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 The lost letter…

 Year: 1956

 To: John von Neumann

 …and one question

One Basic Question…

Kurt Gödel (1906-1978)



 Seven problems

 P versus NP 

 Poincaré conjecture

 Hodge conjecture

 Riemann hypothesis

 Yang–Mills existence and mass gap

 Navier–Stokes existence and smoothness

 Birch and Swinnerton-Dyer conjecture

Millennium Prize Problems



About Clay

M.C. ESCHER 

RELATIVITY, 1953 



About the Problems

GRIGORY PERELMAN 

 One problem has been solved in 2006

 Poincaré conjecture

 He did not want the prize…

 …and the Fields Medal



 Look for a document

Problems

INPUT

OUTPUT



 Look for a document

Algorithms

INPUT

OUTPUT



 Algorithm 1

 «quadratic»

 Algorithm 2

 «linear»

Comparison

n x (n-1)

n

Alg. 1

Alg. 2
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 Does there exist a solution? 

 More generally, take L1, L2,…Ln and answer questions such as: 
 Is ithere some value for L1 such that for all values for L2…



Golden Ratio

 Does there exist a solution? 

 More generally, take L1, L2,…Ln and answer questions such as: 
 Is ithere some value for L1 such that for all values for L2…

 Provably EXPonential

 Every algorithm takes 10n operations in the worst case



 104: There are 20,000–40,000 distinct Chinese 

characters

 105 : 67,000 words in James Joyce's Ulysses

 106 : As of August 31, 2015, Wikipedia contains 

approximately 4956000 articles in the English language

 109: Approximate population of India in 2011

 1014: Cells in the human body

 1021: Estimated number of observable stars

 1080: Atoms in the Universe

Orders of Magnitude
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 We would like to set up two teams

 Goal

 The teams should be «balanced»

A Simple Problem for NP
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 Consider all possible teams

A Simple Problem for NP



 Scheduling

 Planning

 Logistics

 Crypto

 …Game Theory

Further Examples





Game Theory (in a Nutshell)

Which actions have to be performed? 

Each player:

 Has a goal to be achieved

 Has a set of possible actions

 Interacts with other players

 Is rational
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Non-Cooperative Games(1/3)

Each player:

 Has a goal to be achieved

 Has a set of possible actions

 Interacts with other players

 Is rational

2 0

0 1

out

John goes outBob

home

John stays at home

1 1

0 0

out

Bob goes outJohn

home

Bob stays at home

Payoff maximization problem
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Non-Cooperative Games(3/3)

Each player:

 Has a goal to be achieved

 Has a set of possible actions

 Interacts with other players

 Is rational

Every game admits a mixed Nash equilibrium, 

 where players chose their strategies according to probability distributions

pure Nash equilibria

Payoff maximization problem

Nash equilibria



‘51

Nash: Existence of Nash Equilibria

‘89

Gilboa and Zemel: Complexity of certain NE

‘01

Kearns, Littman, and Singh: Succinct representations and NE computation



Succint Game Representations

 Players:

 Maria, Francesco                                          

 Choices: 

 movie, opera If 2 players, then size = 22

2 0

0 1

movie

Francesco, movieMaria

opera

Francesco, opera



Succint Game Representations

 Players:

 Maria, Francesco, Paola

 Choices: 

 movie, opera If 2 players, then size = 22

If 3 players, then size = 23

2 0 2 1

0 1 2 2

movie

Fmovie and Pmovie Fmovie and Popera Fopera and Pmovie Fopera and PoperaMaria

opera



Succint Game Representations

 Players:

 Maria, Francesco, Paola, Roberto, and Giorgio

 Choices: 

 movie, opera If 2 players, then size = 22

If 3 players, then size = 23

If N players, then size = 2N

…

2 …….. …….. ……..

0 …….. …….. ……..

movie

Fmovie and Pmovie and Rmovie and Gmovie ………………………..Maria

opera



Succint Game Representations

 Players:

 Francesco, Paola, Roberto, Giorgio, and Maria

 Choices: 

 movie, opera

24

23

23

23

22



‘51

Nash: Existence of Nash Equilibria

‘89

Gilboa and Zemel: Complexity of certain NE

‘01

Kearns, Littman, and Singh: Succinct representations and NE computation

‘03

Gottlob, Greco, and Scarcello: Complexity of pure NE in succinct games



Complexity of Pure Nash Equilibria(1/3)

 Game Representation

 Tables 

 Arbitrary Functions
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Complexity of Pure Nash Equilibria(1/3)

 Game Representation

 Tables 

 Arbitrary Functions

2 …….. …….. ……..

0 …….. …….. ……..

movie

Fmovie and Pmovie and Rmovie and Gmovie ………………………..Maria

opera

Maria

if all play movie

then get 2

else if

....

else get 0

F G

2
movie

movie movie



Complexity of Pure Nash Equilibria(1/3)

 Game Representation

 Tables 

 Arbitrary Functions

 Neighborood

 Arbitrary

 Small (i.e., log)

 Bounded (i.e., constant)



all games

small neigbourhood

bounded neigbourhood

neigbourhood = 3

neigbourhood   2

Complexity of Pure Nash Equilibria(3/3)



all games

small neigbourhood

bounded neigbourhood

neigbourhood = 3

neigbourhood   2polynomial

NP-c

NP-c

NP-c

NP-c

THE BAD NEWS:

Complexity of Pure Nash Equilibria(3/3)



Hard Games: NP-hardness

Theorem Deciding whether a game has pure Nash equilibrium is NP-complete. Hardness 

holds even if the game is in GNF, and if it has 3-bounded neighborhood.

