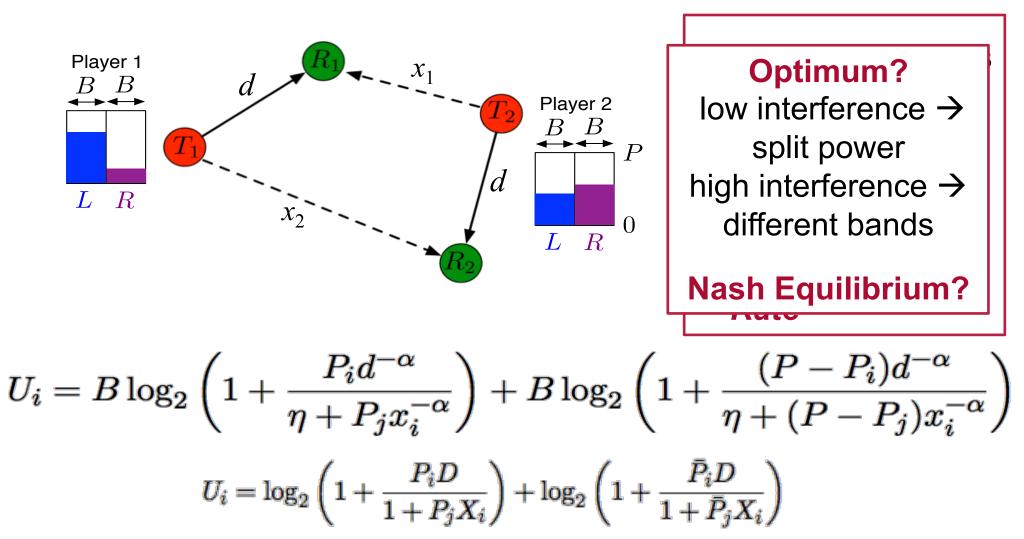


- Changing quality of 1st channel
 - **1** Best: $\lambda_{p}^{1} = 0.4$, $\lambda_{p}^{i} = 0.5$ others
 - **1** Worst: : $\lambda_{p}^{1} = 0.6$, $\lambda_{p}^{i} = 0.5$ others
- 1 Best:
 - Most of the SUs choose channel 1
- 1 Worst:
 - Channel 1 never used
- Quality: 0.96-0.98
 - Not too heterogeneous

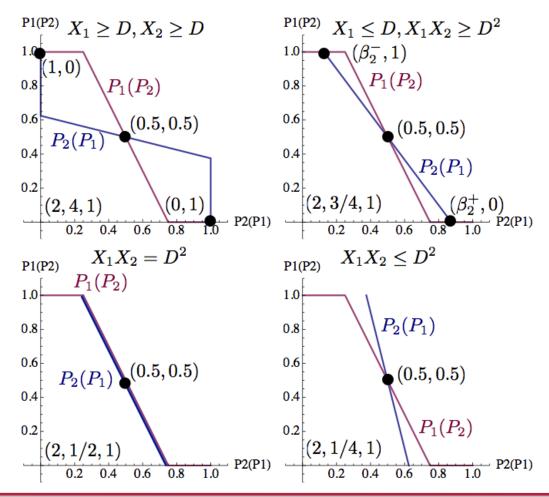
Spectrum Heterogeneity

- Homogeneous spectrum status
 - Anarchy leads to optimality
- Heterogeneity needs a controller
 - Unless we accept higher social costs
- Further investigation
 - Penalty/incentives to improve the quality of unregulated scenario

