Game Theory and Algorithms, Lake Como School of Advanced Studies 7-11 September 2015, Campione d'Italia

Computational complexity of solution concepts

UNIVERSITÀ DELLA CALABRIA

Gianluigi Greco

Dept. of Mathematics and Computer Science University of Calabria, Italy

One Basic Question...

The lost letter...

- **•** Year: 1956
- To: John von Neumann
- …and one question

P=NP?

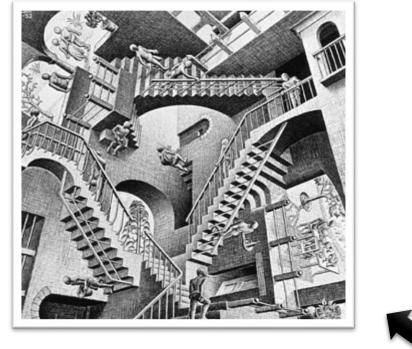
Kurt Gödel (1906-1978)

Millennium Prize Problems

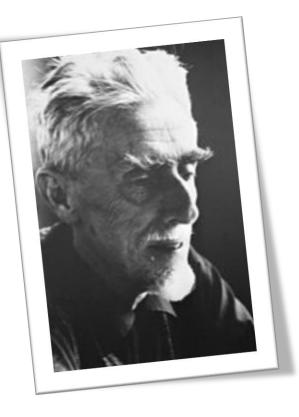
Seven problems

- P versus NP
- Poincaré conjecture
- Hodge conjecture
- Riemann hypothesis
- Yang–Mills existence and mass gap
- Navier–Stokes existence and smoothness
- Birch and Swinnerton-Dyer conjecture

About Clay



M.C. ESCHER RELATIVITY, 1953

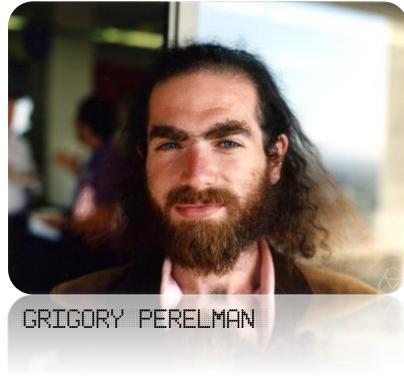


CLAY MATHEMATICS INSTITUTE

About the Problems

One problem has been solved in 2006 Poincaré conjecture

He did not want the prize...
...and the Fields Medal



Problems

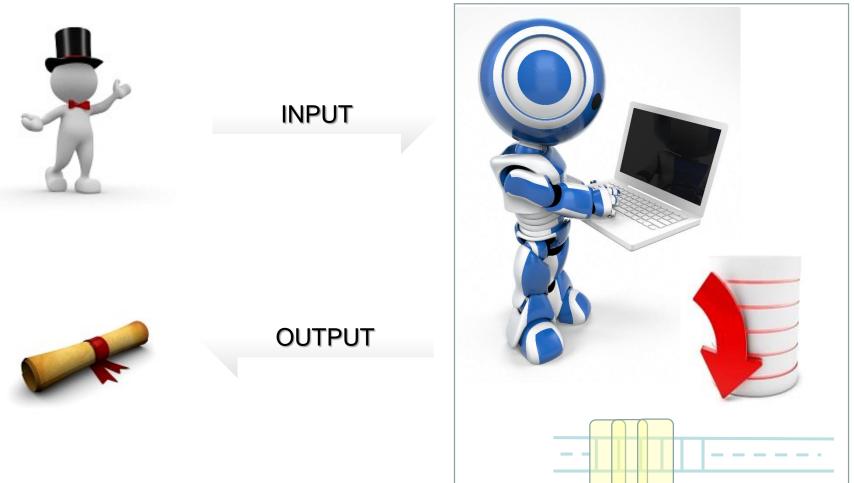
Look for a document

INPUT

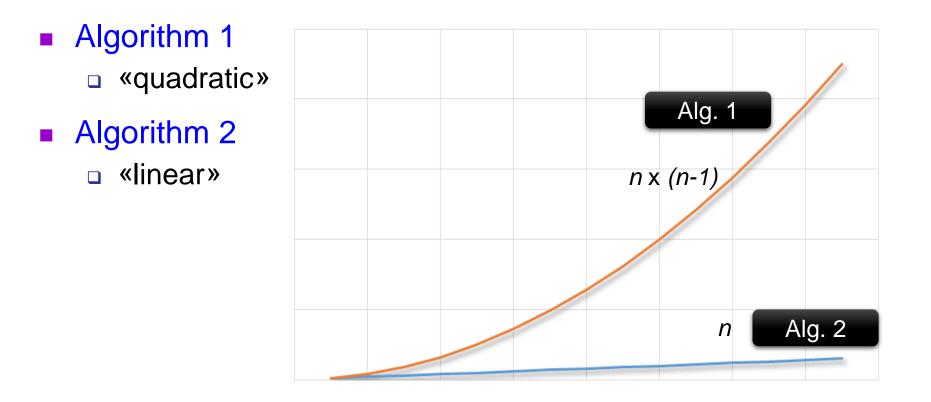
OUTPUT

Algorithms

Look for a document



Comparison



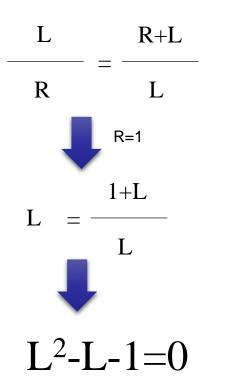
The problem is in P (Polynomial)

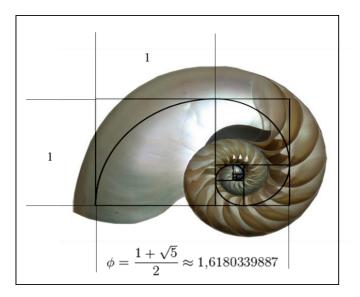
Look at the Pictures

Look at the Pictures

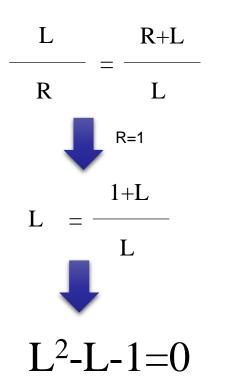
Golden Ratio

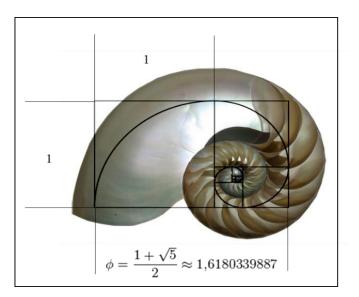
Golden Ratio





Golden Ratio





- Does there exist a solution?
- More generally, take $L_1, L_2, \dots L_n$ and answer questions such as:
 - Is ithere some value for L_1 such that for all values for L_2 ...

Golden Ratio

Provably EXPonential

Every algorithm takes 10ⁿ operations in the worst case

Does there exist a solution?

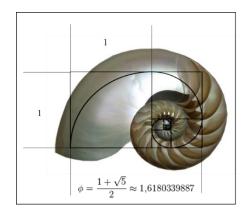
- More generally, take $L_1, L_2, \dots L_n$ and answer questions such as:
 - Is ithere some value for L_1 such that for all values for L_2 ...

Orders of Magnitude

- 10⁴: There are 20,000–40,000 distinct Chinese characters
- 10⁵ : 67,000 words in James Joyce's Ulysses
- 10⁶: As of August 31, 2015, Wikipedia contains approximately 4956000 articles in the English language
- 10⁹: Approximate population of India in 2011
- 10¹⁴: Cells in the human body
- 10²¹: Estimated number of observable stars
- 10⁸⁰: Atoms in the Universe

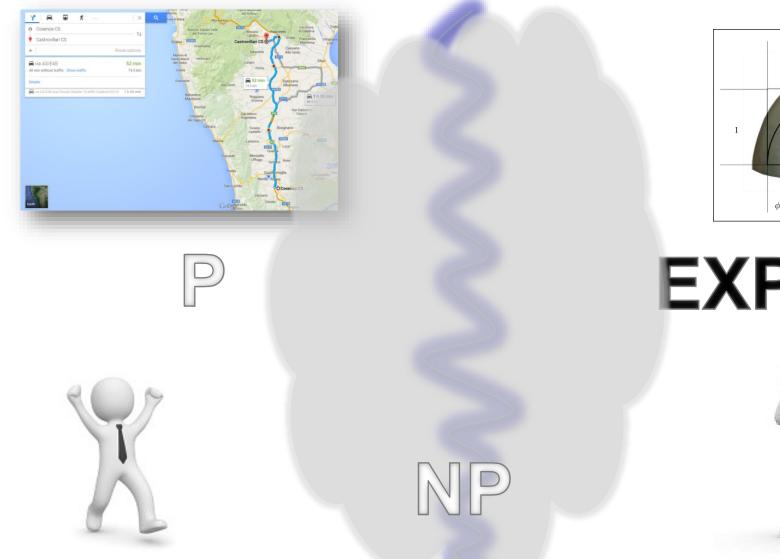
Classes of Problems

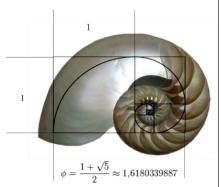
Cosenza CS	- 11	Rearve Datate Valle ESS Mourse Reasonets d Calabria
Castrovillari CS		Scales Castrovillari CS Corts Francavita Vilana Mariteria Las
+ Ro	ute options	Disonaria Basona Cassano Allo Ionio
via A3/E45 9 min eithout traffic · Show traffic	52 min 74.5 km	Sansa Manga Code Code
etalis		Damaerer San Section Abarerer Com
via A3/E45 and Brada Blatale 19 delle Calabre/10019	1 h 26 min	Belenders Rogane Riggane Riggane
		Cetraro Torano Bisignano
		Lataroo Lataro



EXP

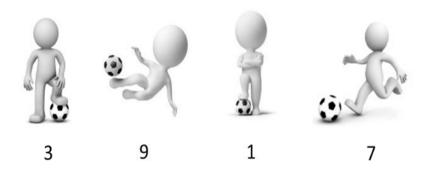
Classes of Problems



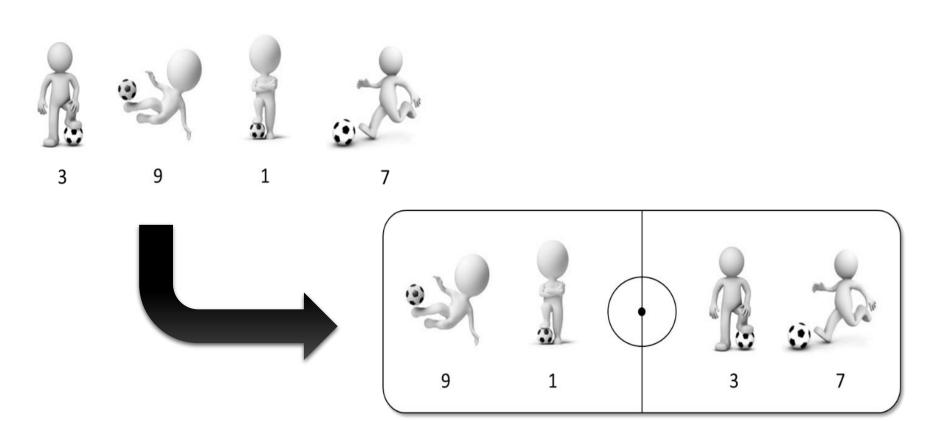


EXP

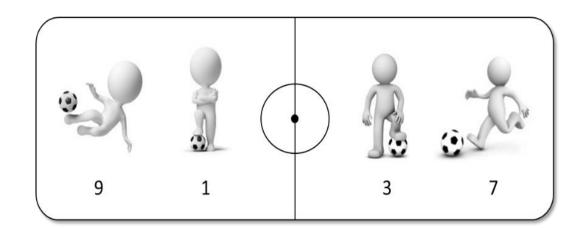
- We would like to set up two teams
- Goal
 - The teams should be «balanced»



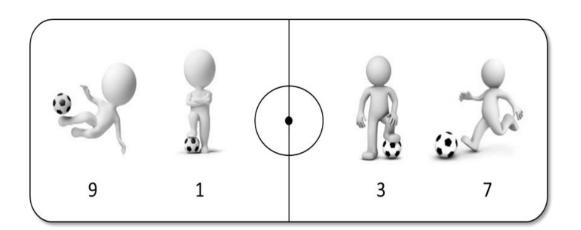
- We would like to set up two teams
- Goal
 - The teams should be «balanced»



- We would like to set up two teams
- Goal
 - The teams should be «balanced»
- Algorithm
 - Consider all possible teams



- We would like to set up two teams
- Goal
 - The teams should be «balanced»
- Algorithm
 - Consider all possible teams

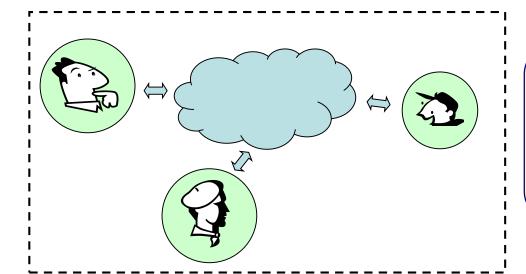


Further Examples

- Scheduling
- Planning
- Logistics
- Crypto

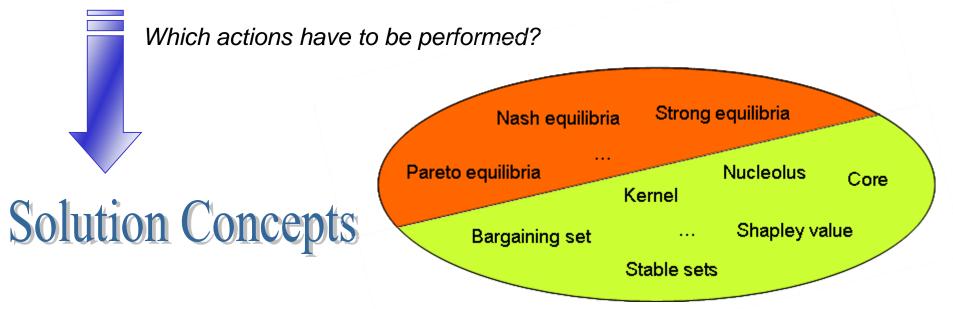
Part II: Nash Equilibria

Game Theory (in a Nutshell)

