The Adjusted Winner procedure by S.Brams and A.Taylor

M. Dall'Aglio¹

¹LUISS University, Italy

Game Theory and Algorithms September 6–11, 2015 Campione d'Italia, 2015

The framework

The Players $N = \{I, II\}$ The goods $M = \{1, 2, ..., m\}$ The utility a_{ij} evaluation of good j by player i

Main assumption. Utilities are:

normalized $\sum_{j \in M} a_{ij} = 1$ for every i = 1, 2, linear if player i gets share $t_j \in [0, 1]$ of item j and share $t_k \in [0, 1]$ of item k, she gets a total utility of $t_j a_{ij} + t_k a_{ik}$.

Preferences are described by a matrix

	item 1	item 2	•••	item m
pl.1	a ₁₁	a ₁₂		a _{1m}
pl.2	a ₂₁	a ₂₂	• • •	a _{2m}

How to obtain a Pareta optimal allocation

Definition

The pl.1 to pl.2 **valuation ratio** for item *j* is defined as $r_j = \frac{a_{1j}}{a_{2j}}$

with the assumption that If $a_{1j} > 0$ and $a_{2j} = 0$ then $r_j = +\infty$ (If $a_{1j} = a_{2j} = 0$ item j is of no interest in the division)

Example

	item 1	item 2	item3	item 4
pl.1	0.2	0.6	0.1	0.1
pl.2	0.1	0.2	0.05	0.65
r	2	3	2	0.1538

PO allocations

1st idea: allocation ratios

Plot all the allocation ratios on the positive half line of real numbers

Example 1

	item 1	item 2	item3	item 4
pl.1	0.2	0.6	0.1	0.1
pl.2	0.1	0.2	0.05	0.65
r	2	3	2	0.1538

PO allocations

2nd idea: Threshold division

Create a division of the items by drawing a vertical mark:

- items on the right of the mark are given to Player 1
- items on the left of the mark are given to Player 2
- items on the mark can be assigned to any of the players, or can be split between them

E 6 4 E 6

A Theorem

Example: Threshold division when d = 2

- pl.1 gets item 2
- pl.2 gets items 4
- items 1 and 3 can be assigned to both players

< □ > < /□ >

The following allocations of items 1 and 3 are all compatible :

- pl.1 gets 1, pl.2 gets 3
- pl.1 3/4 of 1, 1/5 of 3, pl.2 gets 1/4 of 1 and 4/5 of 3
- pl.1 gets 1 and 1/10 of 3, pl2 gets 9/10 of 3

A Theorem

The threshold divisions are precisely the PO divisions

Dall'Aglio (Italy)

PO and fairness

Pareto optimality alone is not enough to guarantee fairness. In the previous example:

If d = 0 All items go to pl.1

If d = 1000 All items go to pl.2

which are efficient but totally unfair allocations.

There is one way of placing the vertical line that leads to an equitable division

 $\mu_1(\text{items to pl.1}) = \mu_2(\text{items to pl.2})$

- The Adjusted Winner (AW) method finds this equitable division
- It was proposed in 1994 by Steven Brams and Alan Taylor and it was patented in 1999

A B F A B F

Example 2

Players 1 and 2 want to divide a cake that consists of a strawberry component, a rhubarb component and a chocolate component, with valuations

	chocolate	rhubarb	strawberry
pl.1	0.2	0.3	0.5
pl.2	0.5	0.2	0.3
r	0.4	1.5	1.66

We consider a simpler plot for the valuation ratios

Image: A matrix

Example 2 (continued)

B & T suggest to begin with a vertical line at d = 1

chocolate rhubarb strawberry $\mu_1 = 0.8$ $\mu_2 = 0.5$ r=0.4r=1.5 r=1.66 The partition is not equitable: The smallest meaningful move to increase μ_2 (and decrease μ_1) is to move the vertical line rightward rhubarb can be rhubarb chocolate strawberry assigned to any of the two players r = 0.4r= 5 r=1.66