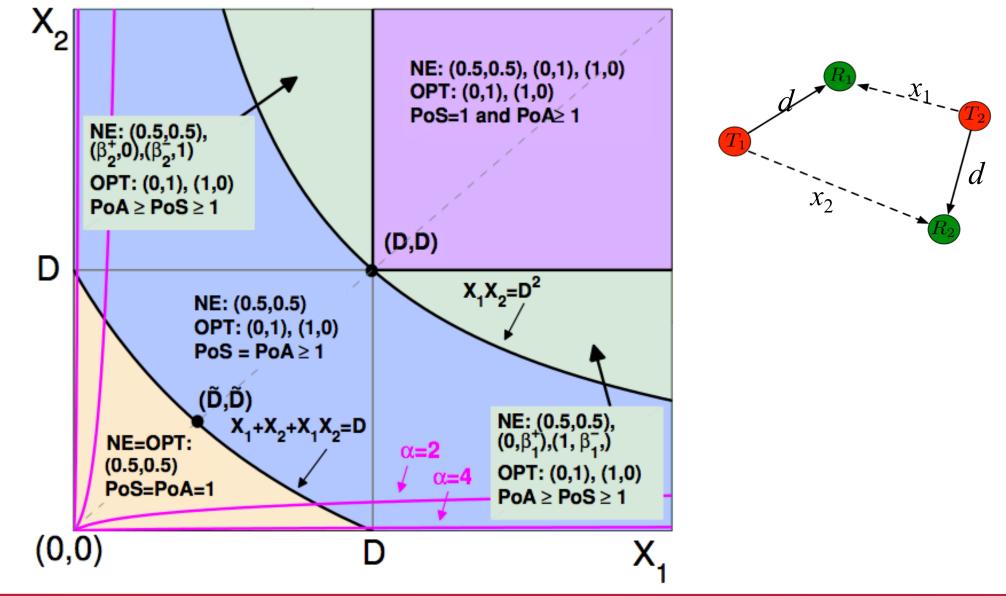

Playing with Power


Players: Two transmitter and receiver pairs

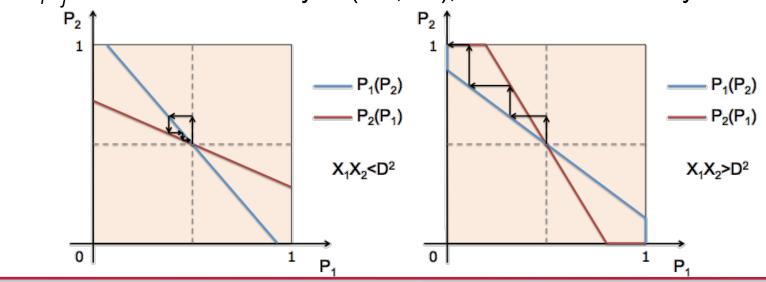
- Actions: power splits over the two bands:
- Payoffs: sum of the achievable Shannon rates $P_i \in [0, 1]$



Best response and Nash Equilibria


- Best response: $P_i^*(P_j) = \left[\frac{1}{2} + \frac{X_i}{D}\left(\frac{1}{2} P_j\right)\right]_0^1$
- Different NE according to scenario parameters

