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[Social Choice Theory !

[Rule for breaking ties: A>B>C } Alternatives N
> {A, B, C}
Social Choice Function:
R » Compute the alternative that is
~ top-ranked by the majority
N y
A>C>B

Bl>A>c > A

Ci>B > A
/



[Social Choice Theory — MechanismiDESIGH
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Rule for breaking ties: A>B>C J Alternatives 3
> {A,B,C}
Social Choice Function:
R » Compute the alternative that is
Q ~ top-ranked by the majority
| , N Y
W
B[>A>C > A

(> B > A/ Strategic issues!



[Mechanism Design _

@ Social Choice Theory is non-strategic

@ In practice, agents declare their preferences
@ They are self interested
@ They might not reveal their true preferences

@ We want to find optimal outcomes w.r.t. true preferences

@ Optimizing w.r.t. the declared preferences might not
achieve the goal

How to bulld a mechanism where agents
find convenient to report thelr true preferences?
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Basic Concepts (1/2)

@ Each agent 7 is associated with a type 6, € O,



\ Basic Concepts (2/2) ‘_

@ Consider the vector of the joint strategies s = (81, - ,31)



\ Game Theory (by Example) -

[C>B>A}
- 3 2 1

@ Consider the utility function of agent

@ Let us reason on the case where
-
Q & selects A

Q selects B

ABA BAR1
() will select B ABB »B®»2
ABC BA®DI1




\ Game Theory (by Example) _

1 TN
o ~
l!'r A > C > B

No agents can benefit by deviating!



\Solution Concepts | —

@ A Nash equilbrium is a strategy profile s = (s1,... ,S7)
such that, for every agent 2 and for every s; # S,

wi(Siy5_i,0;) > u;i(s;,s5_4,6;)



{Solution Concepts —

@ A Nash equilbrium is a strategy profile s = (s1,... ,Sr)

such that, for every agent 1 and for every 52 ;é S,

Bob John goes out John stays at home
home 0 1
John Bob goes out Bob stays at home
out 1 1

home 0 0




@ To play a Nash equilibrium,
@ every agent must have perfect information
@ rationality is common knowledge
¢ all agents must select the same Nash equilibrium

John Bob goes out Bob stays at home

Dominant strategy » out 1 1

home 0 0




\ Dominant Strategies (by Ex@ _

% @>c>3

For , A is a dominant strategy. Why?



{Solution Concepts -

@ A Nash equilbrium is a strategy profile s = (S1,... , S71)

such that, for every agent 2 and for every sg # S;
!
Ui (S5, S—i, 0;) > ui(s;,5-4,0;)
@ A strategy s;is dominant for agent %, if for every S; 7 8i

and for every s_;,

wi(Siy8_i,0;) > ui(s;, s_;,0;)



\ Outline ﬁ —




{Social Choice Functions -

@ A social choice function f : 91 x...x0; — O
@ given a type vector § = (6,,... .,0;)
@ selects an outcome f(A) € O

» Compute the alternative that is
top-ranked by the majority
> Breakties:A>B>C

g , A>C>B Social Choice Function:

Y outcome

type vector



\ Mechanism Design !

r R
A>C>B

A

f(0) €O

Social Choice Function

(A,A,A)]
& ©

i (31, e ,S[) o all Outcome Rule

[T



\ Mechanism Design !

r R
A>C>B

A

f(0) €O

Social Choice Function

(A, B, B)
¥ 0O

i (31, e ,S[) o all Outcome Rule

R



Mechanism and Impleme
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Mechanism and Implementat

social choice function f : © x ...

type vector 1 # A } [type vector 2 » outcome 2}

strategy profiles

A (A,A B) (A B,A) (A B,B)
900 ©60

» For a given type vector, all startegy profiles are in principle admissible




{Mechanism and Implementat

( N
social choice function [ :©; x...x0; — O
type vector 1 » A } [type vector 2 » outcome 2} ——————————————————
\ J
( )

strategy profiles

(A,A,A) (A,A,B) (A B,A) (ABB) (C, C, C)

‘9 ‘9 ‘g ‘g ‘g ’
A A A B C

» For a given type vector, all startegy profiles are in principle admissible
» An outcome rule is applied



{Mechanism and Implementati

social choice function [ :©; x...x0; — O
type vector 1 # A J [type vector 2 » outcome ZJ ——————————————————
i strategy profiles A
(A,A,A) (A,A,B) (A, B,A (AB,B (C, C, C)
l' g .' g ‘ q l’ g l’ g
A A A B §@Gs2) C

» For a given type vector, all startegy profiles are in principle admissible
» An outcome rule is applied
» So, utilities can be computed and equilibria can be selected



{Mechanism and Implementat

( )
social choice function [ :©; x...x0; — O

type vector 1 » A } [type vector 2 » outcome 2} ------------------

\. J

i strategy profiles )
(A,A,A) (A,A,B) (A, B,A (AB,B (C, C, C)
‘ g .' g ‘ g l' g " g

A A A B §@Gs2) C

GOAL: In all equlibria, the rule must select the
outcome of the social choice function



{Mechanism and Implementat

( )
social choice function [ :©; x...x0; — O

type vector 1 » A } [type vector 2 » outcome 2} ------------------

\. J

i strategy profiles )
AAA  (AAB (ABA (ABB _____ (C, C, C)
‘ g .' g ‘ g l' g " g

A A A A A

GOAL: In all equlibria, the rule must select the
outcome of the social choice function



\ Mechanism and Implementa

strategy profiles

(A,A,A) (A,A,B) (A,B,A) (A,B,B) (C, C, Q)
‘g ‘g ‘g ‘g ‘g
A A A A A

GOAL: and this must happen with any type vectorl



\ Mechanism and Implementag

@ Amechanismisatuple M = (¥,...,%7,9(+)), where
o for each agent ¢,>]; is the set of available strategies

@ g : YyX...xXy — (O isanoutcome rule that
@ given a strategy profile s = (s, ..., s1)
@ selects an outcome g(s)

M Implements in dominant strategy the social choice function f If,

for each type vector 6 = (61,... ,0;),

g(s1(01),...,s7(01)) = f(0)

where (S’{, Ce e 8?) IS a dominant strategy.