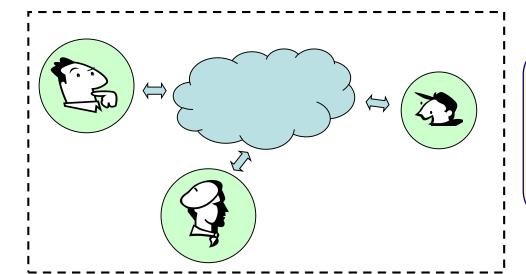


Each player:

- Has a **goal** to be achieved
- Has a set of possible actions
- Interacts with other players
- Is rational

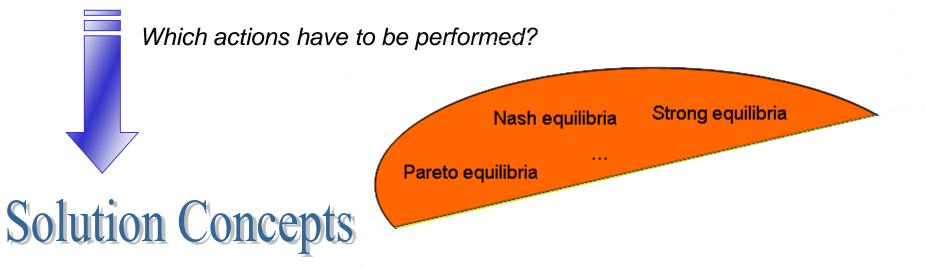


Game Theory (in a Nutshell)

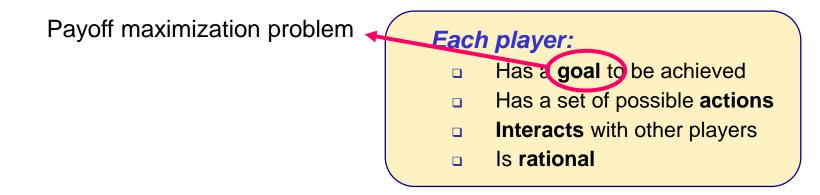


Each player:

- Has a **goal** to be achieved
- Has a set of possible actions
- Interacts with other players
- Is rational

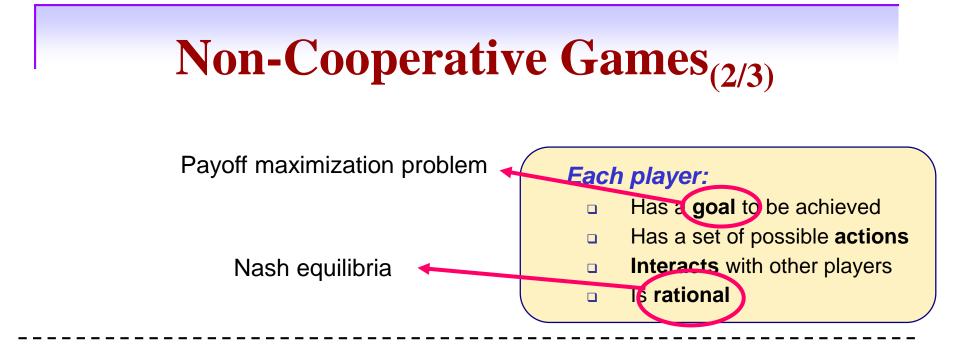


Non-Cooperative Games_(1/3)



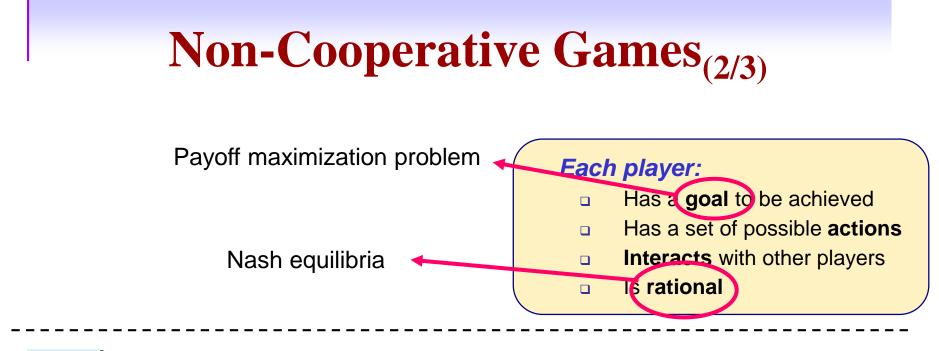
Bob	John goes out	John stays at home
out	2	0
home	0	1

	John	Bob goes out	Bob stays at home
	out	1	1
home		0	0

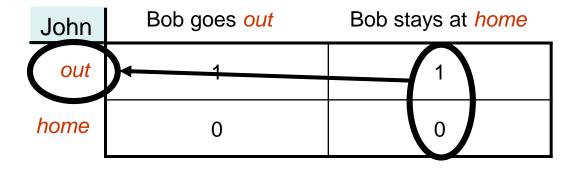


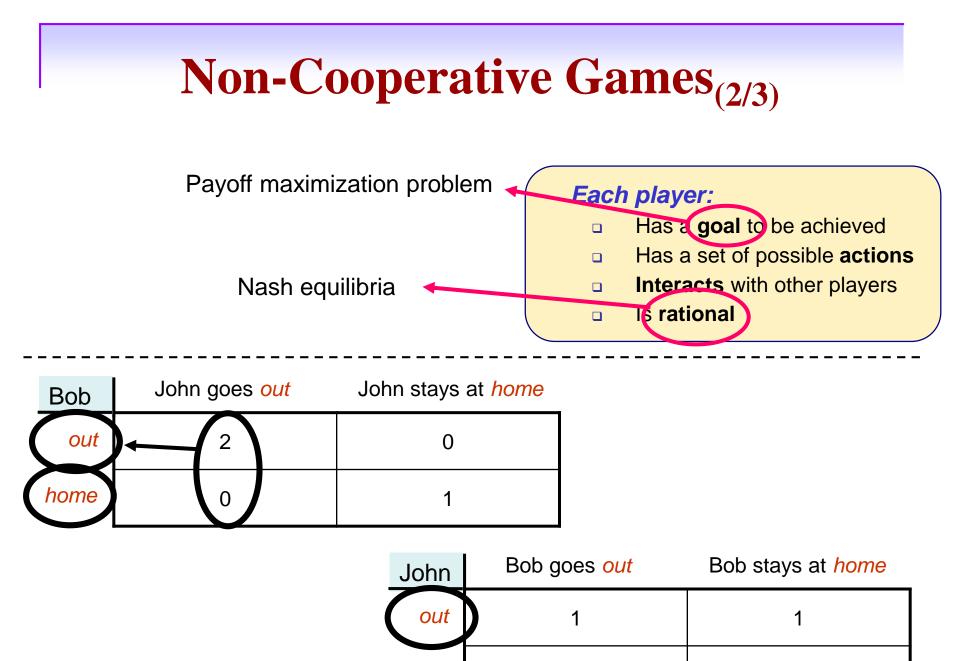
Bob	John goes <mark>out</mark>	John stays at home	
out	2	0	
home	0	1	

John	Bob goes out	Bob stays at home	
out	1	1	
home	0	0	

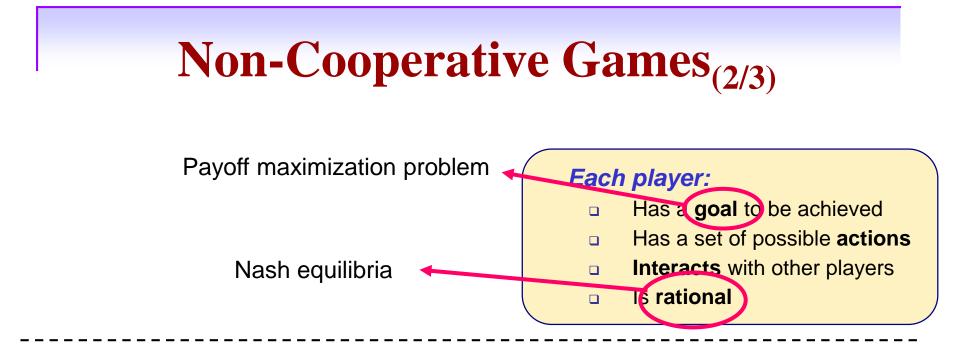


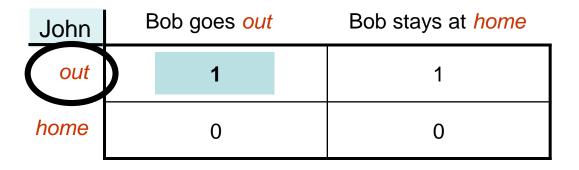
Bob	John goes out	John stays at home
out	2	0
home	0	1



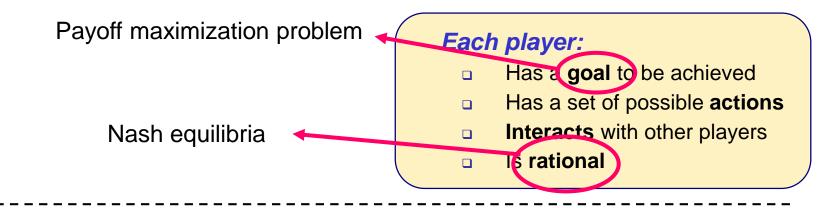


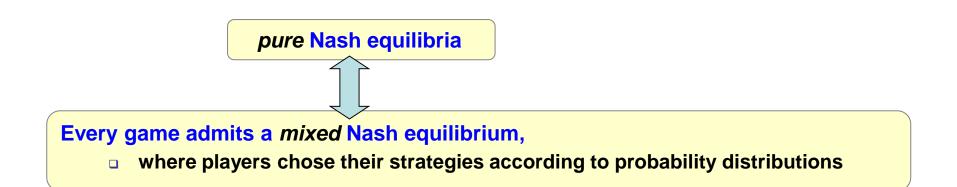
home

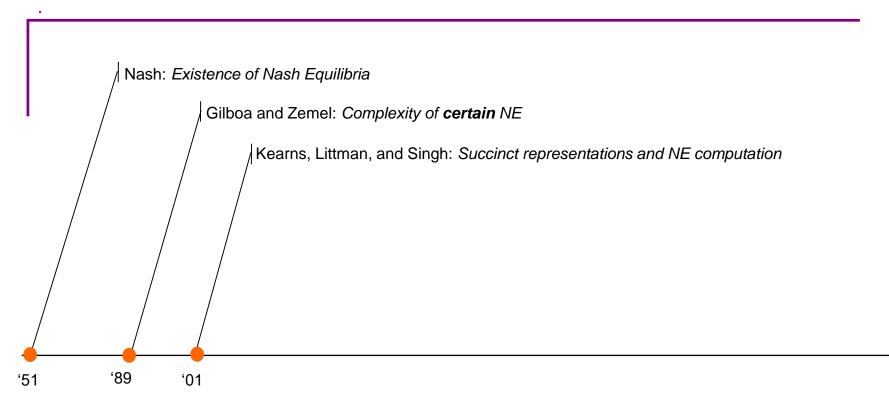




Non-Cooperative Games_(3/3)







- Players:
 - Maria, Francesco
- Choices:
 - movie, opera

If 2 players, then size = 2^2

Maria	Francesco, <i>movie</i>	Francesco, opera
movie	2	0
opera	0	1

- Players:
 - Maria, Francesco, Paola
- Choices:
 - movie, opera

If 2 players, then size = 2^2

If 3 players, then size = 2^3

Maria	F _{movie} and P _{movie}	F _{movie} and P _{opera}	F _{opera} and P _{movie}	F _{opera} and P _{opera}
movie	2	0	2	1
opera	0	1	2	2

- Players:
 - Maria, Francesco, Paola, Roberto, and Giorgio
- Choices:
 - movie, opera

If 2 players, then size = 2^2

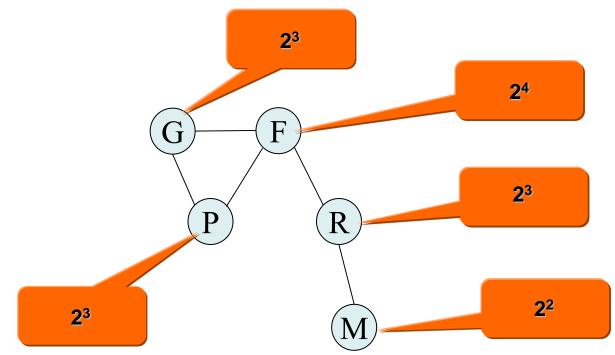
If 3 players, then size = 2^3

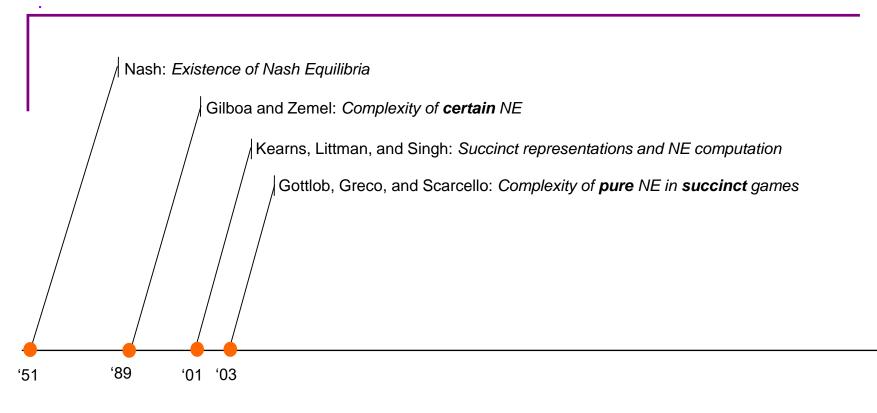
If N players, then size = 2^{N}

. . .

