1 mu S UNIVERSITA DEL PIEMONTE ORIENTALE

Bankrupitey Problems

Vito Pragnellc
Univensity of Eastenn Piedmont
ucte. fraguelld Quuinpo. it

50 November 2017 - Sevilla



Summary
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Bankruptcy problems
Allocation of scarce resources (see O'Neill, 1982, Aumann and Maschler, 1985 and Curiel, Maschler
and Tijs,1987)
BP = (N,c,FE) = (F;cq,...,c,)

where N ={1,...,n} set of claimants
c=(c1,...,c,) € RY vector of claims
EeRs estate, with £ < > . ¢ =C
A solution is an n-dimensional real vector x = (x1,...,z,), where x; represents the monetary

amount assigned to claimant 7 € IV, satisfying the following conditions:
0<z; <g, 1 €N (rationality)

and

Z r,=F (efficiency)

1€N

A solution rule is a function 1 that assigns a solution to each bankruptcy problem



Solutions
There exist four classical solutions (see Herrero and Villar, 2001)

e Proportional
PROP - The assignments are proportional to the claims:

E
PROP(N,C,E)ZZECZ 1€ N

e Constrained Equal Awards
CEA - The assignments are the same for all the agents, but not larger than the claims:

CEA(N,c, F); = min{a, ¢;} 1 €N
where « is such that ) |, v CEA(N,c,E), = E



e Constrained Equal Losses
CEL - The assignments are equal to the claims reduced of the same amount for all the agents,
but non-negative:

CEL(N,c, FE); = max{c¢; — 3,0} 1 €N
where /3 is such that > ., CEL(N,c,E); = E

e [almud

CEA(N,c/2, E) if £<C/2

TALN, ¢, B) = { ¢/2+ CEL(N,¢c/2,E—C/2)  ifE> (/2



Example 1 (Solutions) Given the bankruptcy problem (72;6,9,24, 33, 36)

E 2
C=108===
'C 3

PROP = (4,6,16,22, 24)

CEA = (6,9,19,19,19) o = 19
CEL = (0,1.5,16.5,25.5, 28.5) 8 = 7.5]
TAL = (3,4.5,14.5,23.5, 26.5)

PROP is the most intuitive

C'E A favors smaller claims

C'E L tavors larger claims

T AL is related to the nucleolus of the bankruptcy game



Duality
Given a solution rule 1), the dual solution rule ©* produces the same solution when used for
allocating the losses w.r.t. the claims:

VN, ¢, E) =c—19(N,c,C - E)

CEA and CEL are dual rules, while PROP and T'AL are self-dual:
e CHA(N,c,E)=c—CFEL(N,c,C — E)
e CEL(N,c,E)=c—CFEA(N,c,C — E)
e PROP(N,c,E)=c— PROP(N,c,C — F)
e TAL(N,c,E)=c—TAL(N,c,C — F)



Comments
Very simple model of real-world situations
Most important additional elements in the existing literature:

e different priorities of the claimants (Young, 1994, Bebchuck and Fried, 1996, Schwarcz, 1997
and Kaminski, 2000)

e minimal rights of the claimants (Curiel, Maschler and Tijs, 1987 and Pulido, Sanchez-Soriano
and Llorca, 2002)

e multiple issues (Calleja, Borm, Hendrickx, 2005 and Moreno-Ternero, 2009)

e negative claims and estate (Herrero, Maschler and Villar, 1999, Branzei, Ferrari, Fragnelli and
Tijs, 2008 and 2011)

e non-transferable utility situations (Orshan, Valenciano and Zarzuelo, 2003 and Carpente, Casas-
Mendez, Gozalvez, Llorca, Pulido and Sanchez-Soriano, 2013)

Two important surveys are due to Thomson (2003 and 2015)



Bankruptcy Rules and Min Cost Flow Problems
Standard flow problem

Let G(N, A) be a network with two particular nodes, the source s with no entering arcs and the
sink ¢ with no outgoing arcs; arcs have minimal and maximal capacity constraints

0/1
0/2 ) / C

03 g
0/3 - 0/1~//

A flow is a function x : A — R that respects the capacity constraints and such that

D jenTij =D jenTji, Vi € N\ {s,t}

A classical bankruptcy problem can be represented as a standard flow problem

S E/EC vl

Each feasible flow corresponds to a solution of the bankruptcy problem

0/2

0/3

1/2




Min cost flow approach with suitable cost functions k;,7 € N can lead to classical rules, or suggest

new divisions according to different fairness criteria, tailoring the amount on each agent

x?

e PROP: kl<3}z>:—z, 1 €N

Ci
o CFA: ]‘CZ<.CEZ) = ZC?, 1 €N
e CEL: kz(iCi) = <Ci — ZCZ')Q, 1 €N
o T'AL:

—if B S %ZiENCi:
ki(zi) =af, i€ N

setting the maximal capacity of the arcs corresponding to the claimants to %Ci

ki(z;) = (¢ —z)°, it €N

setting the minimal capacity of the arcs corresponding to the claimants to %CZ-



Defining the minimal right of agent 1 € N as

mi(N,c, E) =max{0,E— Y ¢}, i€N
JeN\{i}

it is possible to introduce the Adjusted Proportional rule (Curiel, Maschler and Tijs, 1987):
APROP,(N,c,E) =m;(N,c,E)+ PROP,(Nd,E'), ie N

where E' = £ — ) ..y mj and ¢; = min{E',c; — m;(N,c, E)}, i € N
It coincides with the 7-value (Tijs, 1981) of the bankruptcy game

The corresponding cost functions are:

ki(zi) = § (@i —my)’ _ Ji€EN




Example 2 Consider the bankruptcy problem with N = {1,2};¢ = (4,12); E = 10. The flow
problems associated to the above five rules are depicted below (the notations for the arcs are “min
capacity/max capacity” above the arc and “cost function” below the arc)

10/10 L1

CEA:x* = (4,6)

0 ifx1 <0
]ﬁCC = 2
( 1) % ifZL’1>O
0 if xo <6

ko) = < (5 — 6)?

1 if o > 6



Bankruptcy Rules and Hydraulic Systems
According to Kaminski (2000) " hydraulic” rules can be represented as a system of connected vessels

e PROP rule

C1 Co C3

o (' A rule




e (KL rule

o I'AL rule

po|2

no |2




e APROP rule




Bankruptcy (Games
It is possible to define two TU-games, the pessimistic, (N, vp), and the optimistic, (N, vp):

vp(S)=max | 0, F — ch- SCN
iEN\S
vo(S) = min (E, Zcz> SCN
€S

Example 3 (Inconsistency of the optimistic game) Given the bankruptcy problem (5;3,4),
the two games are:

UO(1> — 3; UO<2> — 4; UO(12> =5

vp(l) = Lup(2) = 2 0p(12) =5
The optimistic game assigns to the players as singletons 3 and 4, even if the estate is 5 &

The core of (N, vp) coincides with the set of rational solutions of the bankruptcy problem:

a) in:E

r € core(vp) < ieN
b) 0 S X; S C;, 1€ N



Game theoretic bankruptcy rules
A bankruptcy rule 1) is a game theoretic rule if it is possible to construct a solution concept F' for
cooperative games such that

Y(N,c, E) = F(N,vp)
for all bankruptcy problems (N, c, F), where (N, vp) is the pessimistic TU-game associated to
(N,c, F)

Curiel, Maschler and Tijs (1987) proved that a bankruptcy rule 1 is a game theoretic rule if
and only if truncation property holds, i.e.

Y(N,c, E) =9(N,¢, F)

where ¢; = min{¢;, E},i € N