Types VS Strategies

strategy
>B > A
\\ y,
Y
type

@ In adirect revelation mechanism, each strategy is
restricted to a declaration about the private type



Types VS Strategies

8> ... i) —> | —> +(0)—>

9,  declared types

true types

@ In adirect revelation mechanism, each strategy is
restricted to a declaration about the private type



Types VS Strategies

-
LTI .. ... IESOR i

9,  declared types

true types

~

DEFINITION. A direct-revelation mechanism is strategy-proof (dominant-strategy
incentive-compatible) if truth-revelation is a dominant strategy for each agent.

v

e If the mechanism implements a function f, then g= f




v
&

® [V

.
THEOREM. If a social choice function can be implemented in dominant strategies,
then it can be implemented by a strategy-proof direct-revelation mechanism.

@ Itis a central theoretical tool in mechanism design
@ [Gibbard, 1973]
@ [Green and Laffont, 1977]
@ [Mayerson, 1979]




Revelation Principle: Proof ldea

strategy s,(0))
type O, >

Ori ginal outcome
Mechanism

v

strategy S, (9)

~\

THEOREM. If a_social choice function can be implemented in dominant strategies,
then it can befplemented bv a strateav-oroof direct-revelation mechanism.

|
strategy O I |
type 0, > 5,(0) > I
|
I Original I outcome
I Mechanism I g
strategy O
type 0, —1| s.(6,) > '
|
: |
| New Mechanism ]

© Multiagent Systems, Shoam and Leyton-Brown




\ Impossibility Result _

@ A social choice function is dictatorial if one agent
always receives one of its most preferred alternatives

00\
s A>C>B
&y

B>A>C
Sos-

Which functions can be implemented in dominant strategies?



{Impossibility Result —

@ A social choice function is dictatorial if one agent
always receives one of its most preferred alternatives

@ A preference relation is general when it defines a
complete and transitive ordering over the alternatives

Which functions can be implemented in dominant strategies?



\ Impossibility Resulit -

~

THEOREM. Assume general preferences, at least two agents, and at least three
optimal outcomes. A social choice function can be implemented in dominant
strategies if, and only if, it is dictatorial.

@ Very bad news...
¢ [Gibbard, 1973] and [Satterthwaite, 1975]

@ ..., but must be interpreted with care

¢

The result does not necessarily hold in restricted environments

Which functions can be implemented in dominant strategies?



\ Payments % —

Monetary compensation to induce truthfulness

@ A utility is quasi-linear if it has the following form

ui(0,0;) = v;(0,0;) — p;



\ Payments | _

£

Monetary compensation to induce truthfulness

@ A utility is quasi-linear if it has the following form

ui(o, 91) = ’UZ'(O, 93) — Pi

RN

valuation function payment by the agent
cardinal preferences

@ Payments are defined by the mechanism



Direct Mechanisms with Payi

ﬂ <‘ Actually, agents might directly declare their valuations V;
& %X% Social Choice Function [ 4 f(@)

s



\ Direct Mechanisms with m

Yo i > /)

K/

;) = v;(0,6;)




Vickrey-Clarke-Groves (V |

(1) The mechanism selects the outcome ¢ maximizing Z 6@(0 ,0;).

?

(2) Payments are such that Pi = h; — Z{}j(o*’gj)

/‘ j#i

Family of mechanisms (e.g., the value of the optimal outcome without the agent)



\Vickrey-CIarke-Groves (VC@ M

( )

@ An auction with one item 5
@ We have bids: b, >b,>-—>D

[ Agent 1 receives the item J

r[ Agent 1 pays b, l . - ﬁ
(1) The e 0 maximizing Zvi(0,0i).
15 *

(2) Payments are such that Pi = h; — Z {,\j(o*’ 9].)

/ j#i

Family of mechanisms (e.g., the value of the optimal outcome without the agent)




{Vickrey Auction is Strategy-Proof
What should a bidder with value v bid?

Option 1: Win the
Item at price b, get

utility v - b _ o
L : Would like to win if
b= highest bid andonly ifv-b >0
among other
bidders

Option 2: Lose the
item, get utility O



Payment Rules (Again...

@ Monetary compensation to induce truthfulness

see, e.g., [Shoham, Leyton-Brown; 2009]



\ Payment Rules (Again...) —

@ Monetary compensation to induce truthfulness

g

GOAL: Budget Balance

v The algebraic sum of the monetary transfers is zero
v" In particular, mechanisms cannot run into deficit

see, e.g., [Shoham, Leyton-Brown; 2009]



{Payment Rules (Again...) —

@ Monetary compensation to induce truthfulness

g

GOAL: Budget Balance

v The algebraic sum of the monetary transfers is zero
v" In particular, mechanisms cannot run into deficit

-

@ Monetary compensation to induce fairness

v For instance, it is desirable that no agent envies the
allocation of any another agent, or that

v' The outcome is Pareto efficient, i.e., there is no
different allocation such that every agent gets at
least the same utility and one of them improves.




{Payment Rules (Again...) —

@ Monetary compensation to induce truthfulness

g

GOAL: Budget Balance

v The algebraic sum of the monetary transfers is zero
v" In particular, mechanisms cannot run into deficit

-

@ Monetary compensation to induce fairness

v For instance, it is desirable that no agent envies the
allocation of any another agent, or that
w ¥ The outcome is Pareto efficient, i.e., there is no
(( different allocation such that every agent gets at
l[h least the same utility and one of them improves.

