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Summary
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Bankruptcy problems

Allocation of scarce resources (see O’Neill, 1982, Aumann and Maschler, 1985 and Curiel, Maschler

and Tijs,1987)

BP = (N, c, E) = (E; c1, ..., cn)

where N = {1, ..., n} set of claimants

c = (c1, ..., cn) ∈ Rn
> vector of claims

E ∈ R≥ estate, with E ≤
∑

i∈N ci = C

A solution is an n-dimensional real vector x = (x1, ..., xn), where xi represents the monetary

amount assigned to claimant i ∈ N , satisfying the following conditions:

0 ≤ xi ≤ ci, i ∈ N (rationality)

and ∑
i∈N

xi = E (efficiency)

A solution rule is a function ψ that assigns a solution to each bankruptcy problem
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Solutions

There exist four classical solutions (see Herrero and Villar, 2001)

• Proportional

PROP - The assignments are proportional to the claims:

PROP (N, c, E)i =
E

C
ci i ∈ N

• Constrained Equal Awards

CEA - The assignments are the same for all the agents, but not larger than the claims:

CEA(N, c, E)i = min{α, ci} i ∈ N

where α is such that
∑

i∈N CEA(N, c, E)i = E
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• Constrained Equal Losses

CEL - The assignments are equal to the claims reduced of the same amount for all the agents,

but non-negative:

CEL(N, c, E)i = max{ci − β, 0} i ∈ N
where β is such that

∑
i∈N CEL(N, c, E)i = E

• Talmud

TAL(N, c, E) =

{
CEA(N, c/2, E) if E ≤ C/2

c/2 + CEL(N, c/2, E − C/2) if E > C/2
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Example 1 (Solutions) Given the bankruptcy problem (72; 6, 9, 24, 33, 36)

C = 108;
E

C
=

2

3
PROP = (4, 6, 16, 22, 24)

CEA = (6, 9, 19, 19, 19) [α = 19]

CEL = (0, 1.5, 16.5, 25.5, 28.5) [β = 7.5]

TAL = (3, 4.5, 14.5, 23.5, 26.5)

♦

PROP is the most intuitive

CEA favors smaller claims

CEL favors larger claims

TAL is related to the nucleolus of the bankruptcy game
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Duality

Given a solution rule ψ, the dual solution rule ψ∗ produces the same solution when used for

allocating the losses w.r.t. the claims:

ψ∗(N, c, E) = c− ψ(N, c, C − E)

CEA and CEL are dual rules, while PROP and TAL are self-dual:

• CEA(N, c, E) = c− CEL(N, c, C − E)

• CEL(N, c, E) = c− CEA(N, c, C − E)

• PROP (N, c, E) = c− PROP (N, c, C − E)

• TAL(N, c, E) = c− TAL(N, c, C − E)
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Comments

Very simple model of real-world situations

Most important additional elements in the existing literature:

• different priorities of the claimants (Young, 1994, Bebchuck and Fried, 1996, Schwarcz, 1997

and Kaminski, 2000)

• minimal rights of the claimants (Curiel, Maschler and Tijs, 1987 and Pulido, Sanchez-Soriano

and Llorca, 2002)

• multiple issues (Calleja, Borm, Hendrickx, 2005 and Moreno-Ternero, 2009)

• negative claims and estate (Herrero, Maschler and Villar, 1999, Branzei, Ferrari, Fragnelli and

Tijs, 2008 and 2011)

• non-transferable utility situations (Orshan, Valenciano and Zarzuelo, 2003 and Carpente, Casas-

Mendez, Gozalvez, Llorca, Pulido and Sanchez-Soriano, 2013)

Two important surveys are due to Thomson (2003 and 2015)
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Bankruptcy Rules and Min Cost Flow Problems

Standard flow problem

Let G(N,A) be a network with two particular nodes, the source s with no entering arcs and the

sink t with no outgoing arcs; arcs have minimal and maximal capacity constraints

��
��
s

��
��

��
��

��
��

��
��

��
��
t

�
��

�
��

�
��

��*0/2

H
HHH

HHH
HHHHj0/3

?

0/3

-
0/1

@
@
@
@
@
@
@
@
@
@R

0/2
-

0/1

?

