Bankruptey Problems

Vita Znaguelli
University of Eastern Piedmont vito.fragnell@umiuka. it

30 Nowember 2017 - Sewilla

Summary

Bankruptcy problems
Bankruptcy Rules and Min Cost Flow Problems
Bankruptcy Rules and Hydraulic Systems
Bankruptcy Games

Bankruptcy problems

Allocation of scarce resources (see O'Neill, 1982, Aumann and Maschler, 1985 and Curiel, Maschler and Tijs,1987)

$$
B P=(N, c, E)=\left(E ; c_{1}, \ldots, c_{n}\right)
$$

$$
\begin{array}{lll}
\text { where } & N=\{1, \ldots, n\} & \text { set of claimants } \\
& c=\left(c_{1}, \ldots, c_{n}\right) \in \mathbb{R}_{>}^{n} & \text { vector of claims } \\
E \in \mathbb{R}_{\geq} & \text {estate, with } E \leq \sum_{i \in N} c_{i}=C
\end{array}
$$

A solution is an n-dimensional real vector $x=\left(x_{1}, \ldots, x_{n}\right)$, where x_{i} represents the monetary amount assigned to claimant $i \in N$, satisfying the following conditions:

$$
0 \leq x_{i} \leq c_{i}, \quad i \in N \quad \text { (rationality) }
$$

and

$$
\sum_{i \in N} x_{i}=E \quad \text { (efficiency) }
$$

A solution rule is a function ψ that assigns a solution to each bankruptcy problem

Solutions

There exist four classical solutions (see Herrero and Villar, 2001)

- Proportional
$P R O P$ - The assignments are proportional to the claims:

$$
\operatorname{PROP}(N, c, E)_{i}=\frac{E}{C} c_{i} \quad i \in N
$$

- Constrained Equal Awards $C E A$ - The assignments are the same for all the agents, but not larger than the claims:

$$
C E A(N, c, E)_{i}=\min \left\{\alpha, c_{i}\right\} \quad i \in N
$$

where α is such that $\sum_{i \in N} C E A(N, c, E)_{i}=E$

- Constrained Equal Losses $C E L$ - The assignments are equal to the claims reduced of the same amount for all the agents, but non-negative:

$$
C E L(N, c, E)_{i}=\max \left\{c_{i}-\beta, 0\right\} \quad i \in N
$$

where β is such that $\sum_{i \in N} C E L(N, c, E)_{i}=E$

- Talmud

$$
T A L(N, c, E)= \begin{cases}C E A(N, c / 2, E) & \text { if } E \leq C / 2 \\ c / 2+C E L(N, c / 2, E-C / 2) & \text { if } E>C / 2\end{cases}
$$

Example 1 (Solutions) Given the bankruptcy problem (72; 6, 9, 24, 33, 36)

$$
\begin{array}{ll}
C=108 ; \frac{E}{C}=\frac{2}{3} & \\
P R O P=(4,6,16,22,24) & \\
C E A=(6,9,19,19,19) & {[\alpha=19]} \\
C E L=(0,1.5,16.5,25.5,28.5) & {[\beta=7.5]} \\
T A L=(3,4.5,14.5,23.5,26.5) &
\end{array}
$$

$P R O P$ is the most intuitive
$C E A$ favors smaller claims
$C E L$ favors larger claims
$T A L$ is related to the nucleolus of the bankruptcy game

Duality

Given a solution rule ψ, the dual solution rule ψ^{*} produces the same solution when used for allocating the losses w.r.t. the claims:

$$
\psi^{*}(N, c, E)=c-\psi(N, c, C-E)
$$

$C E A$ and $C E L$ are dual rules, while $P R O P$ and $T A L$ are self-dual:

- CEA(N, $c, E)=c-C E L(N, c, C-E)$
- CEL $(N, c, E)=c-C E A(N, c, C-E)$
- $\operatorname{PROP}(N, c, E)=c-P R O P(N, c, C-E)$
- $T A L(N, c, E)=c-T A L(N, c, C-E)$

Comments

Very simple model of real-world situations
Most important additional elements in the existing literature:

- different priorities of the claimants (Young, 1994, Bebchuck and Fried, 1996, Schwarcz, 1997 and Kaminski, 2000)
- minimal rights of the claimants (Curiel, Maschler and Tijs, 1987 and Pulido, Sanchez-Soriano and Llorca, 2002)
- multiple issues (Calleja, Borm, Hendrickx, 2005 and Moreno-Ternero, 2009)
- negative claims and estate (Herrero, Maschler and Villar, 1999, Branzei, Ferrari, Fragnelli and Tijs, 2008 and 2011)
- non-transferable utility situations (Orshan, Valenciano and Zarzuelo, 2003 and Carpente, CasasMendez, Gozalvez, Llorca, Pulido and Sanchez-Soriano, 2013)

Two important surveys are due to Thomson (2003 and 2015)

Bankruptcy Rules and Min Cost Flow Problems

Standard flow problem

Let $G(N, A)$ be a network with two particular nodes, the source s with no entering arcs and the sink t with no outgoing arcs; arcs have minimal and maximal capacity constraints

A flow is a function $x: A \rightarrow \mathbb{R}_{+}$that respects the capacity constraints and such that

$$
\sum_{j \in N} x_{i j}=\sum_{j \in N} x_{j i}, \forall i \in N \backslash\{s, t\}
$$