L




\ Fairness vs Efficiency —

P P2 P3 Ps D5 Pe Pr  Ps




\ Fairness vs Efficiency * _

P1 P2 P3 P4 D5 Pe pr P8

25 ©n 26 Or

pP1 P2 pP3 P4 D5 Pe pr ps

26 ™ 25 )

@ Two optimal allocations

@ Is there any fair allocation?



\ Fairness vs Efficiency _

P1 P2 P3 P4 D5 Pe pr P8

o0

25 ©n 26 ©r

pP1 P2 pP3 P4 D5 Pe pr ps

O O
8
10 8 s 10
26 1 25 T2
g
v 4]
£ Ej
@ Two optimal allocations 3 éﬁf;z

@ Is there any fair allocation? -



(A Few...) Impossibility Results NS

**) Efficiency + Truthfulness + Budget Balance
[Green, Laffont; 1977]
[Hurwicz; 1975]

() -
Fairness + Truthfulness + Budget Balance
[Tadenuma, Thomson;1995]
[Alcalde, Barbera; 1994]
[Andersson, Svensson, Ehlers; 2010]

declarations

Allocation ¥ Allocation =8 Mechanism

Algorithm

w






(A Few...) Impossibility Results NS

Q Efficiency + Truthfulness + Budget Balance

\9 Fairness + Truthfulness + Budget Balance

8 declarations
S

&3 LG ¥ Allocation =8 Mechanism

Algorithm

F Ao payments



(A Few...) Impossibility Results NS

Q Efficiency + Truthfulness + Budget Balance

\/'9 Fairness + Truthfulness + Budget Balance

@ Verification on «selected» declarations

8 declarations
S

Co

Allocation .

_ - cation -) Mechanism
Algorithm Allo
wﬁ“/

F payments

Co




\ Approaches to Verificatio‘_



Approaches to Verificatior

(1) Partial Verification
[Green, Laffont; 1986]
[Nisan, Ronen; 2001]

(2) Probabilistic Verification



\ Approaches to Verification_

P \ . L" u gum . L

(1) Partial Verification
[Auletta, De Prisco, Ferrante, Krysta, Parlato, Penna,
Persiano, Sorrentino, Ventre]

(2) Probabilistic Verification



\ Approaches to Verification_

4 . - . L U . -

(1) Partial Verification
[Auletta, De Prisco, Ferrante, Krysta, Parlato, Penna,
Persiano, Sorrentino, Ventre]

(2) Probabilistic Verification

[Caragiannis, Elkind, Szegedy, Yu; 2012]



Approaches to Verificatior

Punishments are
used to enforce
truthfulness



[Approaches to Verification _

Punishments are
used to enforce
truthfulness

@ Verification is performed via sensing

@ Hence, it is subject to errors; for instance,
because of the limited precision of the
measurement instruments.

@ It might be problematic to decide whether an
observed discrepancy between verified values
and declared ones is due to a strategic
behavior or to such sensing errors.

[Greco, Scarcello; 2014]



{Approaches to Verification —

g, 0 =) EEEITES =) o m

@ Verification is performed via sensing

@ Hence, it is subject to errors; for instance,
because of the limited precision of the
measurement instruments.

@ It might be problematic to decide whether an
observed discrepancy between verified values
and declared ones is due to a strategic
behavior or to such sensing errors.




\ Approaches to Verification ‘_

g’ '\0 N X Veifier | JENN k

@ Agents might be uncertain of their private
features; for instance, due to limited
computational resources

@ There might be no strategic issues




\ Approaches to Verification (ter)
g, 0 =) EEETTT - o

100.000EUR 'fg_
.i‘ W

[

g

@ Punishments enforce truthfulness

@ They might be disproportional to the harm
done by misreporting

@ Inappropriate in real life situations in which
uncertainty is inherent due to measurements
errors or uncertain inputs.

[Feige, Tennenholtz; 2011]



\ Approaches to Verification_

Punishments are
used to enforce

ilisti i - truthful
(2) Probabilistic Verification | """



[Approaches to Verification _

Punishments are
used to enforce
- gom . truthfulness

@ no punishment

@ payments are always computed under the presumption of
Innocence, where incorrect declared values do not mean
manipulation attempts by the agents

@ error tolerance

@ the consequences of errors in the declarations produce a
linear “distorting effect” on the various properties of the
mechanism



@ Monetary compensation to induce truthfulness

GOAL: Budget Balance

v' The algebraic sum of the monetary transfers is zero
v" In particular, mechanisms cannot run into deficit

@ Monetary compensation to induce fairness

v For instance, it is desirable that no agent envies the
allocation of any another agent, or that

v' The outcome is Pareto efficient, i.e., there is no
different allocation such that every agent gets at
least the same utility and one of them improves.




Payment Rules & Full Verificat

GOAL: Budget Balance

v' The algebraic sum of the monetary transfers is zero
v" In particular, mechanisms cannot run into deficit

-

Ei
fiL @ Monetary compensation to induce fairness
| _.gul ‘L v' For instance, it is desirable that no agent envies the

allocation of any another agent, or that

v' The outcome is Pareto efficient, i.e., there is no
different allocation such that every agent gets at
least the same utility and one of them improves.

~




\ Outline ‘_

lechanisms and Allocation Problems

|
|
|
J
J

somplexity Analysis




'The Model _

S & w

@ Goods are indivisible and non-sharable
@ Constraints on the maximum number of goods to be allocated to each agent

@ Cardinal preferences: Utility functions



"The Model * _

@ Goods are indivisible and non-sharable

@ Constraints on the maximum number of goods to be allocated to each agent

@ Cardinal preferences: Utility functions



\The Model !

