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Dominant strategies
Nash eq. (NE)
Subgame perfect NE
NE & refinements
…

Core
Shapley 
value
Nucleolus
τ-value
PMAS
….

Nash sol.
Kalai-
Smorodinsky
….

CORE
NTU-value
Compromise 
value
…

No binding agreements
No side payments
Q: Optimal behaviour in conflict 
situations

binding agreements
side payments are possible (sometimes)
Q: Reasonable (cost, reward)-sharing



Cooperative games: a simple example
Alone, player 1 (singer) and 2 (pianist) can 

earn 100€ 200€ respect.
Together (duo) 700€

How to divide the (extra) earnings?

I(v)
700

400

600

200

100 300 500 700

x2

x1x1 +x2=700

Imputation set: I(v)={x∈IR2|x1≥100, x2≥200, x1+x2 =700}



COOPERATIVE GAME THEORY
Games in coalitional form
TU-game: (N,v) or v
N={1, 2, …, n} set of players
S⊂N coalition
2N set of coalitions

DEF. v: 2NIR with v(∅)=0 is a Transferable Utility (TU)-game 
with player set N.
NB: (N,v)↔v
NB2: if n=|N|, it is also called n-person TU-game, game in 
coalitional form, coalitional game, cooperative game with side 
payments...
v(S) is the value (worth) of coalition S



COOPERATIVE GAME THEORY

Example
(Glove game)  N=L∪R, L∩R= ∅
i∈L (i∈R) possesses 1 left (right) hand glove
Value of a pair: 1€
v(S)=min{| L∩S|, |R∩S|} for each coalition S∈2N\{∅} .

Example
Glove game with L={1,2}, R={3}) 
v(1,3)=v(2,3)=v(1,2,3)=1,  v(S)=0 otherwise



Q.1: which coalitions form?

Q.2: If the grand coalition N forms, how to divide v(N)?
(how to allocate costs?)

Many answers! (solution concepts)
One-point concepts:  - Shapley value (Shapley 1953)

- nucleolus (Schmeidler 1969)
- τ-value (Tijs, 1981)
…

Subset concepts: - Core (Gillies, 1954)
- stable sets (von Neumann, Morgenstern, ’44)
- kernel (Davis, Maschler)
- bargaining set (Aumann, Maschler)
…..

DEF. (N,v) is a superadditive game iff

v(S∪T)≥v(S)+v(T) for all S,T with S∩T=∅



Example
(Glove game)  (N,v) such that N=L∪R, L∩R= ∅
v(S)=min{| L∩S|, |R∩S|} for all S∈2N\{∅} 

Claim: the glove game is superadditive.

Suppose S,T∈2N\{∅} with S∩T=∅. Then

v(S)+v(T)= min{| L∩S|, |R∩S|} + min{| L∩T|, |R∩T|}
=min{| L∩S|+|L∩T|,|L∩S|+|R∩T|,|R∩S|+|L∩T|,|R∩S|+|R∩T|} 
≤min{| L∩S|+|L∩T|, |R∩S|+|R∩T|}
since S∩T=∅

=min{| L∩(S ∪ T)|, |R ∩ (S∪ T)|}
=v(S ∪T).



The imputation set

DEF. Let (N,v) be a n-persons TU-game. 
A vector x=(x1, x2, …, xn)∈IRN is called an imputation iff

(1) x is individual rational i.e. 
 xi ≥ v(i) for all i∈N

(2) x is efficient
Σi∈N xi = v(N)

[interpretation  xi: payoff to player i]

I(v)={x∈IRN | Σi∈N xi = v(N), xi ≥ v(i) for all i∈N}
Set of imputations



Example
(N,v) such that 
N={1,2,3}, 
v(1)=v(3)=0, 
v(2)=3, 
v(1,2,3)=5.

x3

x2

X1

(5,0,0)

(0,5,0)

(0,0,5)

x 1+x 2+x 3=5
(2,3,0)

(0,3,2)

I(v)

I(v)={x∈IR3 | x1,x3≥0, x2≥3, x1+x2+x3=5}



The core of a game

DEF. Let (N,v) be a TU-game. The core C(v) of (N,v) is the 
set
C(v)={x∈I(v) | Σi∈S xi ≥ v(S) for all S∈2N\{∅}}

stability conditions
no coalition S has the incentive to split off 
if x is proposed

Note: x ∈ C(v)  iff
(1) Σi∈N xi = v(N) efficiency
(2) Σi∈S xi ≥ v(S) for all S∈2N\{∅} stability

Bad news: C(v) can be empty
Good news: many interesting classes of games have a non-
empty core.