A classical bankruptcy problem can be represented as a standard flow problem

Each feasible flow corresponds to a solution of the bankruptcy problem

Min cost flow approach with suitable cost functions $k_{i}, i \in N$ can lead to classical rules, or suggest new divisions according to different fairness criteria, tailoring the amount on each agent

- $P R O P: k_{i}\left(x_{i}\right)=\frac{x_{i}^{2}}{c_{i}}, i \in N$
- CEA: $k_{i}\left(x_{i}\right)=x_{i}^{2}, i \in N$
- CEL: $k_{i}\left(x_{i}\right)=\left(c_{i}-x_{i}\right)^{2}, i \in N$
- TAL:
- if $E \leq \frac{1}{2} \sum_{i \in N} c_{i}$:

$$
k_{i}\left(x_{i}\right)=x_{i}^{2}, i \in N
$$

setting the maximal capacity of the arcs corresponding to the claimants to $\frac{1}{2} c_{i}$

- if $E>\frac{1}{2} \sum_{i \in N} c_{i}$:

$$
k_{i}\left(x_{i}\right)=\left(c_{i}-x_{i}\right)^{2}, i \in N
$$

setting the minimal capacity of the arcs corresponding to the claimants to $\frac{1}{2} c_{i}$

Defining the minimal right of agent $i \in N$ as

$$
m_{i}(N, c, E)=\max \left\{0, E-\sum_{j \in N \backslash\{i\}} c_{j}\right\}, i \in N
$$

it is possible to introduce the Adjusted Proportional rule (Curiel, Maschler and Tijs, 1987):

$$
A P R O P_{i}(N, c, E)=m_{i}(N, c, E)+P R O P_{i}\left(N c^{\prime}, E^{\prime}\right), i \in N
$$

where $E^{\prime}=E-\sum_{j \in N} m_{j}$ and $c_{i}^{\prime}=\min \left\{E^{\prime}, c_{i}-m_{i}(N, c, E)\right\}, i \in N$ It coincides with the τ-value (Tijs, 1981) of the bankruptcy game

The corresponding cost functions are:

$$
k_{i}\left(x_{i}\right)=\left\{\begin{array}{ll}
0 & \text { if } x_{i} \leq m_{i} \\
\frac{\left(x_{i}-m_{i}\right)^{2}}{c_{i}^{\prime}-m_{i}} & \text { if } x_{i}>m_{i}
\end{array}, i \in N\right.
$$

Example 2 Consider the bankruptcy problem with $N=\{1,2\} ; c=(4,12) ; E=10$. The flow problems associated to the above five rules are depicted below (the notations for the arcs are "min capacity/max capacity" above the arc and "cost function" below the arc)

PROP: $x^{*}=(2.5,7.5)$

$C E A: x^{*}=(4,6)$

$C E L: x^{*}=(1,9)$

$T A L: x^{*}=(2,8)$

$$
k_{1}\left(x_{1}\right)= \begin{cases}0 & \text { if } x_{1} \leq 0 \\ \frac{x_{1}^{2}}{4} & \text { if } x_{1}>0\end{cases}
$$

$$
k_{2}\left(x_{2}\right)= \begin{cases}0 & \text { if } x_{2} \leq 6 \\ \frac{\left(x_{2}-6\right)^{2}}{4} & \text { if } x_{2}>6\end{cases}
$$

Bankruptcy Rules and Hydraulic Systems

According to Kaminski (2000) "hydraulic" rules can be represented as a system of connected vessels

- $P R O P$ rule

- $C E A$ rule

- $C E L$ rule

- $T A L$ rule

- $A P R O P$ rule

Bankruptcy Games

It is possible to define two TU-games, the pessimistic, $\left(N, v_{P}\right)$, and the optimistic, $\left(N, v_{O}\right)$:

$$
\begin{gathered}
v_{P}(S)=\max \left(0, E-\sum_{i \in N \backslash S} c_{i}\right) \quad S \subseteq N \\
v_{O}(S)=\min \left(E, \sum_{i \in S} c_{i}\right) \quad S \subseteq N
\end{gathered}
$$

Example 3 (Inconsistency of the optimistic game) Given the bankruptcy problem (5; 3, 4), the two games are:

$$
\begin{aligned}
& v_{O}(1)=3 ; v_{O}(2)=4 ; v_{O}(12)=5 \\
& v_{P}(1)=1 ; v_{P}(2)=2 ; v_{P}(12)=5
\end{aligned}
$$

The optimistic game assigns to the players as singletons 3 and 4, even if the estate is 5

The core of $\left(N, v_{P}\right)$ coincides with the set of rational solutions of the bankruptcy problem:

$$
x \in \operatorname{core}\left(v_{P}\right) \Longleftrightarrow\left\{\begin{array}{ll}
a) & \sum_{i \in N} x_{i}=E \\
b) & 0 \leq x_{i} \leq c_{i},
\end{array} \quad i \in N\right.
$$

Game theoretic bankruptcy rules

A bankruptcy rule ψ is a game theoretic rule if it is possible to construct a solution concept F for cooperative games such that

$$
\psi(N, c, E)=F\left(N, v_{P}\right)
$$

for all bankruptcy problems (N, c, E), where $\left(N, v_{P}\right)$ is the pessimistic TU-game associated to (N, c, E)

Curiel, Maschler and Tijs (1987) proved that a bankruptcy rule ψ is a game theoretic rule if and only if truncation property holds, i.e.

$$
\psi(N, c, E)=\psi(N, \bar{c}, E)
$$

where $\bar{c}_{i}=\min \left\{c_{i}, E\right\}, i \in N$