@ Goods are indivisible and non-sharable

@ Constraints on the maximum number of goods to be allocated to each agent

@ Cardinal preferences: Utility functions

Different agents might have different valuations for the same good



'The Model _

&63@

@ Goods are indivisible and non-sharable
@ Constraints on the maximum number of goods to be allocated to each agent

@ Cardinal preferences: Utility functions

GOAL: Optimal Allocations

v" Social Welfare
v’ Efficiency



'The Model _

S 2w @

T\ CS, Y

@ Goods are indivisible and non-sharable

@ Constraints on the maximum number of goods to be allocated to each agent

@ Cardinal preferences: Utility functions

—
GOAL: Optimal Allocations < (¥

v" Social Welfare
v’ Efficiency



Strategic Issues ‘

-
»

GOAL: Optimal AIIocations<n

v" Social Welfare
v' Efficiency



\ Strategic Issues _

-
= 8
Dec""’ed,j,
Pe ’,

GOAL: Optimal Allocations <\

v" Social Welfare
v’ Efficiency



\ Strategic Issues _

-
% %
DQC/ared .
be))

GOAL: Op¥mal Allocations <l g

v" Social Welfare
v’ Efficiency



\ Strategic Issues: Example—

&@aw
Sy

0 Before: 8+9=17

GOAL: O)@al AIIocatlons<b.

v" Social Welfare
v’ Efficiency



\ Strategic Issues: Example:—

0 Before: 8+9=17
=
GOAL: O%al AIIocations<b

v" Social Welfare
v’ Efficiency



\ Strategic Issues: Example:—

Before: 8+9=17
After: 9+7=16

GOAL: O%al AIIocations<b

v" Social Welfare
v’ Efficiency



\ Strategic Issues: Verificat‘_

We assume full-verification.

But, of course, we can verify only the goods that are selected.



A Key Lemma

8§ 200 @ €3 &

QSN



\A Key Lemma —

@ Consider an optimal allocation (w.r.t. some declared types)



\A Key Lemma —

@ Consider an optimal allocation (w.r.t. some declared types)



‘A Key Lemma * _

@ Consider an optimal allocation (w.r.t. some declared types)

@ Ignore the goods that are not allocated,
@ and hence that cannot be verified later...



‘A Key Lemma * _

P B
\\55?3593‘7

@ Consider an optimal allocation (w.r.t. some declared types)

@ Ignore the goods that are not allocated,
@ and hence that cannot be verified later...



\A Key Lemma !

iy [ &
\\P/W
S - -

@ Consider an optimal allocation (w.r.t. some declared types)

@ Ignore the goods that are not allocated,
@ and hence that cannot be verified later...

@ Focus on an arbitrary coalition of agents



\A Key Lemma _

T 2. 0
\\gw
<

@ Consider an optimal allocation (w.r.t. some declared types)

@ Ignore the goods that are not allocated,
@ and hence that cannot be verified later...

@ Focus on an arbitrary coalition of agents



- ¢ &
N\ D=1
S -

@ Consider an optimal allocation (w.r.t. some declared types)

@ Ignore the goods that are not allocated,
@ and hence that cannot be verified later...

@ Focus on an arbitrary coalition of agents
@ In this novel setting, compute an optimal allocation



AKey Lemma

- e & y ¢ =
: -
S -

@ Consider an optimal allocation (w.r.t. some declared types)

@ Ignore the goods that are not allocated,
@ and hence that cannot be verified later...

@ Focus on an arbitrary coalition of agents
@ In this novel setting, compute an optimal allocation



A Key Lemma

S 2w @& 08 & ¢ &
WL N A

S -

@ Consider an optimal allocation (w.r.t. some declared types)

@ Ignore the goods that are not allocated,
@ and hence that cannot be verified later...

@ Focus on an arbitrary coalition of agents
@ In this novel setting, compute an optimal allocation

*» The allocation is also optimal for that coalition, even if all
goods were actually available



The Mechanism...

Input: An allocation 7 for (A, G,w), and a vector w € D;
Assumption: A verifier v is available. Let v(m) = (v, ..., vp);

Let C denote the set of all possible subsets of A:
For each set C € C,

| Compute an optimal allocation 7e for (C,img(m), w) w.r.t. w;

For each agent i € A,

| For each set C € C,

| | Let Aé}i(ﬂ'? w) 1= val(me, (v;, w—;)); (=vi(me) + Zjec\{i} w;(me));
| [ Let AZ (7. w) = val(me\ (3. W): (=2_ e\ wilTe\giy));

| Let &(mw) = Yeee LA AL (7, w) = AZ (7 w));

| Define pf(m w) 1= &(m, W) —vi(7):

1

© 0 NSO o=




The Mechanism...

Input: An allocation 7 for (A, G,w), and a vector w € D;
Assumption: A verifier v is available. Let v(m) = (v, ..., vp);

© 0 NSO o=

Let C denote the set of all possible subsets of A:
For each set C € C,

| Compute an optimal allocation me for (C,img(m), w) w.r.t. w;
For each agent i € A,

| For each set C € C Allocated goods are considered only
| | Let Aé}i(ﬂ'? w) = val(me. (v, w_;)): (=vi(me) + 22 e\ iy wi(me)):

| [ Let A(Q:,@'(’?Taw) = Vil(’?zz\{%avl")'? (:Zje(j’\{i,} wj(’?TC\{z'}))'a

| Let &(m.w) i= Ypee A AL (. w) — AZ (7. w)):

| Define pf('ﬂ'j w) = &(m,w) — vi(m);

1




The Mechanism...