0/3

HH
HHH

HHH
HHHj

0/2

��
��
�
��
�
��
�*

1/2

A flow is a function x : A→ R+ that respects the capacity constraints and such that∑
j∈N xij =

∑
j∈N xji,∀ i ∈ N \ {s, t}

A classical bankruptcy problem can be represented as a standard flow problem
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Each feasible flow corresponds to a solution of the bankruptcy problem
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Min cost flow approach with suitable cost functions ki, i ∈ N can lead to classical rules, or suggest

new divisions according to different fairness criteria, tailoring the amount on each agent

• PROP : ki(xi) =
x2i
ci
, i ∈ N

• CEA: ki(xi) = x2i , i ∈ N

• CEL: ki(xi) = (ci − xi)2, i ∈ N

• TAL:

– if E ≤ 1
2

∑
i∈N ci:

ki(xi) = x2i , i ∈ N
setting the maximal capacity of the arcs corresponding to the claimants to 1

2ci

– if E > 1
2

∑
i∈N ci:

ki(xi) = (ci − xi)2, i ∈ N
setting the minimal capacity of the arcs corresponding to the claimants to 1

2ci
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Defining the minimal right of agent i ∈ N as

mi(N, c, E) = max{0, E −
∑

j∈N\{i}

cj}, i ∈ N

it is possible to introduce the Adjusted Proportional rule (Curiel, Maschler and Tijs, 1987):

APROPi(N, c, E) = mi(N, c, E) + PROPi(Nc
′, E ′), i ∈ N

where E ′ = E −
∑

j∈N mj and c′i = min{E ′, ci −mi(N, c, E)}, i ∈ N
It coincides with the τ -value (Tijs, 1981) of the bankruptcy game

The corresponding cost functions are:

ki(xi) =

 0 if xi ≤ mi

(xi −mi)
2

c′i −mi
if xi > mi

, i ∈ N
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Example 2 Consider the bankruptcy problem with N = {1, 2}; c = (4, 12);E = 10. The flow

problems associated to the above five rules are depicted below (the notations for the arcs are “min

capacity/max capacity” above the arc and “cost function” below the arc)�
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PROP : x∗ = (2.5, 7.5)
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CEA : x∗ = (4, 6)
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CEL : x∗ = (1, 9)
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TAL : x∗ = (2, 8)
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APROP : x∗ = (2, 8)

k1(x1) =

 0 if x1 ≤ 0
x21
4

if x1 > 0

k2(x2) =

 0 if x2 ≤ 6
(x2 − 6)2

4
if x2 > 6
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Bankruptcy Rules and Hydraulic Systems

According to Kaminski (2000) ”hydraulic” rules can be represented as a system of connected vessels

• PROP rule
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• CEL rule
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• TAL rule
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• APROP rule
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Bankruptcy Games

It is possible to define two TU-games, the pessimistic, (N, vP ), and the optimistic, (N, vO):

vP (S) = max

0, E −
∑
i∈N\S

ci

 S ⊆ N

vO(S) = min

(
E,
∑
i∈S

ci

)
S ⊆ N

Example 3 (Inconsistency of the optimistic game) Given the bankruptcy problem (5; 3, 4),

the two games are:
vO(1) = 3; vO(2) = 4; vO(12) = 5

vP (1) = 1; vP (2) = 2; vP (12) = 5

The optimistic game assigns to the players as singletons 3 and 4, even if the estate is 5 ♦

The core of (N, vP ) coincides with the set of rational solutions of the bankruptcy problem:

x ∈ core(vP ) ⇐⇒

 a)
∑
i∈N

xi = E

b) 0 ≤ xi ≤ ci, i ∈ N
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Game theoretic bankruptcy rules

A bankruptcy rule ψ is a game theoretic rule if it is possible to construct a solution concept F for

cooperative games such that

ψ(N, c, E) = F (N, vP )

for all bankruptcy problems (N, c, E), where (N, vP ) is the pessimistic TU-game associated to

(N, c, E)

Curiel, Maschler and Tijs (1987) proved that a bankruptcy rule ψ is a game theoretic rule if

and only if truncation property holds, i.e.

ψ(N, c, E) = ψ(N, c̄, E)

where c̄i = min{ci, E}, i ∈ N
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