Maria	F _{movie} and P _{movie}	\mathbf{F}_{movie} and \mathbf{P}_{movie} and \mathbf{R}_{movie} and \mathbf{G}_{movie}			
movie	2				
opera	0				

- Players:
 - □ Francesco, Paola, Roberto, Giorgio, and Maria
- Choices:
 - movie, opera



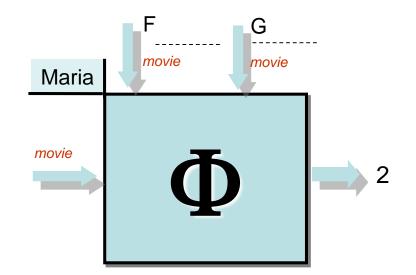


- Game Representation
 - Tables
 - Arbitrary Functions

Maria	F _{movie} and P _{movie}	and R _{movie} and G _{movi}	е	
movie	2			
opera	0			

Game Representation

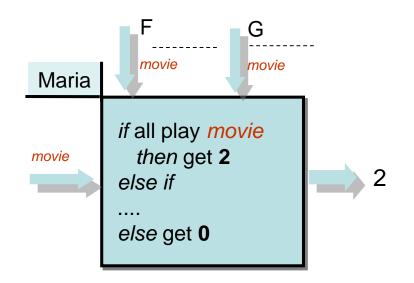
- Tables
- Arbitrary Functions



Maria	$F_{\textit{movie}}$ and $P_{\textit{movie}}$	and R _{movie} and G _{movi}	е	
movie	2			
opera	0			

Game Representation

- Tables
- Arbitrary Functions



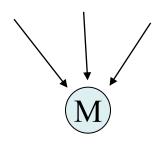
Maria	F _{movie} and P _{movie}	and R _{movie} and G _{movi}	е	
movie	2			
opera	0			

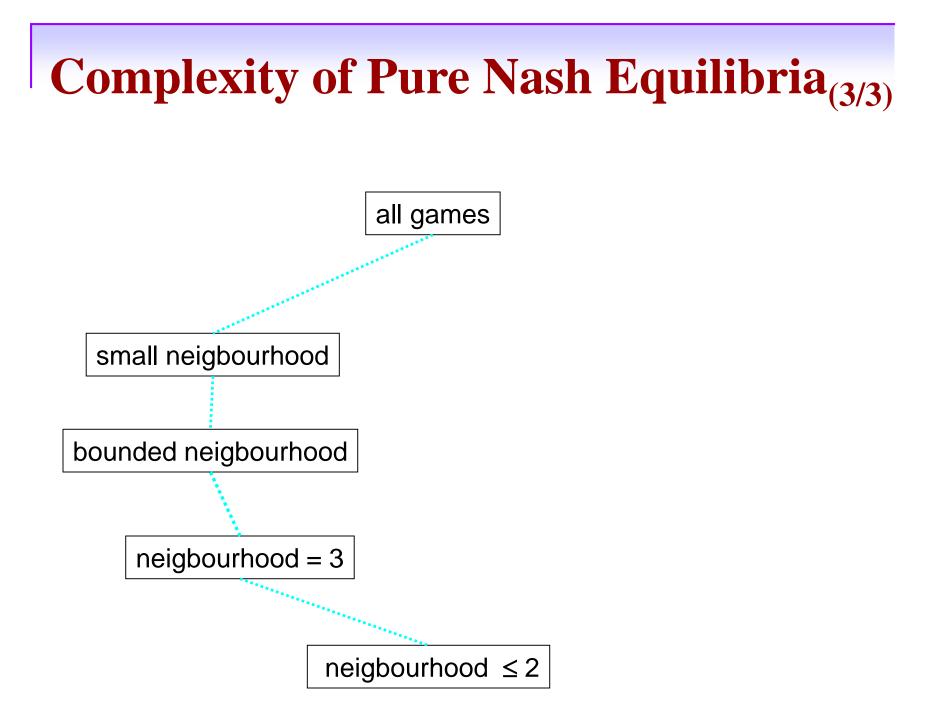
Game Representation

- Tables
- Arbitrary Functions

Neighborood

- Arbitrary
- Small (i.e., log)
- Bounded (i.e., constant)



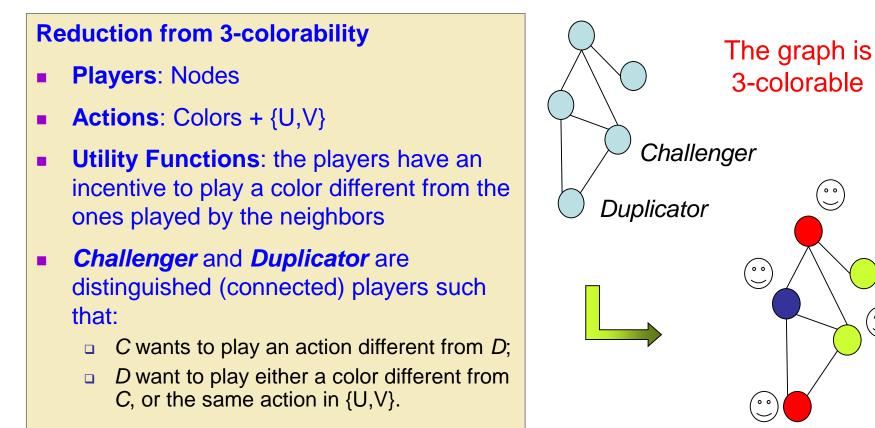


Hard Games: NP-hardness

Theorem Deciding whether a game has pure Nash equilibrium is NP-complete. Hardness holds even if the game is in GNF, and if it has 3-bounded neighborhood.

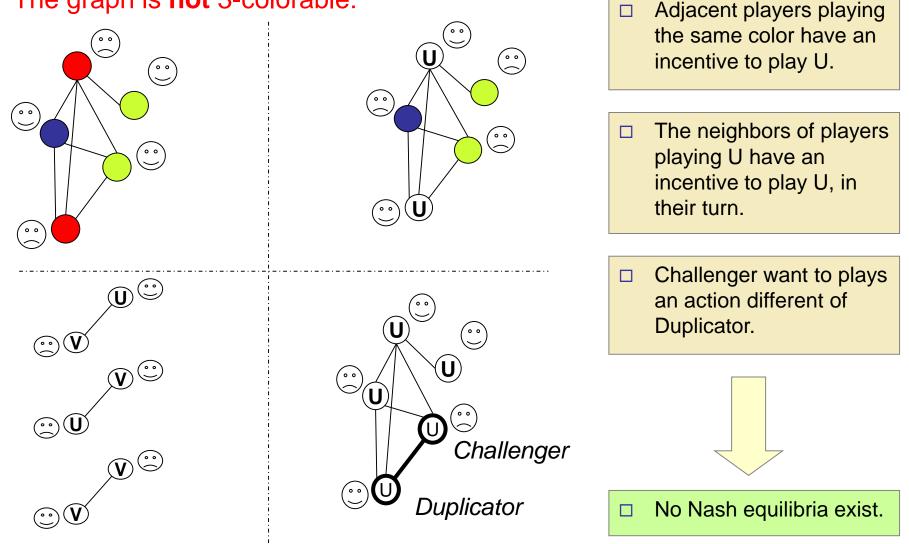
 $\langle \circ \circ \rangle$

(° °



Hard Games: NP-hardness

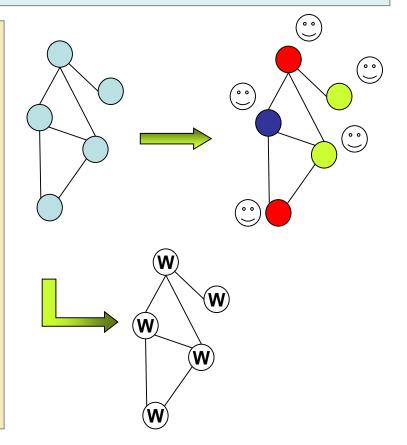
The graph is **not** 3-colorable:

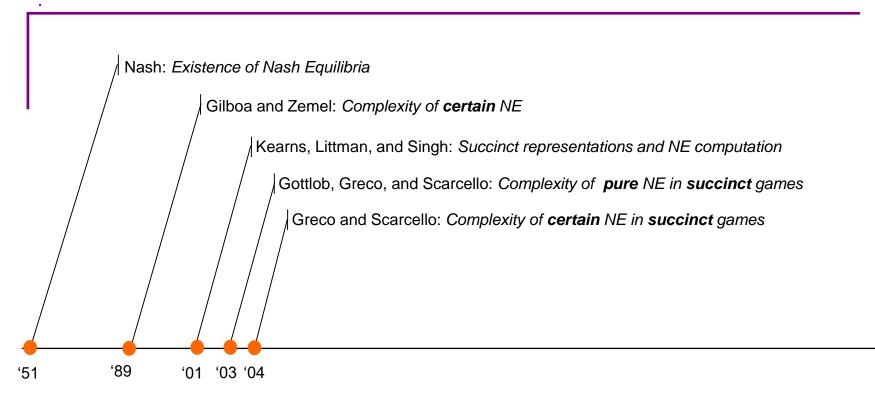


Hard Games: coNP-hardness

Theorem Deciding whether a global strategy \mathbf{x} is a Pareto (Strong) Nash equilibrium is coNP-complete. Hardness holds even if \mathbf{x} is a Nash equilibrium, the game is in GNF, and if it has 3-bounded neighborhood.

- Reduction from 3-non-colorability
- The same construction as above except:
 - Each player may play also W, and has an incentive in such choice if all her neighbors play W, too.
- There is alway a Nash equilibrium where all players play W
 - Utility functions are such that it this equilibrium is not preferred to the equilibrium (if any) corresponding to a 3coloring.
 - This equilibrium is Pareto iff the graph is not 3-colorable.





Во	b	John goes <u>out</u>	John stays at <i>home</i>	
C	ut	1	0	
hon	ne	0	1	

	John	Bob goes out	Bob stays at home
-	out	0	1
	home	1	0

- Computing "any" Nash equilibria might not be enough
 - E.g., multi-agent planning, routing protocols, etc.
- What if we ask for "certain types of equilibrium"?
 - Bob gets at least 1
 - The best social welfare
 - Maria cannot go to the opera
 - ...

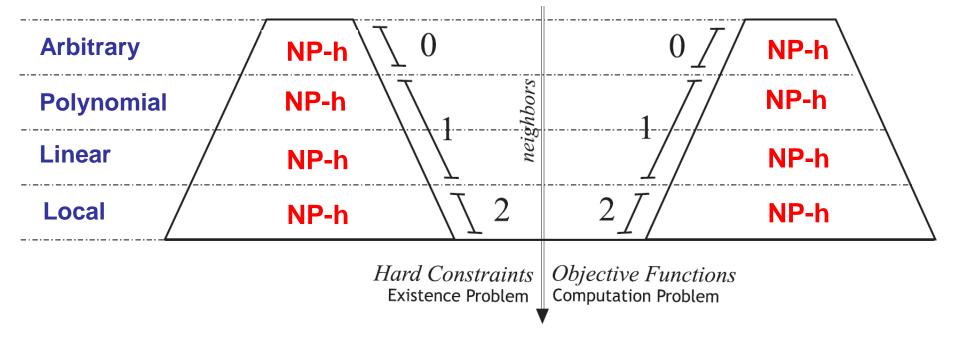
E	Bob	John goes <i>out</i>	John stays at <i>home</i>	
	out	1	0	
h	ome	0	1	le le le

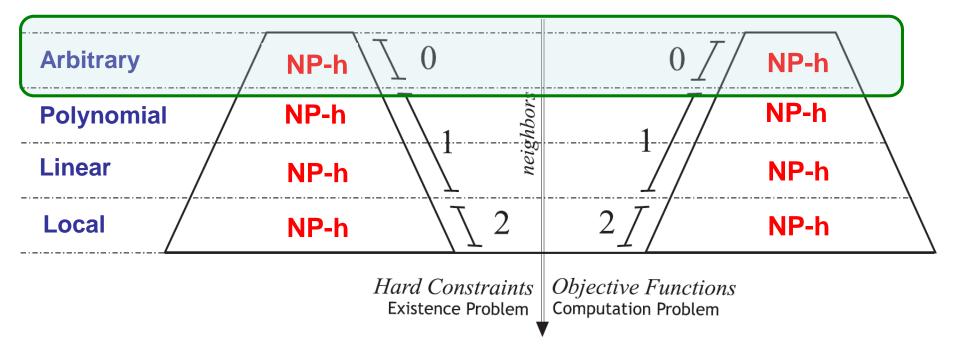
John	Bob goes out	Bob stays at home
out	0	1
home	1	0