Input: An allocation 7 for (A, G,w), and a vector w € D;
Assumption: A verifier v is available. Let v(m) = (v, ..., vp);

© 0 NSO o=

Let C denote the set of all possible subsets of A:
For each set C € C,

| Compute an optimal allocation me for (C,img(m), w) w.r.t. w;
For each agent i € A,

| For each set C € C, Allocated goods are considered only
| | Let Aé}i(ﬂ] w) = val(me. (v, w_;)): (=vi(me) + 22 e\ iy wi(me)):

| [ Let AZ (7. w) = Vil(’??\l{%a“lf)!? (=2_5ee\(iy WilTe\gap)):

| Let &(m,w) = ) eec 2= ||,3(|(!| = )'(A(lz,i(ﬁaw) - A%’,i(ﬂ_aw));

| Define Pt (m,w) = &(m,w) — vi(m);

1

By the previous lemma, this is without loss of generality.
In fact, allocated goods are the only ones that we verify.




The Mechanism...

Input: An allocation 7 for (A, G,w), and a vector w € D;
Assumption: A verifier v is available. Let v(m) = (v, ..., vp);

© 0 NSO o=

Let C denote the set of all possible subsets of A:
For each set C € C,

| Compute an optimal allocation me for (C,img(m), w) w.r.t. w;
For each agent i € A,

| For each set C € C Allocated goods are considered only
| | Let Aé}i(ﬂ] w) = val(me. (v, w_;)): (=vi(me) + 22 e\ iy wi(me)):

| [ Let A(Q:,@'(’?Taw) = Vil(’?zz\{%avl")'? (:Zje(j’\{i,} wj(’?TC\{z'}))'a

| Let &(m.w) i= Ypee A AL (. w) — AZ (7. w)):

| Define pf('ﬂ', w) = &(m,w) — vi(m);

1

«Bonus and Compensation»,
by Nisan and Ronen (2001)



The Mechanism...

Input: An allocation 7 for (A, G,w), and a vector w € D;
Assumption: A verifier v is available. Let v(m) = (v, ..., vp);

Let C denote the set of all possible subsets of A:
For each set C € C,

| Compute an optimal allocation me for (C,img(m), w) w.r.t. w;
For each agent i € A,

| For each set C € C Allocated goods are considered only
| | Let Aé}i(ﬂ] w) = val(me. (v, w_;)): (=vi(me) + 22 e\ iy wi(me)):

| [ Let AZ (7. w) = Vil(’FEC\‘{%aVY)!? (=2_5ee\(iy WilTe\gap)):

| Let &(mw) = Yeee A AL (W) = AZ (7, w)):

| Define pf('ﬂ', w) = &(m,w) — vi(m);

1

g No punishments!

© 0 NSO o=

«Bonus and Compensation»,
by Nisan and Ronen (2001)



The Mechanism...

Input: An allocation 7 for (A, G,w), and a vector w € D;
Assumption: A verifier v is available. Let v(m) = (v, ..., vp);

Let C denote the set of all possible subsets of A:
For each set C € C,

| Compute an optimal allocation me for (C,img(m), w) w.r.t. w;
For each agent i € A,

| For each set C € C, Allocated goods are considered only
| | Let Aé}i(ﬂ] w) = val(me. (v, w_;)): (=vi(me) + 22 e\ iy wi(me)):

| [ Let AZ (7. w) = Vil(’??\l{%a“lf)!? (=2_5ee\(iy WilTe\gap)):

| Let &(m,w) = ) eec 2= ||,3(|(!| = )'(A(lz,i(ﬁaw) - A%’,i(ﬂ_aw));

| Define Pt (m,w) = &(m,w) — vi(m);

1

© 0 NSO o=

«Bonus and Compensation»,
by Nisan and Ronen (2001)

*» Truth-telling is a dominant strategy for each agent




The Mechanism...

Input: An allocation 7 for (A, G,w), and a vector w € D;
Assumption: A verifier v is available. Let v(m) = (v, ..., vp);

1. Let C denote the set of all possible subsets of A:
2. For each set C € C,
3. | Compute an optimal allocation ¢ for (C,img(m), w) w.r.t. w:
4. For each agent 7 € A, ﬁ -
5 | For each set C € C, Allocated goods are considered only
6. | | Let Aé%(’ﬂ' w) = val(me. (v, w_;)): (=vi(me) + 22 e\ iy wi(me)):
[ | AL (T w) = val(me\pip W)t (52 e\ WilTev(y)):
S| Lefi(mw) = Yece G AL (7 w) - AZ (7, w));
9. | efine . f('r W) = &(u w) — v;(m);
| «Bonus and Compensation»,
Does not depend on by Nisan and Ronen (2001)

Is maximized when the declared type coincides
with the verified one

*» Truth-telling is a dominant strategy for each agent




The Mechanism...

Input: An allocation 7 for (A, G,w), and a vector w € D;
Assumption: A verifier v is available. Let v(m) = (v, ..., vp);

Let C denote the set of all possible subsets of A:
For each set C € C,

| Compute an optimal allocation me for (C,img(m), w) w.r.t. w;
For each agent i € A,

| For each set C € C Allocated goods are considered only
| Let Ag,(m,w) :=val(me. (vi,w—i)):  (=vi(7e) + X jee\ (i i (7e)):

|
L
|

WTW));

=Y AL S (r,w) — A2

© 0 NSO o=

«Bonus and Compensation»,
by Nisan and Ronen (2001)

*» Truth-telling is a dominant strategy for each agent




\Coalitional Games * _

@ Players form coalitions
@ Each coalition is associated with a worth
@ A total worth has to be distributed

G=(N,p), p:2N — R

@ Solution Concepts characterize outcomes in terms of
@ Fairness
¢ Stability



Coalitional Games: Shaplef

otg) = Y =L 00y - vien i)

@ Solution Concepts characterize outcomes in terms of
@ Fairness
¢ Stability



Relevant Properties of the Shapley:Valug

(I) ZieN sz(g) = ‘:O(N)J

(II) If ¢ is supermodular (resp., submodular), then . p®:/(G) > ¢@(R) (resp.,
Y icr ®i(G) < w(R))lfor each coalition R C N.