Reduction from 3-colorability

 Players: Nodes

 Actions: Colors + {U,V}

 Utility Functions: the players have an 

incentive to play a color different from the 

ones played by the neighbors

 Challenger and Duplicator are 

distinguished (connected) players such 

that:

 C wants to play an action different from D;

 D want to play either a color different from 
C, or the same action in {U,V}.

Challenger

Duplicator

The graph is 

3-colorable



Hard Games: NP-hardness
The graph is not 3-colorable:

 Adjacent players playing 

the same color have an 

incentive to play U.

U

U

 The neighbors of players 

playing U have an 

incentive to play U, in 

their turn.

U

U

U

U

U

Duplicator

Challenger

 Challenger want to plays 

an action different of 

Duplicator.

U

V

V

U

V

V  No Nash equilibria exist.



Hard Games: coNP-hardness

Theorem Deciding whether a global strategy x is a Pareto (Strong) Nash equilibrium is 

coNP-complete. Hardness holds even if x is a Nash equilibrium, the game is in GNF, and if 

it has 3-bounded neighborhood.

 Reduction from 3-non-colorability

 The same construction as above 

except:

 Each player may play also W, and has an 
incentive in such choice if all her 
neighbors play W, too.

 There is alway a Nash equilibrium 

where all players play W

 Utility functions are such that it this 
equilibrium is not preferred to the 
equilibrium (if any) corresponding to a 3-
coloring.

 This equilibrium is Pareto iff the graph is 
not 3-colorable.

W

W

W

W

W



‘51

Nash: Existence of Nash Equilibria

‘89

Gilboa and Zemel: Complexity of certain NE

‘01

Kearns, Littman, and Singh: Succinct representations and NE computation

‘03

Gottlob, Greco, and Scarcello: Complexity of  pure NE in succinct games

Greco and Scarcello: Complexity of certain NE in succinct games

‘04



Constrained Nash Equilibria(1/3)

1 0

0 1

out

John goes outBob

home

John stays at home

0 1

1 0

out

Bob goes outJohn

home

Bob stays at home



Constrained Nash Equilibria(1/3)

 Computing  “any” Nash equilibria might not be enough

 E.g., multi-agent planning, routing protocols, etc.

1 0

0 1

out

John goes outBob

home

John stays at home

0 1

1 0

out

Bob goes outJohn

home

Bob stays at home

 What if we ask for “certain types of equilibrium”?

 Bob gets at least 1

 The best social welfare

 Maria cannot go to the opera

 …



Evaluation functions

 FP:  polynomial-time computable functions, associating real numbers with each 

combined strategy of players in P and their neighbors

Constrained Nash Equilibria(2/3)

 Examples

 Let A{G,P} return the minimum payoff between Giorgio and Paola 

 A{G,P} > 1 is a guarantee for G and P

 Let B{F,P,R,G,M} return the sum of the payoffs of all players

 By maximizing B{F,P,R,G,M} , we optimize the social welfare



Arbitrary

Polynomial

Linear

Local  

Constrained Nash Equilibria(3/3)
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‘51

Nash: Existence of Nash Equilibria

‘89

Gilboa and Zemel: Complexity of certain NE

‘01

Kearns, Littman, and Singh: Succinct representations and NE computation

‘03

Gottlob, Greco, and Scarcello: Complexity of  pure NE in succinct games

Greco and Scarcello: Complexity of certain NE in succinct games

‘04

Chen, Daskalakis, Deng, Goldberg, and Papadimitriou: Complexity of NE (in succinct)

‘06

Gottlob, Greco, and Mancini: Complexity of pure Bayesian NE in succinct games

‘07



Bayesian Nash Equilibria(1/3)

2 0

0 1

out

John goes outBob

home

John stays at home

0 1

1 0

out

John goes outBob

home

John stays at home

Type 1

Type 2



Bayesian Nash Equilibria(2/3)

 The transformation:

 Is feasible in polynomial time

 Preserves the neighboord

 Preserves the structural properties

Easy cases are preserved



Bayesian Nash Equilibria(3/3)





Game Theory (in a Nutshell)

Each player:

 Has a goal to be achieved

 Has a set of possible actions

 Interacts with other players

 Is rational

Which actions have to be performed? 