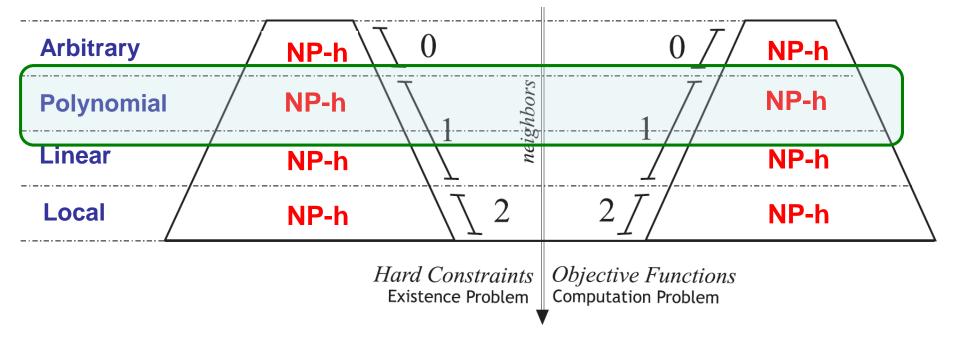
Evaluation functions

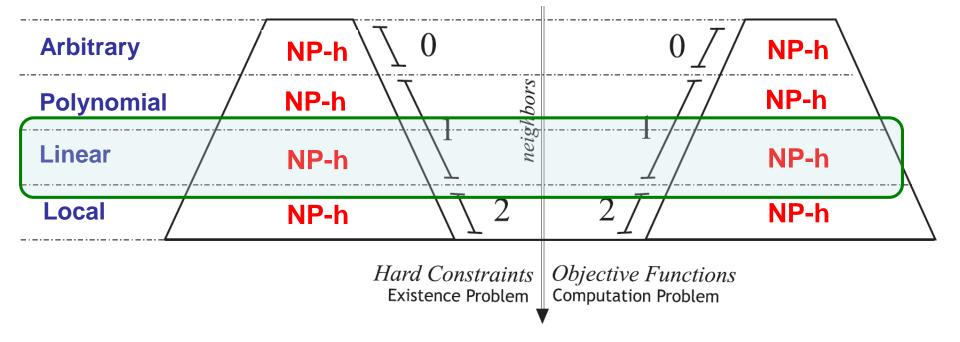
F_P: polynomial-time computable functions, associating real numbers with each combined strategy of players in P and their neighbors

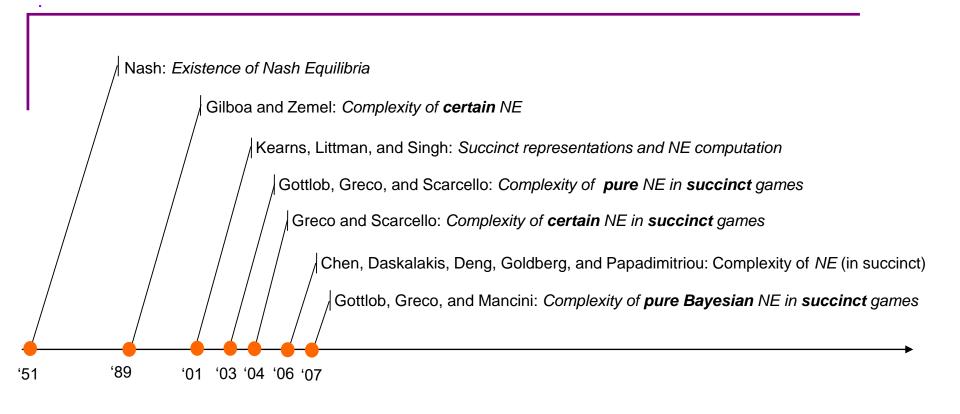
Examples et A_{G,P} return the minimum payoff between Giorgio and Paola A_{{G,P} > 1 is a guarantee for G and P let B_{F,P,R,G,M} return the sum of the payoffs of all players By maximizing B_{F,P,R,G,M}, we optimize the social welfare Hard Constraints Objective Functions

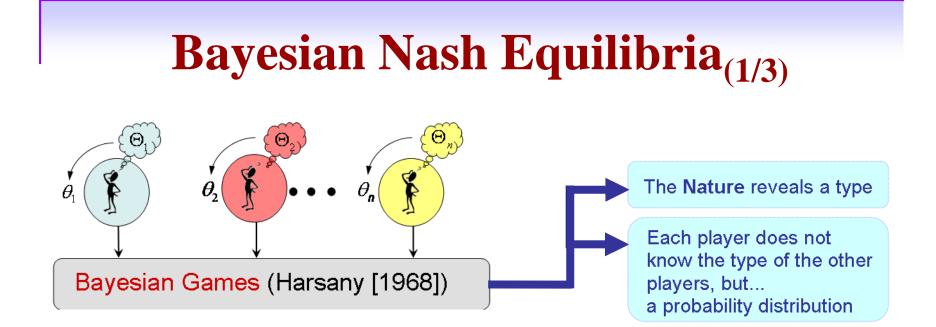










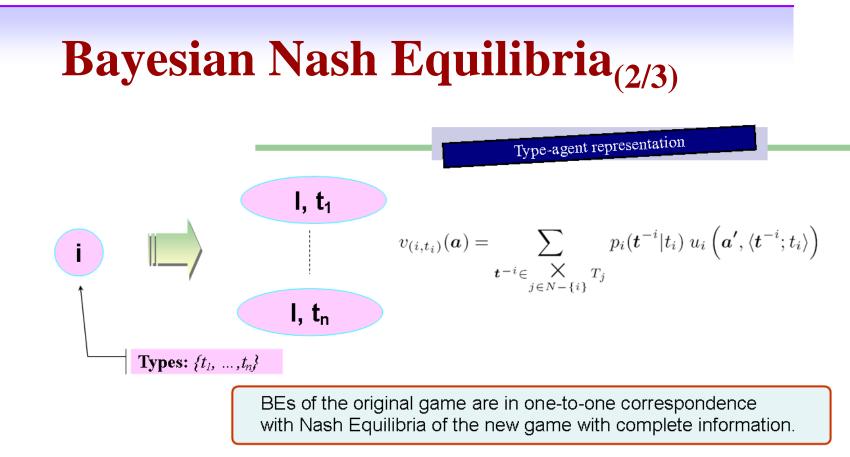


Bob	John goes <mark>out</mark>	John stays at home
out	2	0
home	0	1

Гуре ′	1
--------	---

Bob	John goes <i>out</i>	John stays at home
out	0	1
home	1	0

Type 2



The transformation:

- Is feasible in polynomial time
- Preserves the neighboord
- Preserves the structural properties

Bayesian Nash Equilibria_(3/3)

PBE is NP-complete, if the number of players is constant.

PBE is **PP**-hard, Hardness holds even for games where players have just two types.

PBE is **PP***-complete, in the fixed precision setting.*

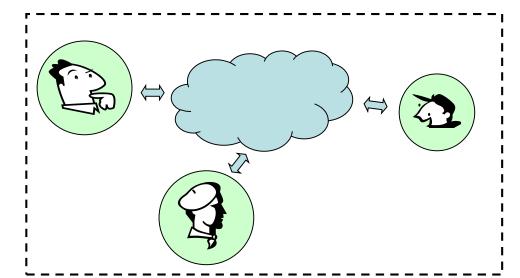
PP: languages that can be decided by a nondeterministic Turing machine in polynomial time, where the acceptance condition is that a majority (more than half) of computation paths accept.

Canonical Problem: MAJ-SAT

Input: a formula Φ Output: *true* $\Leftrightarrow \Phi$ is satisfied by more than half of possible assignments

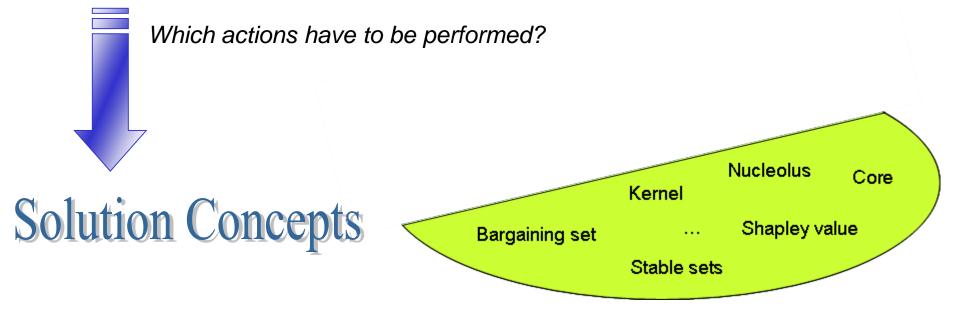
Part III: Nucleolus

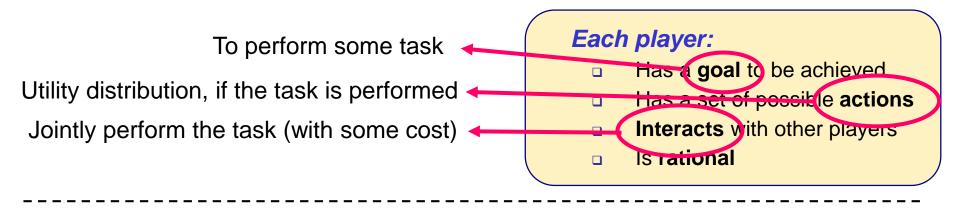
Game Theory (in a Nutshell)

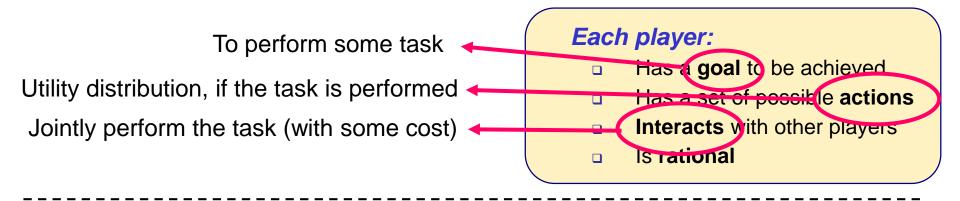


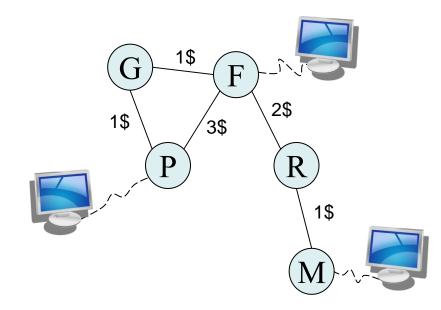
Each player:

- Has a **goal** to be achieved
- Has a set of possible actions
- Interacts with other players
- Is rational

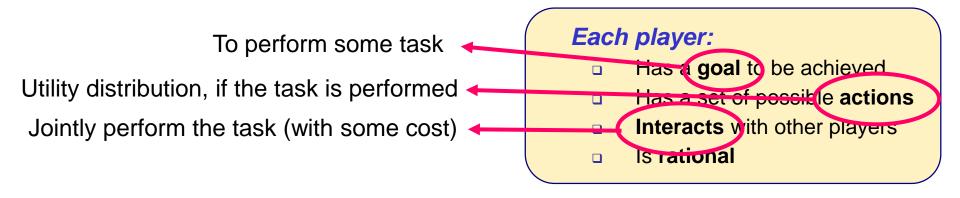


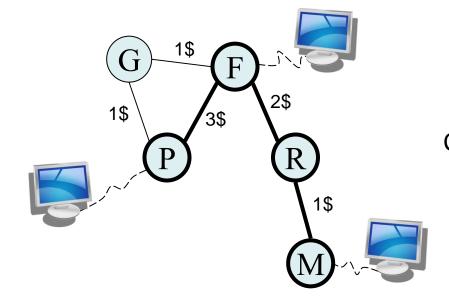






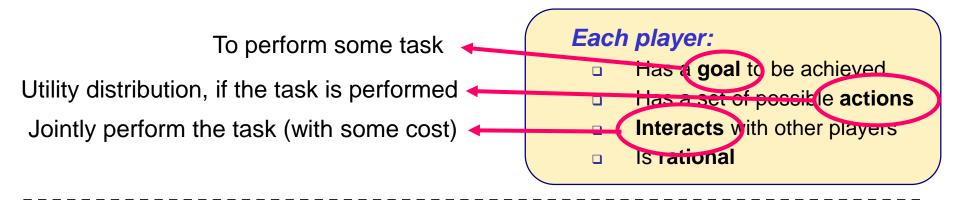
- Players get 9\$, if they enforce connectivity
- Enforcing connectivity over an edge as a cost

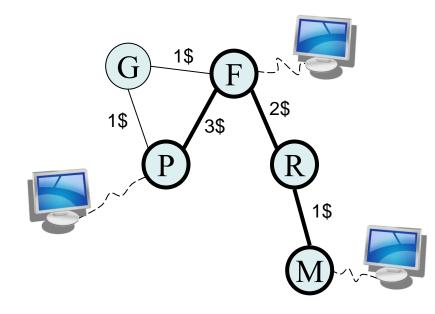




- Players get 9\$, if they enforce connectivity
- Enforcing connectivity over an edge as a cost

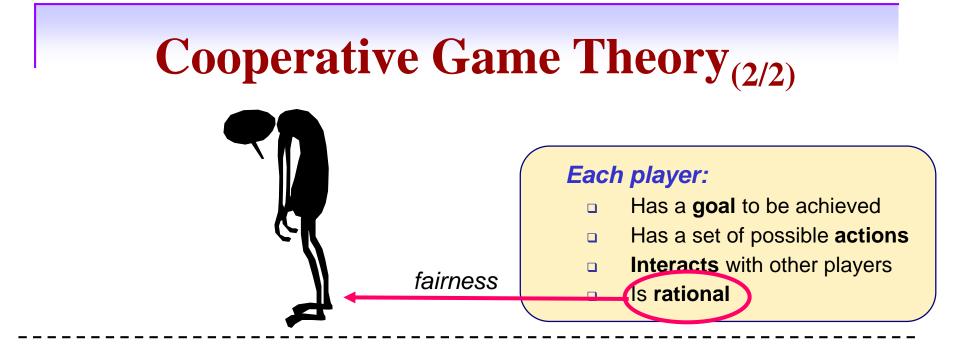


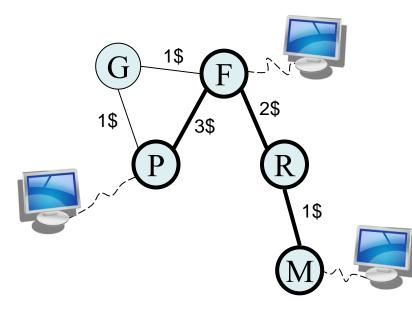




coalition	worth
{F}	0
	0
$\{G,P,R,M\}$	0
{F,P,R,M}	3
${G,F,P,R,M}$	4

How to distribute 9\$, based on such worths?





coalition	worth
{F}	0
	0
$\{G,P,R,M\}$	0
{F,P,R,M}	3
$\{G,F,P,R,M\}$	4

How to distribute 9\$, based on such worths?