(ITI) IfG" = (N,¢') isa ga
for each agent 1 € V.

e such that ¢'(R) > p(R), for each R C /@8 hen ¢;(G") > ¢;(G),

Core Allﬂiocation
\ 4
(RUT) +o(RNT) > p(R) + o(T) (resp., o(RUT) +o(RNT) < p(R) + ¢(T))



The Mechanism ‘

g:<N390>:90:2N'_}]R )
selected products

@ (') is the contribution of the coalition w.r.t. < and
verified values

\



\The Mechanism | _

g:<Na90>:90:2N'_>]R )
selected products

@ (') is the contribution of the coalition w.r.t. < and
verified values

\

Best possible allocation,
assuming that agents in C are the only ones in the game



\The Mechanism | _

G=(N,p), p: 2N — R
(

( selected products

(') is the contribution of the coalition w.r.t. < and
verified values ()

°

\

Each agent gets the Shapley value ¢z (g)



G=(N,p), p: 2N — R

.
selected products

@ (') is the contribution of the coalition w.r.t. < and
verified values ()

\

Each agent gets the Shapley value ¢z (g)

Properties The resulting mechanism is «fair» and «buget balanced»




G=(N,p), p: 2N — R

.
selected products

@ (') is the contribution of the coalition w.r.t. < and
verified values ()

\

Each agent gets the Shapley value ¢z (g)

Properties The resulting mechanism is «fair» and «buget balanced>»




G=(N,p), p: 2N — R

.
selected products

@ (') is the contribution of the coalition w.r.t. < and
verified values ()

\

Each agent gets the Shapley value ¢z (g)

Properties The resulting mechanism is «fair» and «buget balanced»

The game is supermodular;
so the Shapley value is stable



Further Observations fo:

@ Let ™ be an optimal allocation

@ Let7 be an allocation



\ Further Observations for Fm

@ Let ™ be an optimal allocation

@ Let7 be an allocation

p(C) :
(best allocation for the coalition with products in 7T) g

considering all possible products as available

AsTT is optimal, then ¢(C) is in fact optimal even by » L,O(C) > kp"'((j)



\ Further Observations for F_

@ Let ™ be an optimal allocation

@ Let7 be an allocation

p(C) :
(best allocation for the coalition with products in 7T) g

AsTT is optimal, then ¢(C) is in fact optimal even by » @(C) > k'0"'((7)

considering all possible products as available

!
By the monotonicity of the Shapley value, ¢z 2 ¢z



Further Observations for F¢

@ Let ™ be an optimal allocation

@ Let7 be an allocation

*» Optimal allocations are always preferred by ALL agents
* There is no difference between two different optimal allocations




[Further Observations for Fairness

@ Let ™ be an optimal allocation

@ Let7 be an allocation

*» Optimal allocations are always preferred by ALL agents
* There is no difference between two different optimal allocations

Eiificiency @Fai rness




|
|
|
|
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\ Complexity Issues _

@ For many classes of «xcompact games» (e.g., graph games),
the Shapley-value can be efficiently calculated

@ Here, the problem emerges to be #P-complete



[Complexity Issues -

@ For many classes of «xcompact games» (e.g., graph games),
the Shapley-value can be efficiently calculated

@ Here, the problem emerges to be #P-complete

@ #P is the class the class of all functions that can be computed by counting
Turing machines in polynomial time.

@ A counting Turing machine is a standard nondeterministic Turing machine
with an auxiliary output device that prints in binary notation the number of
accepting computations induced by the input.

@ Prototypical problem: to count the number of truth variable assignments
that satisfy a Boolean formula.



{Complexity Issues -

@ For many classes of «xcompact games» (e.g., graph games),
the Shapley-value can be efficiently calculated

@ Here, the problem emerges to be #P-complete

Reduction from the problem of counting the number of perfect
matchings in certain bipartite graphs [Valiant, 1979]

@ #P is the class the class of all functions that can be computed by counting
Turing machines in polynomial time.

@ A counting Turing machine is a standard nondeterministic Turing machine
with an auxiliary output device that prints in binary notation the number of
accepting computations induced by the input.

@ Prototypical problem: to count the number of truth variable assignments
that satisfy a Boolean formula.



Complexity Issues

@ #P-complete

@ However...




{Probabilistic Computation —

@ #P-complete

@ However...

Coupling of the algorithm with a sampling strategy for the
coalitions by [Liben-Nowell,Sharp, Wexler, Woods; 2012]




Probabilistic Computation

Input: An allocation 7 for (A, G,w), and a vector w € D;
Assumption: A verifier v is available. Let v(m) = (v, ..., vp);

Let C denote the set of all possible subsets of A:
For each set C € C

, timal allocation ¢ for (C, img(m), w) w.r.t. w:
each agent i € A,
or each set C € C,
e w) = val(me, (vi, w—i));  (=vi(7e) + 2 jec\ gy wi(Te)):
Let AZ,(m,w) = val(meyy, W) (=2 jee\ iy Wil(Tev(iy));
Al—=lc)!(|c]—-1)!
et &(m, W) = Yeee PRI (AL (7 w) — AZ (7, w));

i’f(?rvw) = gz(WW) — 'Ui(’?l_);_

1
2
3
4.
D.
6
7
8
9

—— ——— 9

Define p

Use sampling, rather than exaustive search.

Coupling of the algorithm with a sampling strategy for the
coalitions by [Liben-Nowell,Sharp, Wexler, Woods; 2012]




Back to Exact Computation: Islands of liractauity

@ Can we find classes of instances for
«allocation games» over which the Shapley
value can be efficiently computed?




@ Can we find classes of instances for
«allocation games» over which the Shapley
value can be efficiently computed?

@ Ultility functions
@ Values taken from specific domains
@ For instance, use k values at most #P-complete, even for k=2




Back to Exact Computation: Islands of liractaiiity

@ Can we find classes of instances for
«allocation games» over which the Shapley
value can be efficiently computed?