Example
(N,v) such that 
N={1,2,3}, 
v(1)=v(3)=0, 
v(2)=3,
v(1,2)=3, 
v(1,3)=1
v(2,3)=4
v(1,2,3)=5.

Core elements satisfy the 
following conditions:

x1,x3≥0, x2≥3, x1+x2+x3=5

x1+x2≥3, x1+x3≥1, x2+x3≥4

We have that

5-x3≥3⇔x3≤2

5-x2≥1⇔x2≤4

5-x1≥4⇔x1≤1

C(v)={x∈IR3 | 1≥x1≥0,2≥x3≥0, 4≥x2≥3, x1+x2+x3=5}



Example
(N,v) such that 
N={1,2,3}, 
v(1)=v(3)=0, 
v(2)=3,
v(1,2)=3, v(1,3)=1
v(2,3)=4
v(1,2,3)=5.

x3

x2

X1

(5,0,0)

(0,5,0)

(0,0,5)

x 1+x 2+x 3=5
(2,3,0)

(0,3,2)

C(v)
(0,4,1)

(1,3,1)

(1,4,0)

C(v)={x∈IR3 | 1≥x1≥0,2≥x3≥0, 4≥x2≥3, x1+x2+x3=5}



Example (Game of pirates) Three pirates 1,2, and 3. On the other 
side of the river there is a treasure (10€). At least two pirates are 
needed to wade the river…
(N,v), N={1,2,3}, v(1)=v(2)=v(3)=0, 
v(1,2)=v(1,3)=v(2,3)=v(1,2,3)=10

Suppose (x1, x2, x3)∈C(v). Then
efficiency  x1+ x2+ x3=10

 x1+ x2           ≥10
stability  x1+    x3 ≥10 

       x2+ x3 ≥10 

20=2(x1+ x2+ x3) ≥30 Impossible. So C(v)=∅. 

Note that (N,v) is superadditive.



Example
(Glove game with L={1,2}, R={3}) 
v(1,3)=v(2,3)=v(1,2,3)=1,  v(S)=0 otherwise

Suppose (x1, x2, x3)∈C(v). Then
 x1+ x2+ x3=1  x2=0 
 x1+x3 ≥1  x1+x3 =1 
 x2≥0 
x2+ x3 ≥1  x1=0 and x3=1

So C(v)={(0,0,1)}. 

(1,0,0)

(0,0,1)

(0,1,0)

I(v)



How to share v(N)…

The Core of a game can be used to exclude those 
allocations which are not stable.

But the core of a game can be a bit “extreme” (see 
for instance the glove game)

Sometimes the core is empty (pirates)
And if it is not empty, there can be many 

allocations in the core (which is the best?)



An axiomatic approach (Shapley (1953)
Similar to the approach of Nash in bargaining: 

which properties an allocation method should 
satisfy in order to divide v(N) in a reasonable way? 

Given a subset C of GN (class of all TU-games with 
N as the set of players) a (point map) solution on C 
is a map Φ:C →IRN. 

For a solution Φ we shall be interested in various 
properties…



Symmetry
PROPERTY 1(SYM) Let v∈GN be a TU-game. 

Let i, j∈Ν. If v(S∪{i}) = v(S∪{j}) for all S∈2N\{i,j}, 
then Φi(v) = Φj (v).

EXAMPLE 

We have a TU-game ({1,2,3},v) s.t. v(1) = v(2) = v(3) = 0, 
v(1, 2) = v(1, 3) = 4, v(2, 3) = 6, v(1, 2, 3) = 20.

Players 2 and 3 are symmetric. In fact: 

v(∅∪{2})= v(∅∪{3})=0 and v({1}∪{2})=v({1}∪{3})=4

If Φ satisfies SYM, then Φ2(v) = Φ3(v)



Efficiency 
PROPERTY 2 (EFF) Let v∈GN be a TU-game. 