The Model

- Players form *coalitions*
- Each coalition is associated with a worth
- A total worth has to be distributed

$$\mathcal{G} = \langle \textit{\textit{N}}, \textit{\textit{v}}
angle, \textit{\textit{v}}: 2^{\textit{\textit{N}}} \mapsto \mathbb{R}$$

Outcomes belong to the imputation set $X(\mathcal{G})$

• Efficiency x(N) = v(N)• Individual Rationality $x_i \ge v(\{i\}), \quad \forall i \in N$

$$x\in X(\mathcal{G})$$
 -

The Model

- Players form *coalitions*
- Each coalition is associated with a worth
- A total worth has to be distributed

$$\mathcal{G} = \langle \pmb{N}, \pmb{v}
angle, \, \pmb{v} : \pmb{2^N} \mapsto \mathbb{R}$$

Solution Concepts characterize outcomes in terms of

- Fairness
- Stability

Excess...

How fairness/stability can be measured?

$$e(S,x) = v(S) - x(S)$$

• The excess is a measure of the dissatisfaction of S

Excess...

How fairness/stability can be measured?

$$e(S,x) = v(S) - x(S)$$

• The excess is a measure of the dissatisfaction of S

$$v(\{1\}) = v(\{2\}) = v(\{3\}) = 0$$

 $v(\{1,2\})) = v(\{1,3\}) = v(\{2,3\}) = 1$
 $v(\{1,2,3\}) = 3$

Excess...

How fairness/stability can be measured?

$$e(S, x) = v(S) - x(S)$$

• The excess is a measure of the dissatisfaction of S

$$x = (0,0,3) \longrightarrow e(\{1,2\},x) = v(\{1,2\}) - (x_1 + x_2) = 1 - 0 = 1$$

$$x = (1,2,0) \longrightarrow e(\{1,2\},x) = v(\{1,2\}) - (x_1 + x_2) = 1 - 3 = -2$$

$$v(\{1\}) = v(\{2\}) = v(\{3\}) = 0$$

 $v(\{1,2\})) = v(\{1,3\}) = v(\{2,3\}) = 1$
 $v(\{1,2,3\}) = 3$

C....

...and the Nucleolus

Arrange excess values in non-increasing order

...and the Nucleolus

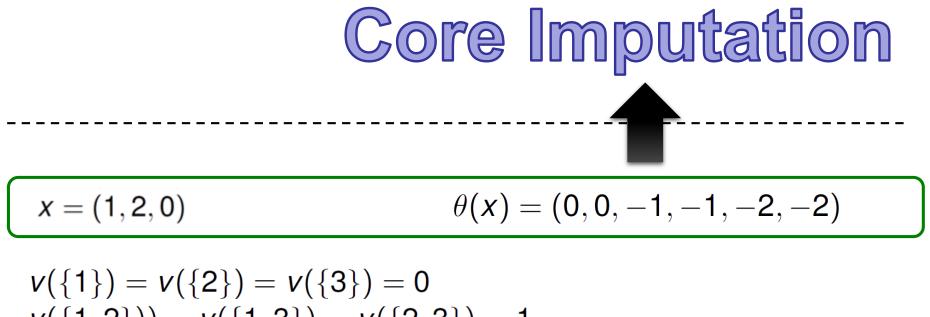
Arrange excess values in non-increasing order

$$x = (1, 2, 0)$$
 $\theta(x) = (0, 0, -1, -1, -2, -2)$

$$v(\{1\}) = v(\{2\}) = v(\{3\}) = 0$$

 $v(\{1,2\})) = v(\{1,3\}) = v(\{2,3\}) = 1$
 $v(\{1,2,3\}) = 3$

Arrange excess values in non-increasing order



$$v(\{1,2\})) = v(\{1,3\}) = v(\{2,3\}) = 1$$

 $v(\{1,2,3\}) = 3$

Arrange excess values in non-increasing order

$$\begin{aligned} x^* &= (1,1,1) & \theta(x^*) &= (-1,-1,-1,-1,-1,-1) \\ \hline x &= (1,2,0) & \theta(x) &= (0,0,-1,-1,-2,-2) \end{aligned}$$

$$v(\{1\}) = v(\{2\}) = v(\{3\}) = 0$$

 $v(\{1,2\})) = v(\{1,3\}) = v(\{2,3\}) = 1$
 $v(\{1,2,3\}) = 3$

Arrange excess values in non-increasing order

$$v(\{1\}) = v(\{2\}) = v(\{3\}) = 0$$

 $v(\{1,2\})) = v(\{1,3\}) = v(\{2,3\}) = 1$
 $v(\{1,2,3\}) = 3$

Arrange excess values in non-increasing order

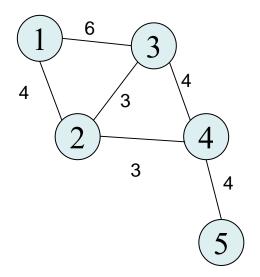
Definition [Schmeidler]

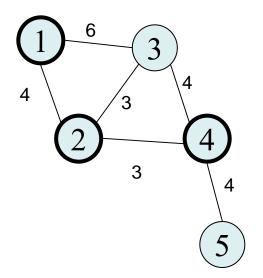
The *nucleolus* $\mathcal{N}(\mathcal{G})$ of a game \mathcal{G} is the set $\mathcal{N}(\mathcal{G}) = \{x \in X(\mathcal{G}) \mid \nexists y \in X(\mathcal{G}) \text{ s.t. } \theta(y) \prec \theta(x)\}$

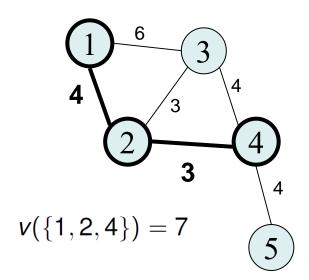
$$\begin{aligned} x^* &= (1,1,1) & \theta(x^*) &= (-1,-1,-1,-1,-1,-1) \\ x &= (1,2,0) & \theta(x) &= (0,0,-1,-1,-2,-2) \end{aligned}$$

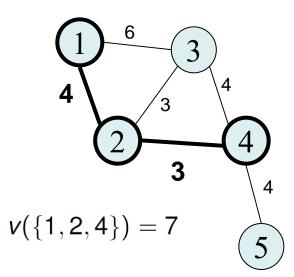
$$v(\{1\}) = v(\{2\}) = v(\{3\}) = 0$$

 $v(\{1,2\})) = v(\{1,3\}) = v(\{2,3\}) = 1$
 $v(\{1,2,3\}) = 3$



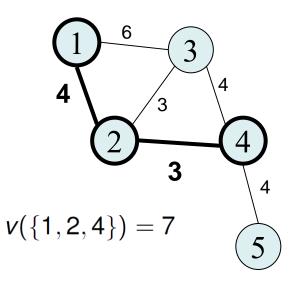






- Graph Games [Deng and Papadimitriou, 1994]
 - Computational issues of several solution concepts
 - □ The (pre)nucleolus can be computed in P

$$x_i^* = \frac{1}{2} \sum_{j \neq i} W_{i,j}$$



- Graph Games [Deng and Papadimitriou, 1994]
 - Computational issues of several solution concepts
 - □ The (pre)nucleolus can be computed in **P**

$$X_i^* = \frac{1}{2} \sum_{j \neq i} W_{i,j}$$

- Cost allocation on trees [Megiddo, 1978]
 - Polynomial time algorithm
- Flow games [Deng, Fang, and Sun, 2006]
 - Polynomial time algorithm on simple networks (unitary edge capacity)
 - NP-hard, in general
- Weighted voting games [Elkind and Pasechnik, 2009]
 - Pseudopolynomial algorithm

LP1	$egin{aligned} min\epsilon_1 \ e(\mathcal{S},x) \leq \epsilon_1 \ x \in \mathcal{X}(\mathcal{G}) \end{aligned}$	$\forall \boldsymbol{S} \subset \boldsymbol{N}, \boldsymbol{S} \not\in \boldsymbol{W}_0 = \{ \varnothing \}$
	min ϵ_2	
	$e(S, x) = \epsilon_1^*$	$\forall S \in W_1$
	$egin{aligned} min\epsilon_2 \ e(S,x) &= \epsilon_1^* \ e(S,x) &\leq \epsilon_2 \end{aligned}$	$\forall S \subset N, S ot \in (W_0 \cup W_1)$
LP2	$x \in X(\mathcal{G})$	

where:

□ $V_1 = \{x \mid (x, \epsilon_1^*) \text{ is an optimal solution to } LP_1\}$ □ $W_1 = \{S \subseteq N \mid e(S, x) = \epsilon_1^*, \text{ for every } x \in V_1\}$

$$\begin{split} & \mathsf{IP}_k \begin{cases} \min \epsilon_k \\ e(S,x) &= \epsilon_r^* \\ e(S,x) &\leq \epsilon_k \\ x \in X(\mathcal{G}) \end{cases} & \forall S \in W_r, r \in \{1, \dots, k-1\} \\ \forall S \subset N, S \not\in (W_0 \cup \dots \cup W_{k-1}) \end{cases} \end{split}$$

where:

V_r = {*x* | (*x*, *ϵ_r^{*}*) is an optimal solution to LP_{*r*}}
 W_r = {*S* ⊆ *N* | *e*(*S*, *x*) = *ϵ_r^{*}*, for every *x* ∈ *V_r*}

N = 1, ..., n, n + 1, n + 2

$$\begin{split} v(N) &= n+2 \\ v(\{i\}) &= 1, i \in \{1, ..., n\} \\ v(\{1, ..., n\}) &= n \\ v(\{n+1\}) &= v(\{n+2\}) = 0 \\ v(\{n+1, n+2\}) &= 2 \\ v(S) &= -\infty, |\{n+1, n+2\} \cap S| \geq 1, \\ |\{1, ..., n\} \cap S| \geq 1, S \neq N \end{split}$$

$$egin{aligned} S_1,S_2,... &\subset \{1,...,n\} \; |S_i| > 1 \ v(S_i) &= |S_i| - 1 + 2^{-i} \end{aligned}$$

N = 1, ..., n, n + 1, n + 2

$$\begin{split} & v(N) = n+2 \\ & v(\{i\}) = 1, \, i \in \{1, ..., n\} \\ & v(\{1, ..., n\}) = n \\ & v(\{n+1\}) = v(\{n+2\}) = 0 \\ & v(\{n+1, n+2\}) = 2 \\ & v(S) = -\infty, \, |\{n+1, n+2\} \cap S| \geq 1, \\ & |\{1, ..., n\} \cap S| \geq 1, \, S \neq N \end{split}$$

LP1

$$egin{aligned} S_1,S_2,... &\subset \{1,...,n\} \; |S_i| > 1 \ v(S_i) &= |S_i| - 1 + 2^{-i} \end{aligned}$$

$$\begin{array}{c} \epsilon_{1}^{*} = 0 \\ X^{*} = (1, ..., 1, X_{n+1}^{*}, X_{n+2}^{*}) \\ \hline \\ \min \epsilon_{1} \\ n - x(\{1, ..., n\}) \leq \epsilon_{1} \\ 2 - x_{n+1} - x_{n+2} \leq \epsilon_{1} \\ x(\{1, ..., n\}) + x_{n+1} + x_{n+2} = n+2 \\ x_{i} \geq 1, i \in \{1, ..., n\} \\ \\ \end{array}$$

N = 1, ..., n, n + 1, n + 2

$$\begin{aligned} v(N) &= n+2 \\ v(\{i\}) &= 1, i \in \{1, ..., n\} \\ v(\{1, ..., n\}) &= n \\ v(\{n+1\}) &= v(\{n+2\}) = 0 \\ v(\{n+1, n+2\}) &= 2 \\ v(S) &= -\infty, |\{n+1, n+2\} \cap S| \geq 1, \\ |\{1, ..., n\} \cap S| \geq 1, S \neq N \end{aligned}$$

$$egin{aligned} S_1,S_2,... &\subset \{1,...,n\} \; |S_i| > 1 \ v(S_i) &= |S_i| - 1 + 2^{-i} \end{aligned}$$

$$\epsilon_{1}^{*} = 0$$

$$x^{*} = (1, ..., 1, x_{n+1}^{*}, x_{n+2}^{*})$$

$$t$$

$$x(S_{1}) = x^{*}(S_{2}) = -1 + 2^{-i}$$

The excess is constant

 $e(S_i, x^*) = v(S_i) - x^*(S_i) = -1 + 2^-$

N = 1, ..., n, n + 1, n + 2

$$\begin{aligned} v(N) &= n+2 \\ v(\{i\}) &= 1, i \in \{1, ..., n\} \\ v(\{1, ..., n\}) &= n \\ v(\{n+1\}) &= v(\{n+2\}) = 0 \\ v(\{n+1, n+2\}) &= 2 \\ v(S) &= -\infty, |\{n+1, n+2\} \cap S| \ge 1, \\ |\{1, ..., n\} \cap S| \ge 1, S \neq N \end{aligned}$$

$$egin{aligned} S_1,S_2,... &\subset \{1,...,n\} \; |S_i| > 1 \ v(S_i) &= |S_i| - 1 + 2^{-i} \end{aligned}$$

$$\epsilon_{1}^{*} = 0$$

$$x^{*} = (1, ..., 1, x_{n+1}^{*}, x_{n+2}^{*})$$

$$x^{*}(S_{1}) = x^{*}(S_{2}) = -1 + 2^{-1}$$

The excess is constant

$$e(S_i, x^*) = v(S_i) - x^*(S_i) = -1 + 2^-$$

 $\begin{bmatrix} e(S_i, x^*) \le \epsilon_2 \\ \epsilon_2^* = -1 + 2^{-1} \end{bmatrix}$