@ Ultility functions
@ Values taken from specific domains
@ For instance, use k values at most #P-complete, even for k=2

-
‘o:

@ Structural restrictions...



‘ Bounded Sharing Degree | —

& 2w v
\\ /A g g & Sharing degree = 2
«

-3

@ Sharing degree
@ Maximum number of agents competing for the same good



‘ Bounded Sharing Degree _

& 2w
\\P/ / Sharing degree = 2

-3

@ Sharing degree
@ Maximum number of agents competing for the same good

a )

The Shapley value can be computed in polynomial
time whenever the sharing degree is 2 at most.

N J




Bounded Interactions



‘ Bounded Interactions _

& 2w
\\/)&‘)(// »5, P:
-:

@ Interaction graph

@ There is an edge between any pair of agents competing for
the same good



‘ Bounded Interactions _

8§ 2 »
\\/)&\% »:, .3
13

@ Interaction graph

@ There is an edge between any pair of agents competing for
the same good

a )

The Shapley value can be computed in polynomial
time whenever the interaction graph is a tree.

g or, more generally, if it has bounded treewidth

/




Application
The ltalian Research Assessment Program




{Case study: Italian Research AssessmentiRrogiais

@ VOR: ANVUR should evaluate the quality of research of
all Italian research structures

@ Funds for the structures in the next years depend on the
outcome of this evaluation

@ Substructures will be also evaluated (departments)

(1) 2004-2010
(2) 2011-2014



ANVUR Evaluation




'ANVUR Evaluation _

ANVUR Criteria
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\ANVUR Evaluation _

Structures are in charge of selecting the products to submit

I

/ »
L@ :\® )
\\\\\\\\\*@‘g

(<)
i
AN

/ i
i



@ Every researcher has to submit 3 publications

@ A publication cannot be allocated to two researchers

‘v Allocation Problem
(" )

excellent excellent good excellent good good poor

(based on declared values, i.e., not necessarily true!)



Number of Researchers

300

250

200

150

100

10

'J

Co-Autorships at University of Calabria

15

Number of publications

20

25

30



Co-Autorships at Univer:

1200

1000

800

600

400

Number of Publications

200

Co-authored (within University of Calabria)

V

1 2 3 4 5 6 7

Number of co-authors at University of Calabria



ANVUR Evaluation

ANVUR Criteria
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{ANVUR Evaluation

ANVUR Criteria
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{ANVUR Evaluation —

ANVUR Criteria
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\ Issues —

@ Allocation Problem
@ Valuations are declared

@ The program is meant to evaluate the structures...
@ ...but outcomes are used to evaluate researchers, too

Global Evaluation

«division» rule

Individual Evaluations



Desiderata for Division Rules

(P1) “budget-balance”: A division rule v must completely distribute the VQR score of
R over all its members, i.c., Y cp Vr(0¥*) = scoreyor(R).

(P2) “fairness”: A division rule v must be indifferent w.r.t. the optimal allocation being
selected, i.e., for each r € R, and for each pair of optimal allocations ¥* and 1*,

Ve (P*) = ”77‘(772*)-

(P3) “implementability”: A division rule v must be indifferent w.r.t. the scores (possibly
cheats) declared for unverified products, that is, for products not occurring in the

selected allocation.

(P4) “truthfulness”: A division rule v must provide no incentive in misreporting the
score of the research products.

(P5) “no punishment”: A division rule v must be such that, for each r € R and each
allocation ¥*, the value ~,.(¥*) is indifferent w.r.t. self-assessed scores, in particular,
w.r.t. discrepancies possibly emerging between such scores and VQR ones.



Three «Natural» Divisi

- pI’Oj,,.('(/)*) = Zpe'gb*(r) ScorerR(p)



Three «Natural» Division R

@ proj,.(¢v*) = Zp@/,*(r) scoreyqr(p)

) OWIleI‘r(’(f)*) — assign to each author the sum of the “normalized” scores
of the submitted products (s)he has co-authored,
where by normalization we just mean here dividing the
score of any product by the number of its authors



\Three «Natural» Division RE!-

@ proj,.(v*) = Zpel/)*(r) scoreyaor(p)

@ owner (1)) = assign to each author the sum of the “normalized” scores
of the submitted products (s)he has co-authored,
where by normalization we just mean here dividing the
score of any product by the number of its authors

score,(p)
ZpEproducts(r) r % Z SCO?“BVQR(p)

@ all, (¢v") =
' ZTER Zpép'roducts(r) scorer(p)




{Three «Natural» Division Rules

Q pI‘OJI(L.*) — ZPE‘U"*(T) SCOT@VQR(]))

@ owner (1)) = assign to each author the sum of the “normalized” scores
of the submitted products (s)he has co-authored,
where by normalization we just mean here dividing the
score of any product by the number of its authors

ZpEp'r'oducts (r) SCOTEr (p)

Z?"ER ZpEp'roducts(r) scorer(p)

X Z scorevaor(p)

pEY*(r)

@ all,.(¢v*) =

Are they good division rules?

The last one is clearly not implementable, because it depends on
publications without any evaluation by ANVUR. What about the others?



\ Division Rule: proj _

25 1 26 o (IT)

(P1) “budget-balance”: A division rule v must completely distribute the VQR score of
R over all its members, i.c., Y cp Vr(0¥*) = scoreyor(R).
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Division Rule: proj

25 1 26 o (IT)

(P2) “fairness”: A division rule v must be indifferent w.r.t. the optimal allocation being
selected, 1.e., for each r € R, and for each pair of optimal allocations V* and 9~

Y (V*) = 'Yr(lﬁ*)-



Division Rule: pro]

P1 P2 p3 P4 Ps De P7 P8

25 O 26Cn ™

P1 P2 P3 P4 Ps DPe Pr  Dps

26 O, 25 O, am

(P2) “fairness”: A division rule v must be indifferent w.r.t. the optimal allocation being
selected, 1.e., for each r € R, and for each pair of optimal allocations V* and 9~

W (%) = 7 (7).