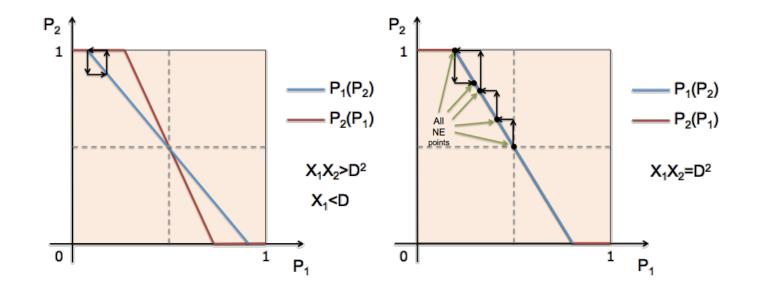
Comparison NE and Optimum

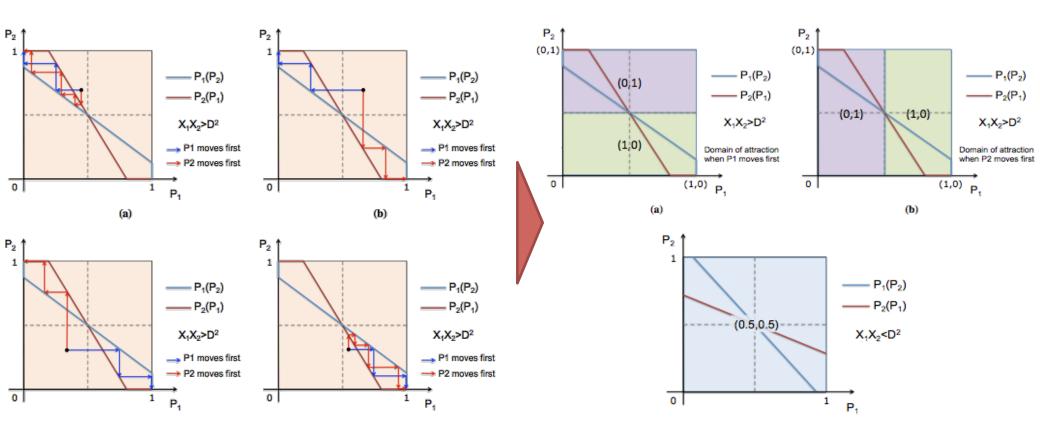

- (0.5,0.5) is stable only if unique
- Deviation

$$P_{j} = \frac{1}{2} + \epsilon \qquad \Rightarrow \qquad P_{i}(P_{j}) = \frac{1}{2} + \frac{X_{i}}{D} \left(\frac{1}{2} - \frac{1}{2} - \epsilon\right) = \frac{1}{2} - \frac{X_{i}}{D}\epsilon$$
$$P_{i} = \frac{1}{2} - \frac{X_{i}}{D}\epsilon \qquad \Rightarrow \qquad P_{j}(P_{i}) = \frac{1}{2} + \frac{X_{j}}{D} \left(\frac{1}{2} - \frac{1}{2} + \frac{X_{i}}{D}\epsilon\right) = \frac{1}{2} + \frac{X_{i}X_{j}}{D^{2}}\epsilon$$

After N moves

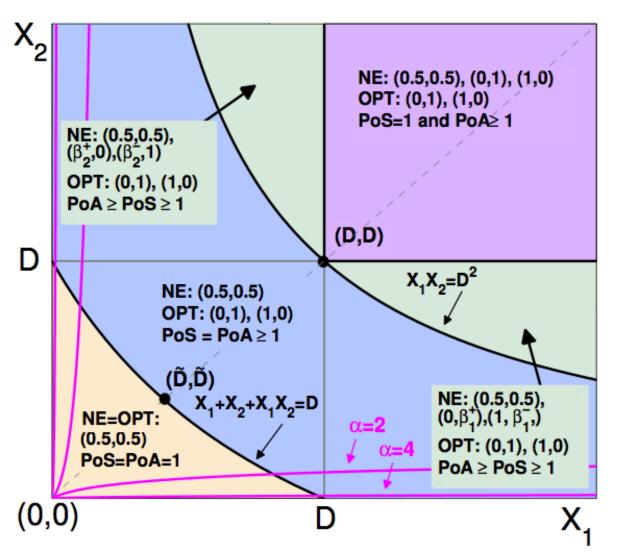
$$P_i = \frac{1}{2} - \frac{X_i}{D} \left(\frac{X_i X_j}{D^2}\right)^N \epsilon \qquad P_j = \frac{1}{2} + \left(\frac{X_i X_j}{D^2}\right)^N \epsilon$$