N = 1, ..., n, n + 1, n + 2

$$\begin{split} v(N) &= n+2 \\ v(\{i\}) &= 1, i \in \{1, ..., n\} \\ v(\{1, ..., n\}) &= n \\ v(\{n+1\}) &= v(\{n+2\}) = 0 \\ v(\{n+1, n+2\}) &= 2 \\ v(S) &= -\infty, |\{n+1, n+2\} \cap S| \geq 1, \\ |\{1, ..., n\} \cap S| \geq 1, S \neq N \end{split}$$

$$egin{aligned} S_1,S_2,... &\subset \{1,...,n\} \; |S_i| > 1 \ v(S_i) &= |S_i| - 1 + 2^{-i} \end{aligned}$$

$$\epsilon_1^* = 0$$

$$x^* = (1, ..., 1, x_{n+1}^*, x_{n+2}^*)$$

The excess is constant

$$e(S_i, x^*) = v(S_i) - x^*(S_i) = -1 + 2^{-i}$$

$$e(S_i, x^*) \leq \epsilon_3$$

 $\epsilon_2^* = -1 + 2^{-1} > \epsilon_3^* = -1 + 2^{-2}, ... >$

$$\begin{split} & \mathsf{IP}_k \begin{cases} \min \epsilon_k \\ e(S,x) &= \epsilon_r^* \\ e(S,x) &\leq \epsilon_k \\ x \in X(\mathcal{G}) \end{cases} & \forall S \in W_r, r \in \{1, \dots, k-1\} \\ \forall S \subset N, S \not\in (W_0 \cup \dots \cup W_{k-1}) \end{cases} \end{split}$$

where:

V_r = {*x* | (*x*, *ϵ_r^{*}*) is an optimal solution to LP_{*r*}}
 W_r = {*S* ⊆ *N* | *e*(*S*, *x*) = *ϵ_r^{*}*, for every *x* ∈ *V_r*}

$$\begin{split} & \mathsf{f}_{\mathrm{LP}_{k}} \begin{pmatrix} \min \epsilon_{k} \\ e(S,x) &= \epsilon_{r}^{*} \\ e(S,x) &\leq \epsilon_{k} \\ x \in X(\mathcal{G}) \end{pmatrix} & \forall S \in W_{r}, r \in \{1,\ldots,k-1\} \\ \forall S \subset N, S \not\in (W_{0} \cup \cdots \cup W_{k-1}) \end{pmatrix} \end{split}$$

where:

V_r = {*x* | (*x*, *ϵ_r^{*}*) is an optimal solution to LP_{*r*}}
 W_r = {*S* ⊆ *N* | *e*(*S*, *x*) = *ϵ_r^{*}*, for every *x* ∈ *V_r*}

Theorem

The algorithm performs $\Omega(2^n)$ steps, in some cases.

cf. Mashler, Peleg, and Shapley, 1979

$$\begin{split} & \prod_{\substack{e(S,x) = \epsilon_r^* \\ e(S,x) \leq \epsilon_k \\ x \in X(\mathcal{G})}} \forall S \in W_r, r \in \{1,\ldots,k-1\} \\ & \forall S \subset N, S \not\in (W_0 \cup \cdots \cup W_{k-1}) \\ & x \in X(\mathcal{G}) \end{split}$$

□ $V_r = \{x \mid (x, \epsilon_r^*) \text{ is an optimal solution to } LP_r\}$ □ $W_r = \{S \subseteq N \mid e(S, x) = \epsilon_r^*, \text{ for every } x \in V_r\}$

cf. Mashler, Peleg, and Shapley, 1979

$\int \min \epsilon_k$

$$egin{aligned} e(S,x) &= \epsilon_r^* & orall S \in W_r, r \in \{1,\ldots,k-1\} \ e(S,x) &\leq \epsilon_k & orall S \subset N, S
otin \left(rac{W_0 \cup \cdots \cup W_{K-1}}{W_0 \cup \cdots \cup W_{K-1}}
ight) \ x \in X(\mathcal{G}) \end{aligned}$$

where:

LPk

V_r = {x | (x, e_r^{*}) is an optimal solution to LP_r}
 W_r = {S ⊆ N | e(S, x) = e_r^{*}, for every x ∈ V_r}

$$\{S \subseteq N \mid x(S) = y(S), \forall x, y \in V_{k-1}\}$$

cf. Mashler, Peleg, and Shapley, 1979

$\int \min \epsilon_k$

$$egin{aligned} e(S,x) &= \epsilon_r^* & orall S \in W_r, r \in \{1,\ldots,k-1\} \ e(S,x) &\leq \epsilon_k & orall S \subset N, S
otin \left(rac{W_0 \cup \cdots \cup W_{K-1}}{W_0 \cup \cdots \cup W_{K-1}}
ight) \ x \in X(\mathcal{G}) \end{aligned}$$

where:

LPk

□ $V_r = \{x \mid (x, \epsilon_r^*) \text{ is an optimal solution to } LP_r\}$ □ $W_r = \{S \subseteq N \mid e(S, x) = \epsilon_r^*, \text{ for every } x \in V_r\}$

$$\{S \subseteq N \mid x(S) = y(S), \forall x, y \in V_{k-1}\}$$

[Kern and Paulusuma, 2003]

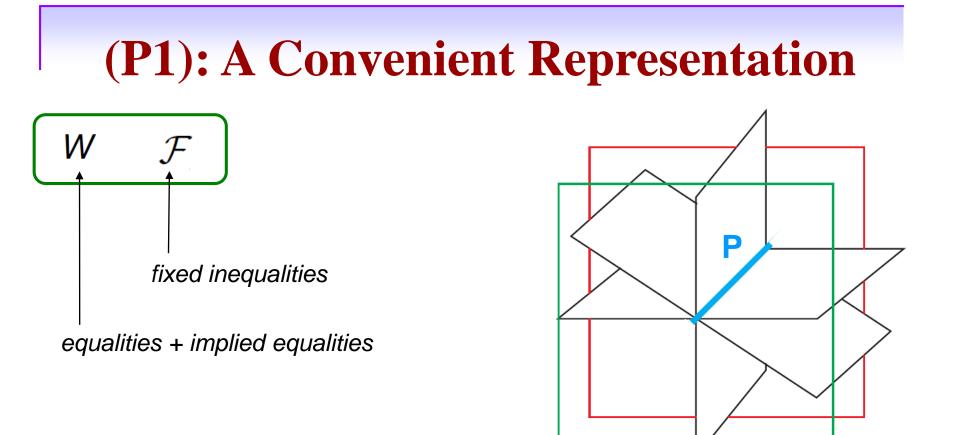
LP Approaches over Compact Games

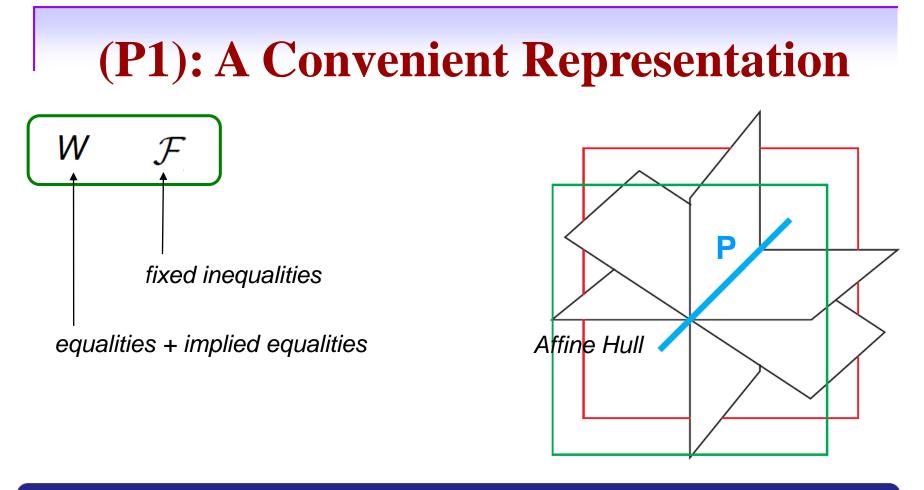
$$\begin{array}{l} \displaystyle \min \epsilon_k \\ e(S,x) = \epsilon_r^* & \forall S \in W_r, r \in \{1,\ldots,k-1\} \\ e(S,x) \leq \epsilon_k & \forall S \subset N, S \not\in \mathcal{F}_{k-1} \\ x \in X(\mathcal{G}) \\ \hline where: \\ \bullet \ V_r = \{x \mid (x,\epsilon_r^*) \text{ is an optimal solution to } \operatorname{LP}_r\} \\ \bullet \ W_r = \{S \subseteq N \mid e(S,x) = \epsilon_r^*, \text{ for every } x \in V_r\} \\ \bullet \ \mathcal{F}_{k-1} = \{S \subseteq N \mid x(S) = y(S), \forall x, y \in V_{k-1} \end{array}$$

L

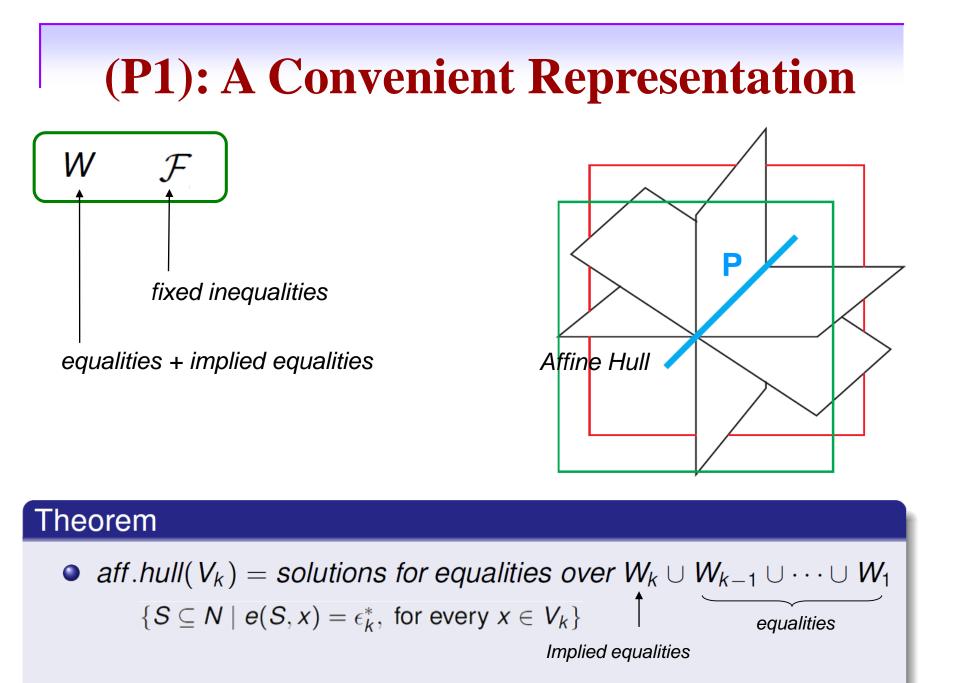
In compact games, two problems have to be faced:
 (P1) Sets W and F contain exponentially many elements, but we would like to avoid listing them explicitly
 (P2) Translate LP (complexity) results to "succinct programs"

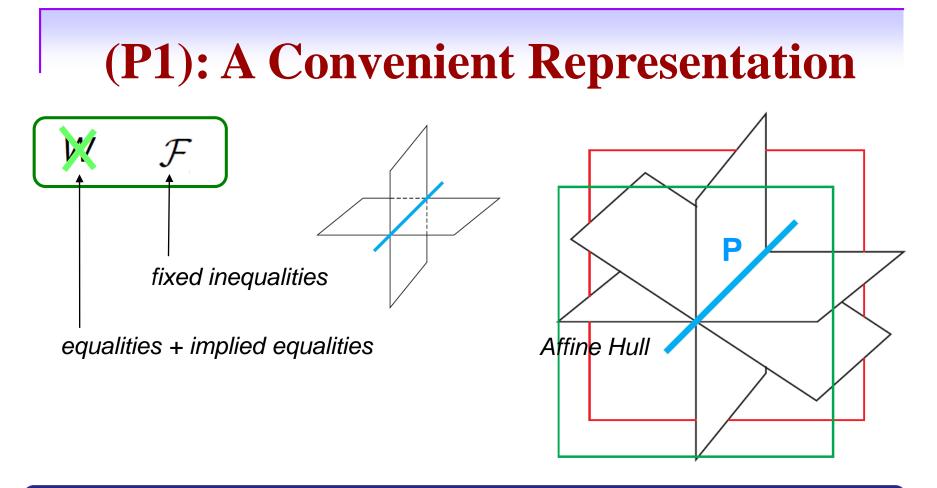
}





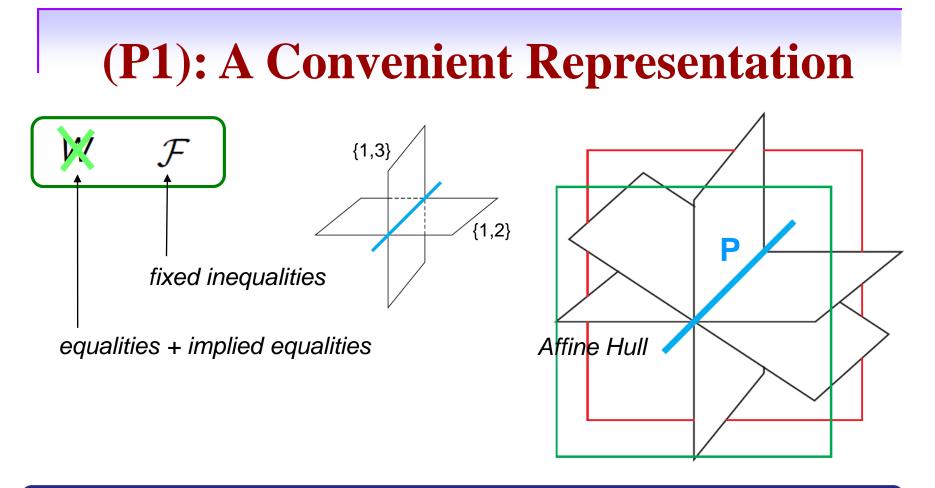
• aff.hull(V_k) = solutions for equalities over $W_k \cup W_{k-1} \cup \cdots \cup W_1$