Division Rule: pro]

P1 P2 p3 P4 Ps De P7 P8

25 ) 26 ©r (In

P1 P2 P3 P4 Ps DPe Pr  Dps

26 O, 25 O, (1)

(P2) “fairness”:

selected, 1i.e., for ea

ust be indifferent w.r.t. th ' ' eing
vmal allocations V* and P~



Back on the Desiderata...

(P1) “budget-balance”: A division rule v must completely distribute the VQR score of
R over all its members, i.c., Y cp Vr(0¥*) = scoreyor(R).

(P2) “fairness”: A division rule v must be indifferent w.r.t. the optimal allocation being
selected, i.e., for each r € R, and for each pair of optimal allocations ¥* and 1*,

Ve (P*) = ”77‘(772*)-

(P3) “implementability”: A division rule v must be indifferent w.r.t. the scores (possibly
cheats) declared for unverified products, that is, for products not occurring in the

selected allocation.

(P4) “truthfulness”: A division rule v must provide no incentive in misreporting the
score of the research products.

(P5) “no punishment”: A division rule v must be such that, for each r € R and each
allocation ¥*, the value ~,.(¥*) is indifferent w.r.t. self-assessed scores, in particular,
w.r.t. discrepancies possibly emerging between such scores and VQR ones.



Back on the Deside

P1 “bud et-balance”: A difUZ'SiOTL T'”U,le Y must (,3()’m’)l€t6il’l diStT'?ﬁb’U/tG the VC R Score of
/ L Y .
R over (l” 1ts 7?&677&567'8, 7;.6., E reR '\/,.(/l;fi‘*> — Score \,,,,QR(R).

(P2) “fairness”: A division rule v must be indifferent w.r.t. the optimal allocation being
selected, i.e., for each v € R, and for each pair of optimal allocations V* and ",

Y e
A

~ [ RY — A /%
e (0F) = 7 (¥F).

(P3) “implementability”: A division rule v must be indifferent w.r.t. the scores (possibly
cheats) declared for unverified products, that is, for products not occurring in the

selected allocation.

(P4) “truthfulness”: A division rule v must provide no incentive in misreporting the
score of the research products.

(P5) “no punishment”: A division rule v must be such that, for each r € R and each
allocation *, the value ~,. (V") is indifferent w.r.t. self-assessed scores, in particular,
w.r.t. discrepancies possibly emerging between such scores and VQR ones.



Strategic Manipulations: px
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{Strategic Manipulations: pro-
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Under- estimation
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{Strategic Manipulations: om_

P4 Ps Pe p7 Ps

D1 D2 p3
. 7 O O
| 10 % 10
8
r1 To (IT)

Over- estimation

N

The optimal solution
IS missed!!!




\ A Closer Look

Efficiency VS Fairness




A Closer Look

excellent
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Optimal Allocation

excellent excellent ex_cellent
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A Closer Look

( )
excg]lent exggllent good - el

h

Optimal Allocation

o

. J
exce!lent exajlent e}\(_gellent excellent good good poor

/ f/ \ ._

/

% «Penalizing» g. IS not fair!

< Unless it is clear that no penalization will occur, @ will act «strategically»



@ ANVUR did not specify a division rule
@ Reserchers considered pro jas «the rule»

@ Researchers submitted (rated) only the minimum number of publications
required (by default 3), thus implicitly under-estimating all their other products

@ To avoid overlapping submissions, «agreements» have been made

excellent excellent good excellent good g ood poor

e L
@ Conflicts resolved «strategically», «hierarchically», ...

The optimum has been missed!
No fairness at all!



[...and the reaction -
@ ANVUR declared that VQR has not to be used
to evaluate researchers, but only structures

$

Waste of money... and even just false!

Moreover,
what about Departments?




{Distribution at University of C




Distribution at University of C

(Scienze Aziendali e Giuridiche- DiScAG

[ Ingegneria per I'Ambiente e il Territorio e Ingegneria Chimica

7

[ Ingegneria Civile

—

15

rEconomia, statistica e finanza

——

Ingegneria Informatica, Modellistica, Elettronica e Sistemistica

r Fisica
5

r Biologia, Ecologia e Scienze della Terra

Chimica e Tecnologie Chimiche- CTC

18

Matematica e Informatica

r Studi Umanistici

—

6

( Lingue e Scienze dell’'Educazione

S

l Scienze Politiche e Sociali
S

10

U:armacia e Scienze della Salute e della Nutrizione
e

| Ingegneria Meccanica, Energetica e Gestionale




{Our Contribution (G. and Scarcello)

@ Define a mechanism satisying the desirable properties
@ In fact, it is essentially the only possible one
@ Mechanism design
@ Coalitional games (Shapley value)

¥

% % Wowl Let's use it.

e
T
.

"1 Good solution, but we just do not want to evaluate individuals...

\ We will have a look at the paper...
anvur



\ Support for ANVUR —

@ Implementation strategies
@ Sampling
@ Structural properties

(l Author 1 ) ( Author 2 )

Very partlcular interaction graph



Components at University of Calabria

30
20
8
7
4
3
2 2

l 1 i1 1 1 1
77777!7!!!!!!!
2 3 4 5 6 7 9 10 12 18 27

Number of components

8 11

Elements in each component



\An Example Componenf_
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@ Implementation strategies
@ Sampling
@ Structural properties

Very particular interaction graph

@ Side results
@ Collaborations with ANVUR
@ University of Calabria uses (parts of) our findings
@ Responsible for the quality of research at University of Calabria
@ Still trying to generalize at national level....



Lessons?
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Thank you!