∑ i∈NΦi(v) = v(N), i.e., Φ(v) is a pre-imputation.

Null Player Property 
DEF. Given a game v∈GN, a player i∈N s.t. 

v(S∪i) = v(S) for all S∈2N will be said to be a null player.

PROPERTY 3 (NPP) Let v∈GN be a TU-game. If i∈N is a 
null player, then Φi(v) =0.

EXAMPLE We have a TU-game ({1,2,3},v) such that v(1) =0, 
v(2) = v(3) = 2, v(1, 2) = v(1, 3) = 2, v(2, 3) = 6, v(1, 2, 3) = 
6. Player 1 is null. Then Φ1(v) = 0 



EXAMPLE We have a TU-game ({1,2,3},v) such that 
v(1) =0, v(2) = v(3) = 2, v(1, 2) = v(1, 3) = 2, v(2, 3) 
= 6, v(1, 2, 3) = 6. On this particular example, if Φ 
satisfies NPP, SYM and EFF we have that

Φ1(v) = 0 by NPP

Φ2(v)= Φ3(v) by SYM

Φ1(v)+Φ2(v)+Φ3(v)=6 by EFF

So  Φ=(0,3,3)

But our goal is to characterize Φ on GN. One more 
property is needed.



Additivity 
PROPERTY 4 (ADD) Given v,w ∈GN, 

Φ(v)+Φ(w)=Φ(v +w).

.EXAMPLE Two TU-games v and w on N={1,2,3}

v(1) =3

v(2) =4 

v(3) = 1

v(1, 2) =8 

v(1, 3) = 4

v(2, 3) = 6 

v(1, 2, 3) = 10

w(1) =1 

w(2) =0 

w(3) = 1 

w(1, 2) =2 

w(1, 3) = 2

w(2, 3) = 3

w(1, 2, 3) = 4

+

v+w(1) =4 

v+w(2) =4 

v+w(3) = 2 

v+w(1, 2) =10 

v+w(1, 3) = 6

v+w(2, 3) = 9 

v+w(1, 2, 3) = 14

=

Φ Φ
Φ



Theorem 1 (Shapley 1953) 
There is a unique map φ defined on GN that satisfies EFF, 

SYM, NPP, ADD. Moreover, for any i∈N we have that

)(
!

1)( vm
n

v ii ∑ Π∈
=

σ
σφ

Here Π is the set of all permutations σ:N →N  of N, while mσ
i(v) is the 

marginal contribution of player i according to the permutation σ, 
which is defined as: 
v({σ(1), σ(2), . . . , σ (j)})− v({σ(1), σ(2), . . . , σ (j −1)}),
where j is the unique element of N s.t. i = σ(j).



Example
(N,v) such that 
N={1,2,3}, 
v(1)=v(3)=0, 
v(2)=3,
v(1,2)=3, 
v(1,3)=1,
v(2,3)=4,
v(1,2,3)=5.

Permutation 1 2 3
1,2,3 0 3 2
1,3,2 0 4 1
2,1,3 0 3 2
2,3,1 1 3 1
3,2,1 1 4 0
3,1,2 1 4 0

Sum 3 21 6
 φ(v) 3/6 21/6 6/6

Probabilistic interpretation: (the “room parable”)
Players gather one by one in a room to create the “grand coalition”, and each 
one who enters gets his marginal contribution.
Assuming that all the different orders in which they enter are equiprobable, 
the Shapley value gives to each player her/his expected payoff.



Example
(N,v) such that 
N={1,2,3}, 
v(1)=v(3)=0, 
v(2)=3,
v(1,2)=3, v(1,3)=1
v(2,3)=4
v(1,2,3)=5.

x3

x2

X1

(5,0,0)

(0,5,0)

(0,0,5)

x 1+x 2+x 3=5
(2,3,0)

(0,3,2)

C(v)

Marginal vectors

123(0,3,2)

132(0,4,1)

213(0,3,2)

231(1,3,1)

321(1,4,0)

312(1,4,0)

(0,4,1)

(1,3,1)

(1,4,0)

 φ(v)=(0.5, 3.5,1)
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