• aff.hull(V_k) = solutions for equalities over $W_k \cup W_{k-1} \cup \cdots \cup W_1$

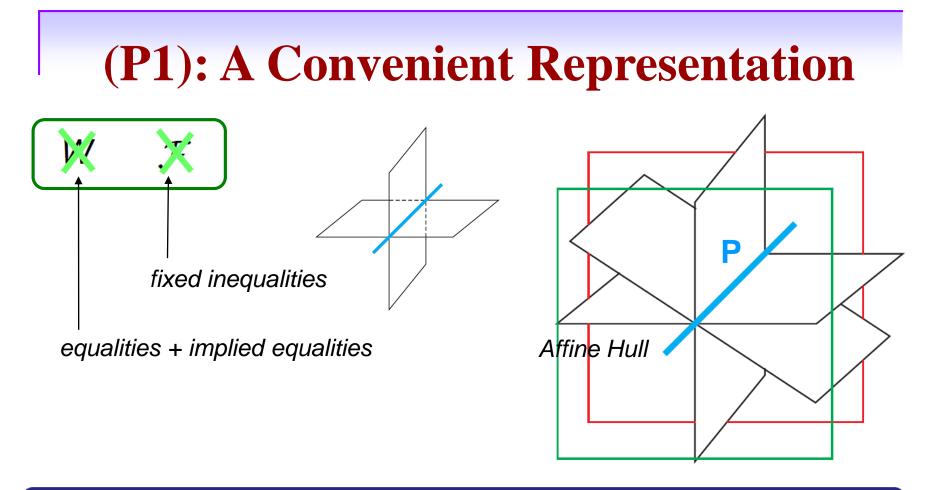
• A basis \mathcal{B}_k for aff.hull(V_k) contains n vectors at most



• aff.hull(V_k) = solutions for equalities over $W_k \cup W_{k-1} \cup \cdots \cup W_1$

• A basis \mathcal{B}_k for aff.hull(V_k) contains n vectors at most

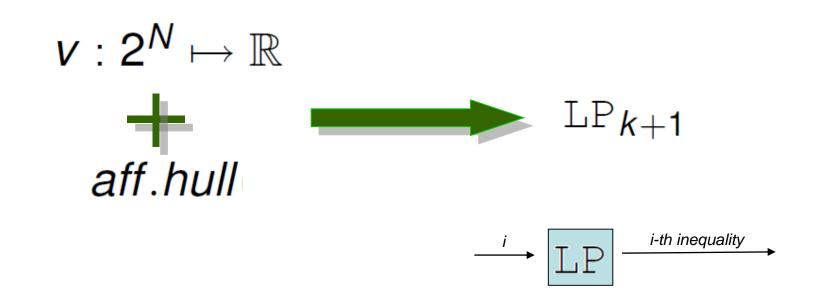
• $S \in \mathcal{F}_k$ iff S is a linear combination of the indicator vectors for \mathcal{B}_k



• aff.hull(V_k) = solutions for equalities over $W_k \cup W_{k-1} \cup \cdots \cup W_1$

- A basis \mathcal{B}_k for aff.hull(V_k) contains n vectors at most
- $S \in \mathcal{F}_k$ iff S is a linear combination of the indicator vectors for \mathcal{B}_k

(P1): A Convenient Representation



Theorem

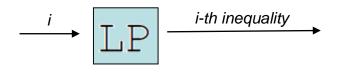
- aff.hull(V_k) = solutions for equalities over $W_k \cup W_{k-1} \cup \cdots \cup W_1$
- A basis \mathcal{B}_k for aff.hull(V_k) contains n vectors at most
- $S \in \mathcal{F}_k$ iff S is a linear combination of the indicator vectors for \mathcal{B}_k

(P2) Computation Problems

In compact games, two problems have to be faced: (P1) Sets W and F contain exponentially many elements, but we would like to avoid listing them explicitly

(P2) Translate LP (complexity) results to "succinct programs"

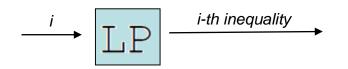
(P2) Computation Problems



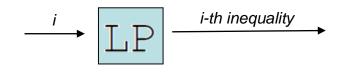
Problem	Result
Membership	in co-NP
NONEMPTINESS	in co- NP
DIMENSION	in NP
AFFINEHULLCOMPUTATION	in $F\Delta_2^P$
OPTIMALVALUECOMPUTATION	in $F\Delta_2^P$
FEASIBLEVECTORCOMPUTATION	in $\mathbf{F} \Delta_2^{\mathbf{P}}$
OptimalVectorComputation	in FΔ ₂ ^P

In compact games, two problems have to be faced:
 (P1) Sets W and F contain exponentially many elements, but we would like to avoid listing them explicitly

(P2) Translate LP (complexity) results to "succinct programs"



Problem	Result
Membership	in co- NP
NONEMPTINESS	in co- NP
DIMENSION	in NP
AFFINEHULLCOMPUTATION	in $\mathbf{F} \Delta_2^P$
OPTIMALVALUECOMPUTATION	in $\mathbf{F} \Delta_2^{\overline{P}}$
FEASIBLEVECTORCOMPUTATION	in $\mathbf{F} \Delta_2^{\overline{P}}$
OPTIMALVECTORCOMPUTATION	in $\mathbf{F} \Delta_2^{\overline{P}}$

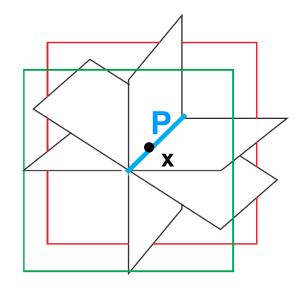


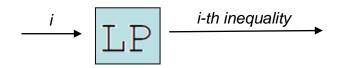
Problem	Result
Membership	in co- NP
NONEMPTINESS	in co- NP
DIMENSION	in NP
AFFINEHULLCOMPUTATION	in $\mathbf{F} \Delta_2^P$
OPTIMALVALUECOMPUTATION	in $\mathbf{F} \Delta_2^{\overline{P}}$
FEASIBLEVECTORCOMPUTATION	in $\mathbf{F} \Delta_2^{\overline{P}}$
OPTIMALVECTORCOMPUTATION	in $\mathbf{F} \Delta_2^{\overline{P}}$

Trivial

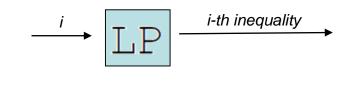
Given a vector **x**, we can:

- Guess an index *i*
- Check that the *i-th inequality* is not satisfied by **x**





Problem	Result
Membership	in co- NP
NonEmptiness	in co- NP
DIMENSION	in NP
AFFINEHULLCOMPUTATION	in $\mathbf{F} \Delta_2^P$
OptimalValueComputation	in $\mathbf{F} \Delta_2^{\overline{P}}$
FEASIBLEVECTORCOMPUTATION	in $\mathbf{F} \Delta_2^{\overline{P}}$
OptimalVectorComputation	in $\mathbf{F} \Delta_2^{\overline{P}}$

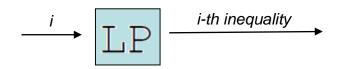


Problem	Result	
Membership	in co- NP	
NonEmptiness	in co- NP	
DIMENSION	in NP	Γ
AFFINEHULLCOMPUTATION	in FΔ ^P ₂	ĺ
OptimalValueComputation	in $F\Delta_2^P$	
FEASIBLEVECTORCOMPUTATION	in $F\Delta_2^P$	
OptimalVectorComputation	in F∆ [₽]	

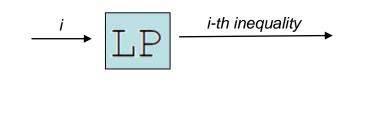
Proof

By Helly's theorem, we can solve the complementary problem in NP:

- Guess n+1 inequalities
- Check that they are not satisfiable (in polynomial time)



Problem	Result	
Membership	in co- NP	
NONEMPTINESS	in co- NP	
DIMENSION	in NP	
AFFINEHULLCOMPUTATION	in $F\Delta_2^P$	Γ
OptimalValueComputation	in $\mathbf{F} \boldsymbol{\Delta}_2^{\overline{P}}$	
FEASIBLEVECTORCOMPUTATION	in $\mathbf{F} \boldsymbol{\Delta}_2^{\overline{P}}$	
OptimalVectorComputation	in F $\Delta_2^{ar{P}}$	



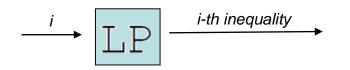
Problem	Result	
Membership	in co- NP	
NonEmptiness	in co- NP	
DIMENSION	in NP	
AFFINEHULLCOMPUTATION	in $F\Delta_2^P$	
OptimalValueComputation	in $\mathbf{F} \Delta_2^{\overline{P}}$	
FEASIBLEVECTORCOMPUTATION	in $\mathbf{F} \Delta_2^{\overline{P}}$	
OptimalVectorComputation	in $F\Delta_2^{\overline{P}}$	

Proof Overview

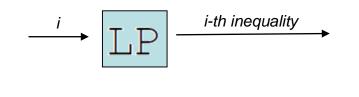
- (1) The dimension is n-k at most, if there are at least k linear independent implied equalities
- (2) In order to check that the *i-th* inequality is an implied one,

we can guess in **NP** a support set W(i), again by Helly's theorem:

- **n** inequalities + the *i-th* inequality treated as strict
- \square *W(i)* is not satisfiable, which can be checked in polynomial time
- Guess k implied equalities plus their support sets
- Check that they are linear independent



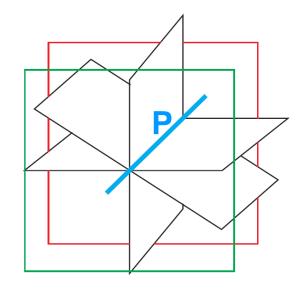
Problem	Result
Membership	in co- NP
NONEMPTINESS	in co- NP
DIMENSION	in NP
AFFINEHULLCOMPUTATION	in FΔ ^P ₂
OPTIMALVALUECOMPUTATION	in FΔ ^P ₂
FEASIBLEVECTORCOMPUTATION	in $\mathbf{F} \Delta_2^P$
OptimalVectorComputation	in $\mathbf{F} \Delta_2^{\overline{P}}$

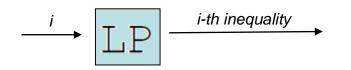


Problem	Result
Membership	in co-NP
NONEMPTINESS	in co- NP
DIMENSION	in NP
AFFINEHULLCOMPUTATION	in $\mathbf{F} \Delta_2^P$
OPTIMALVALUECOMPUTATION	in $\mathbf{F} \Delta_2^P$
FEASIBLEVECTORCOMPUTATION	in $\mathbf{F} \Delta_2^P$
OPTIMALVECTORCOMPUTATION	in $\mathbf{F} \Delta_2^{\overline{P}}$

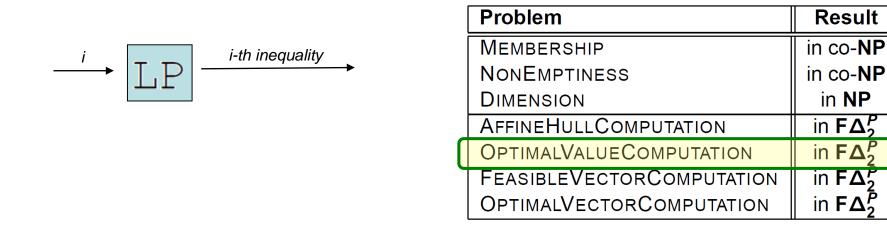
Proof

- (1) Compute the dimension **n-k**, with a *binary search* invoking an **NP** oracle
- (2) Guess k implied equalities plus their support sets



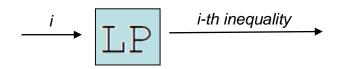


Problem	Result
Membership	in co- NP
NONEMPTINESS	in co- NP
DIMENSION	in NP
AFFINEHULLCOMPUTATION	in FΔ ^P ₂
OptimalValueComputation	in FΔ ^P ₂
FEASIBLEVECTORCOMPUTATION	in FΔ ^ρ ₂
OPTIMALVECTORCOMPUTATION	in FΔ ^P ₂

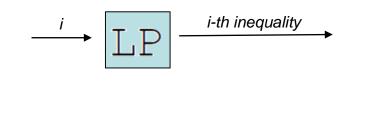


Routine

- (1) Bfs can be represented with polynomially many bits
- (2) LP induces a polytope and hence the optimum is achieved on some bfs.
- (3) Perform a *binary search* over the range of the optimum solution:
 - Add the current value as a constraint, and check satisfiability



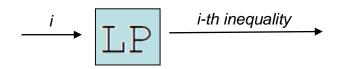
Problem	Result
Membership	in co-NP
NONEMPTINESS	in co- NP
DIMENSION	in NP
AFFINEHULLCOMPUTATION	in $\mathbf{F} \Delta_2^P$
OPTIMALVALUECOMPUTATION	in $\mathbf{F} \Delta_2^{\overline{P}}$
FEASIBLEVECTORCOMPUTATION	in $\mathbf{F} \Delta_2^P$
OPTIMALVECTORCOMPUTATION	in FΔ ^P ₂



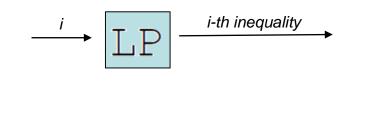
Problem	Result
Membership	in co- NP
NONEMPTINESS	in co- NP
DIMENSION	in NP
AFFINEHULLCOMPUTATION	in $F\Delta_2^P$
OPTIMALVALUECOMPUTATION	in $\mathbf{F} \Delta_2^{\overline{P}}$
FEASIBLEVECTORCOMPUTATION	I in $\mathbf{F} \Delta_2^P$
	in $F\Delta_2^P$

Routine

- LP induces a polytope
- Compute the lexicographically maximum bfs solution, by iterating over the various components, and treating each of them as an objective function to be optimized.