• If $X_i X_j < D^2$ we have stability in (0.5,0.5), otherwise instability

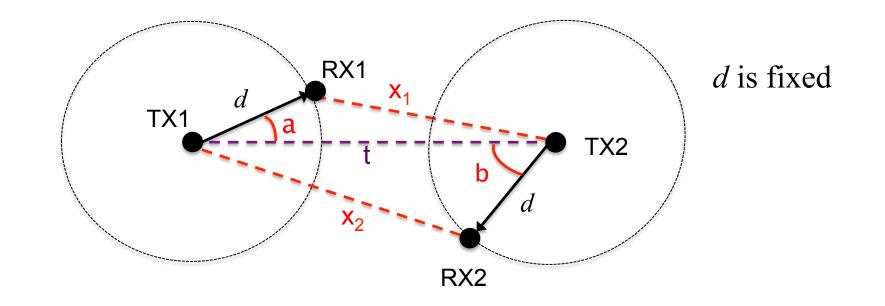

• Stable (1,0) or (0,1), while if $X_1X_2 = D^2$, infinite NE

Attraction regions

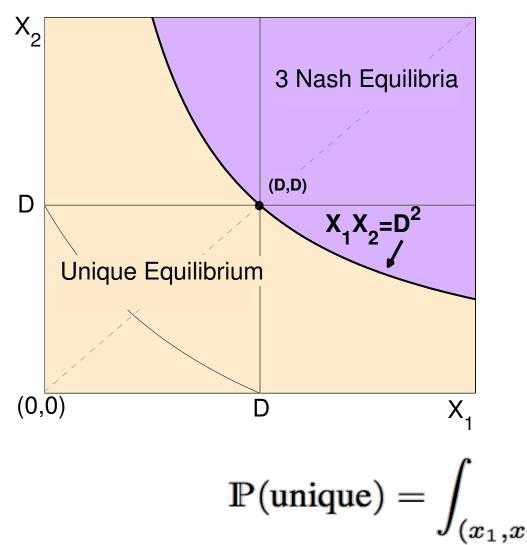
- Why?
 - Stochastic description of the game on the basis of the distances between TXs and RXs, assuming uniform placement of the users
- How?
 - Derive the joint probability density function of the distances between each transmitter/receiver pair
- Goal:
 - Provide probability distributions on the different regions that characterize the equilibria



Characterize

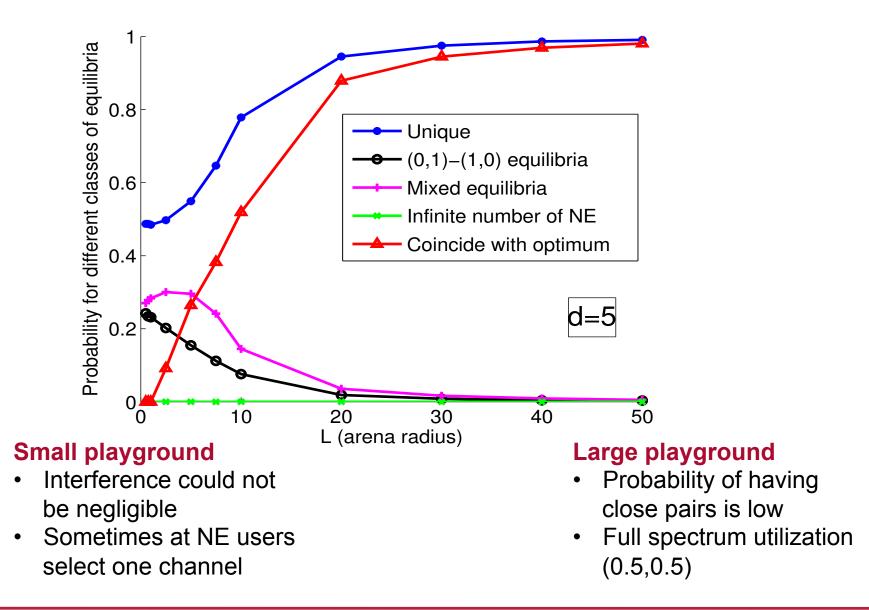

 $f_{\mathsf{x}_1,\mathsf{x}_2}(x_1,x_2)$

 Derive the equilibria distribution for the different regions previously derived



$$f_{\mathbf{x}_{1},\mathbf{x}_{2}}(x_{1},x_{2}) = \frac{2x_{1}x_{2}}{\pi^{2}d^{2}L^{2}} \int \frac{1}{t\sqrt{\left[1 - \left(\frac{d^{2} + t^{2} - x_{1}^{2}}{2dt}\right)^{2}\right]\left[1 - \left(\frac{d^{2} + t^{2} - x_{2}^{2}}{2dt}\right)^{2}\right]}} dt$$

- What is the probability that, given L, the 2-player game admits a unique equilibrium?
- Condition in terms of pure distances (uniqueness):


 $x_1 x_2 > d^2$

 numerical evaluation of the integral:

$$f_{x_1,x_2}(x_1,x_2)dx_1dx_2$$

 $x_2 > d^2$

- How to extend 2-player Power Game to general case N-player Power Game?
- How to design a real protocol that implements a game without wasting transmission time?
- How to design an hybrid system with regulator and incentives to overcome NE with high social costs?

- How to extend 2-player Power Game to general case N-player Power Game?
- How to design a real protocol that implements a game without wasting transmission time?
- How to design an hybrid system with read incentives to overcome NE with his social costs?

The floor is yours...