If rhubarb to pl.1 $\Rightarrow \mu_1 = 0.8$ $\mu_2 = 0.5 \Rightarrow$ pl.1 "wins" If rhubarb to pl.2 $\Rightarrow \mu_1 = 0.5$ $\mu_2 = 0.7 \Rightarrow$ pl.2 "wins" \Rightarrow An equitable allocation is obtained by properly splitting rhubarb

Example 2 (continued)

How should we split rhubarb? $p \in (0,1) =$ share of rhubarb assigned to pl.1 The equitable allocation must satsify

$$\mu_1 = 0.5 + 0.3p = 0.5 + 0.2(1 - p) = \mu_2 \quad \Rightarrow p = 0.4$$

Therefore the equitable allocation is:

pl.1 gets strawberry and a 0.4 share of rhubarb pl.2 gets chocolate and a 0.6 share of rhubarb and $\mu_1 = \mu_2 = 0.62$

Theorem

The Adjusted Winner procedure returns an allocation which is **Pareto Optimal** and **Equitable**.

A B b A B b

Example 1 (again)

	item 1	item 2	item3	item 4
pl.1	0.2	0.6	0.1	0.1
pl.2	0.1	0.2	0.05	0.65
r	2	3	2	0.1538

The vertical line is set at d = 1

The partition is not equitable:

Dall'Aglio (Italy	Dall	l'Aglio	(Italy
-------------------	------	---------	--------

э

Example 1 (continued)

The smallest meaningful move is to move the vertical line rightward

items 1 & 3 can be assigned to any of the two players

both to pl.1 $\Rightarrow \mu_1 = 0.9$ $\mu_2 = 0.65 \Rightarrow$ pl.1 "wins" both to pl.2 $\Rightarrow \mu_1 = 0.6$ $\mu_2 = 0.8 \Rightarrow$ pl.2 "wins" \Rightarrow An equitable allocation is obtained by properly splitting items 1 & 3 $p \in (0, 1) =$ share of items 1 & 3 assigned to pl.1 The equitable allocation must satsify

$$0.6 + 0.3p = 0.65 + 0.15(1 - p) = \mu_2 \quad \Rightarrow p = 4/9$$

Example 1 (continued)

A solution would be to split both items 1 & 3

$$\mu_1(\text{item 2}+4/9 \text{ of item 1} +4/9 \text{ of item 3})=0.7333$$
 $\mu_2(\text{item 4}+5/9 \text{ of item 1} +5/9 \text{ of item 3})=0.7333$

Actually we obtain the same result by splitting item 1 only

$$\mu_1$$
(items 2 & 3 + 1/6 of item 1) = 0.7333
 μ_2 (item 4 + 5/6 of item 1) = 0.7333

Image: Image:

Example 1 (continued)

A solution would be to split both items 1 & 3

$$\mu_1$$
(item 2 + 4/9 of item 1 + 4/9 of item 3) = 0.7333
 μ_2 (item 4 + 5/9 of item 1 + 5/9 of item 3) = 0.7333

Actually we obtain the same result by splitting item 1 only

$$\mu_1$$
(items 2 & 3 + 1/6 of item 1) = 0.7333
 μ_2 (item 4 + 5/6 of item 1) = 0.7333

Result

At most one item need to be split in the AW procedure

1 E N 1 E N

Image: A matrix

What about envy-freeness?

A Pareto optimal and equitable partition is always proportional.

Since the solution of AW is Pareto optimal and equitable \Rightarrow the solution is also proportional

Since there are only two players \Rightarrow the solution is also envy-free

Theorem

The AW solution is Pareto optimal, Equitable and Envy-free

What happens when $n \geq 3$

Proposition (D. and Hill, 2003)

for each $n \ge 3$, there exist mutually absolutely continuous atomless measures $\mu_1, \mu_2, \ldots, \mu_n$ such that no maximin-optimal partition [which is Pareto optimal and equitable] is envy-free.

Consider the following situation for n = 3

	item 1	item 2	item 3
pl.1	0.4	0.5	0.1
pl.2	0.3	0.4	0.3
pl.3	0.3	0.3	0.4

The allocation where pl.*i* gets item *i* (i = 1, 2, 3) is Pareto optimal and equitable, but not envy-free

< □ > < □ > < □ > < □ > < □ > < □ >