Problem	Result
Membership	in co- NP
NONEMPTINESS	in co- NP
DIMENSION	in NP
AFFINEHULLCOMPUTATION	in $\mathbf{F} \Delta_2^P$
OPTIMALVALUECOMPUTATION	in $\mathbf{F} \Delta_2^{\overline{P}}$
FEASIBLEVECTORCOMPUTATION	in F Δ_2^{P}
OptimalVectorComputation	in $\mathbf{F} \Delta_2^{\overline{P}}$

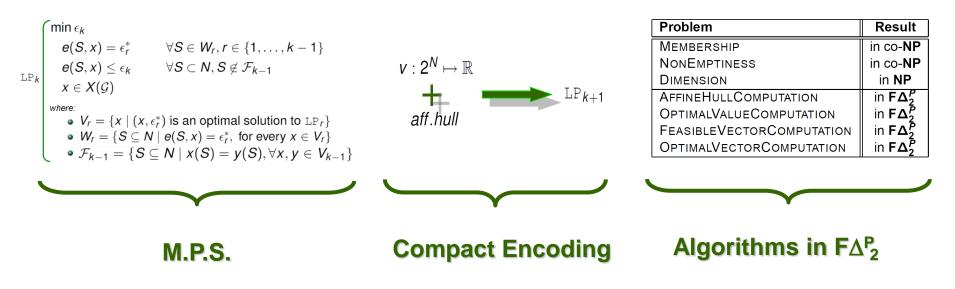


Problem	Result
Membership	in co- NP
NONEMPTINESS	in co- NP
DIMENSION	in NP
AFFINEHULLCOMPUTATION	in $\mathbf{F} \Delta_2^P$
OPTIMALVALUECOMPUTATION	in $\mathbf{F} \Delta_2^{\overline{P}}$
FEASIBLEVECTORCOMPUTATION	in F Δ_2^{P}
OPTIMALVECTORCOMPUTATION	in $\mathbf{F} \Delta_2^{\overline{P}}$

Routine

- (1) Compute the optimum value
- (2) Define LP' as LP plus the constraint stating that the objective function must equal the optimum value
- (3) Compute a feasible value for LP'

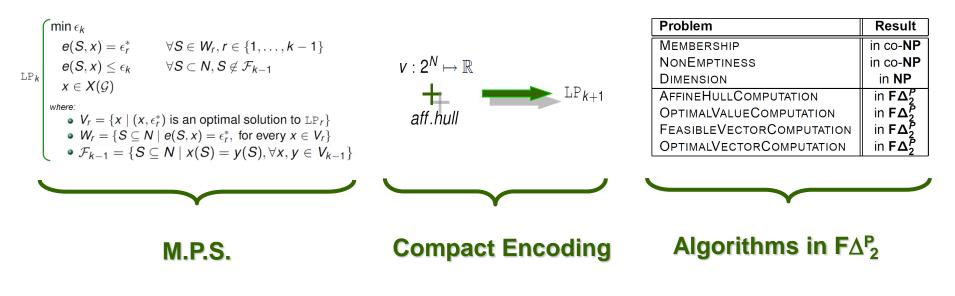
Putting It All Togheter



In compact games, two problems have to be faced:

 (P1) Sets W and F contain exponentially many elements, but we would like to avoid listing them explicitly
 (P2) Translate LP (complexity) results to "succinct programs"

Putting It All Togheter



Theorem

Computing the nucleolus is feasible in $F\Delta_2^P$. Thus, deciding whether an imputation is the nucleolus is feasible in Δ_2^P .

Checking Problem

Theorem

Deciding whether an imputation is the nucleolus is Δ_2^P -hard. Thus, it is Δ_2^P -complete.

Checking Problem

Theorem

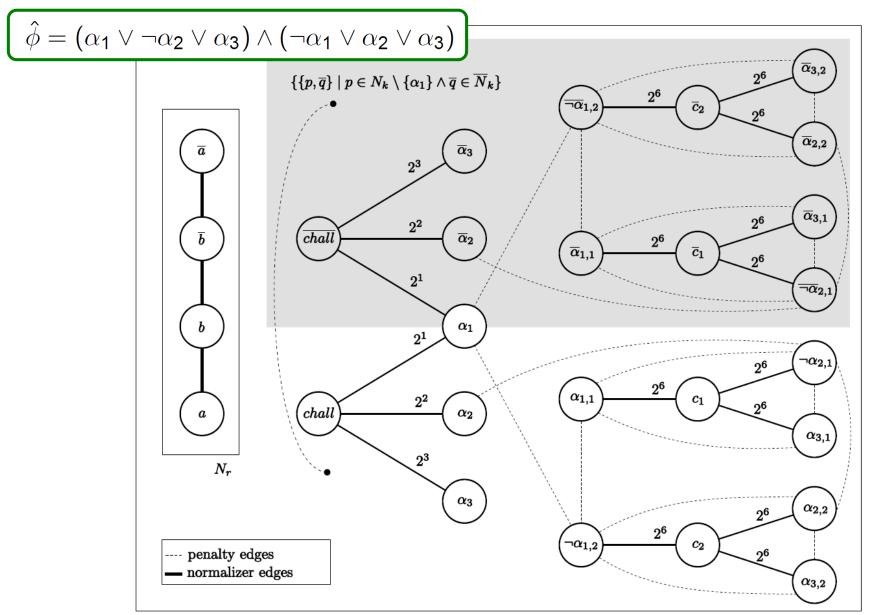
Deciding whether an imputation is the nucleolus is Δ_2^P -hard. Thus, it is Δ_2^P -complete.

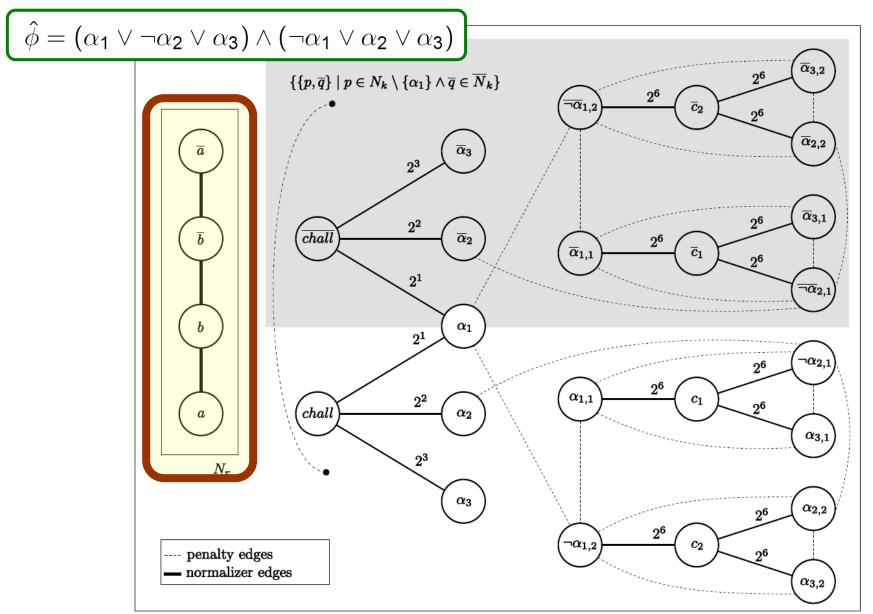
Proof (Reduction for Graph Games: *The cost of individual rationality!*)

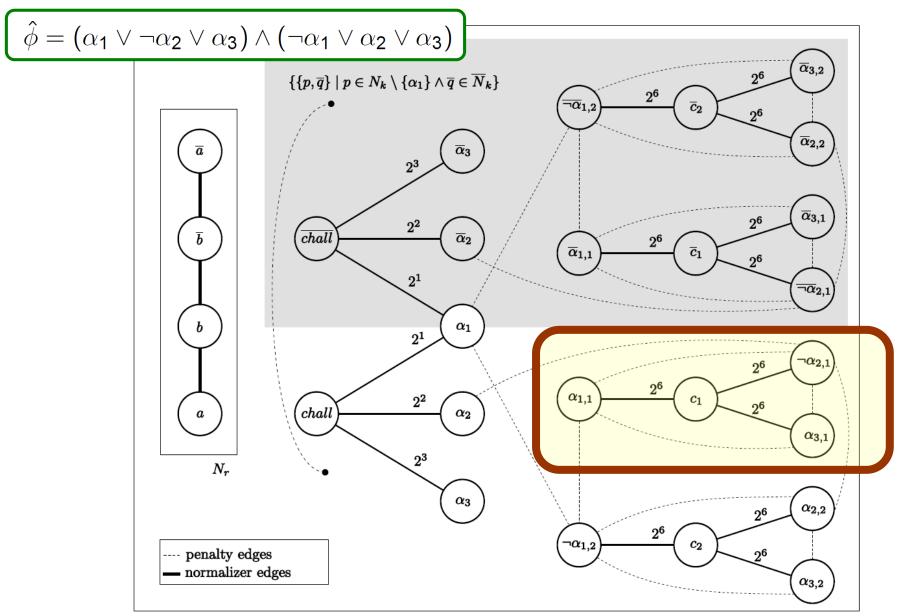
 Deciding the truth value of the least significant variable in the lexicographically maximum satisfying assignment

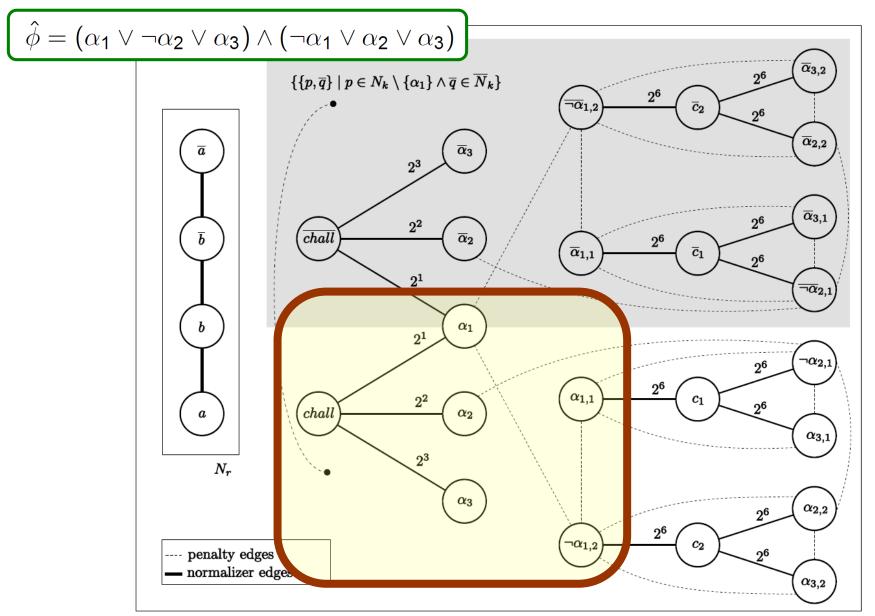
$$\hat{\phi} = (\alpha_1 \vee \neg \alpha_2 \vee \alpha_3) \wedge (\neg \alpha_1 \vee \alpha_2 \vee \alpha_3)$$

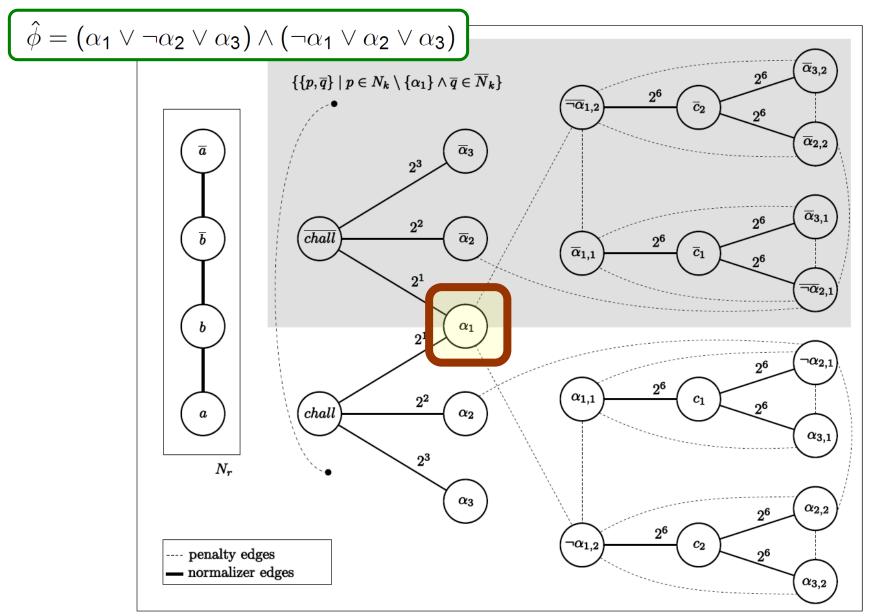
 $\alpha_1 < \alpha_2 < \alpha_3$











Thank you!