Cooperative Game Theory(1/2)
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 Is rational

Utility distribution, if the task is performed

Jointly perform the task (with some cost)
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Cooperative Game Theory(1/2)

To perform some task Each player:

 Has a goal to be achieved

 Has a set of possible actions
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 Is rational

Utility distribution, if the task is performed

Jointly perform the task (with some cost)

 Players get 9$, if they enforce connectivity

 Enforcing connectivity over an edge as a cost

2$

1$

1$ 3$

1$

Coalition {F,P,R,M} gets 9$, and pays 6$

worth v({F,P,R,M}) = 9$ - 6$ 



Cooperative Game Theory(1/2)

To perform some task Each player:

 Has a goal to be achieved

 Has a set of possible actions

 Interacts with other players

 Is rational

Utility distribution, if the task is performed

Jointly perform the task (with some cost)

2$

1$

1$ 3$

1$

coalition worth

{F} 0

… 0

{G,P,R,M} 0

{F,P,R,M} 3

{G,F,P,R,M} 4

How to distribute 9$, based on such worths?



Cooperative Game Theory(2/2)

Each player:

 Has a goal to be achieved

 Has a set of possible actions

 Interacts with other players

 Is rational

2$

1$

1$ 3$

1$

fairness

coalition worth

{F} 0

… 0

{G,P,R,M} 0

{F,P,R,M} 3

{G,F,P,R,M} 4

How to distribute 9$, based on such worths?



The Model

 Players form coalitions

 Each coalition is associated with a worth

 A total worth has to be distributed 

Outcomes belong to the imputation set

Efficiency

Individual Rationality



The Model

 Players form coalitions

 Each coalition is associated with a worth

 A total worth has to be distributed 

Solution Concepts characterize outcomes in terms of
Fairness

Stability
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…and the Nucleolus

 Arrange excess values in non-increasing order

[Schmeidler]
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 Graph Games [Deng and Papadimitriou, 1994]

 Computational issues of several solution 
concepts

 The (pre)nucleolus can be computed in P



Graph Games

4

6

4 3

4
3

 Graph Games [Deng and Papadimitriou, 1994]

 Computational issues of several solution 
concepts

 The (pre)nucleolus can be computed in P

Cost allocation on trees [Megiddo, 1978]

Polynomial time algorithm

Flow games [Deng, Fang, and Sun, 2006]

Polynomial time algorithm on simple networks (unitary edge capacity)

NP-hard, in general

Weighted voting games [Elkind and Pasechnik, 2009]

Pseudopolynomial algorithm 
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cf. Mashler, Peleg, and Shapley, 1979

where:





[Kern and Paulusuma, 2003]



LP Approaches over Compact Games

 In compact games, two problems have to be faced:

(P1) Sets      and      contain exponentially many elements,  
but we would like to avoid listing them explicitly

(P2) Translate LP (complexity) results to “succinct programs” 
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(P1): A Convenient Representation

i i-th inequality
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(P2) Computation Problems

In compact games, two problems have to be faced:

(P1) Sets      and      contain exponentially many elements,  
but we would like to avoid listing them explicitly

(P2) Translate LP (complexity) results to “succinct programs” 
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Complexity Results

i i-th inequality

P
 Given a vector x, we can:

 Guess an index i

 Check that the i-th inequality is not satisfied by x x

Trivial



Complexity Results

i i-th inequality



Complexity Results

i i-th inequality

 By Helly’s theorem, we can solve the complementary problem in NP:

 Guess n+1 inequalities 

 Check that they are not satisfiable (in polynomial time) 

Proof



Complexity Results

i i-th inequality



Complexity Results

i i-th inequality

(1) The dimension is n-k at most, if there are at least k linear independent implied 
equalities

(2) In order to check that the i-th inequality is an implied one, 

we can guess in NP a support set W(i), again by Helly’s theorem:
 n inequalities + the i-th inequality treated as strict 
 W(i) is not satisfiable, which can be checked in polynomial time

Proof Overview

Guess k implied equalities plus their support sets

Check that they are linear independent



Complexity Results

i i-th inequality



Complexity Results

i i-th inequality

P

(1) Compute the dimension n-k, with a binary  

search invoking an NP oracle

(2) Guess k implied equalities plus their 

support sets

Proof



Complexity Results
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Complexity Results

i i-th inequality

(1) Bfs can be represented with polynomially many bits

(2) LP induces a polytope and hence the optimum is achieved on some bfs.

(3) Perform a binary search over the range of the optimum solution:
 Add the current value as a constraint, and check satisfiability

Routine



Complexity Results

i i-th inequality



Complexity Results

i i-th inequality

 LP induces a polytope

 Compute the lexicographically maximum bfs solution, by iterating over the 
various components, and treating each of them as an objective function to be 
optimized.

Routine



Complexity Results

i i-th inequality



Complexity Results

i i-th inequality

(1) Compute the optimum value

(2) Define LP’ as LP plus the constraint stating that the objective function must 
equal the optimum value 

(3) Compute a feasible value for LP’ 

Routine



Putting It All Togheter

In compact games, two problems have to be faced:

(P1) Sets      and      contain exponentially many elements,  
but we would like to avoid listing them explicitly

(P2) Translate LP (complexity) results to “succinct programs” 

M.P.S. Compact Encoding Algorithms in FP
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M.P.S. Compact Encoding Algorithms in FP
2



Checking Problem



Checking Problem

1 < 2 < 3

Proof

 Deciding the truth value of the least significant variable in the lexicographically 

maximum satisfying assignment

(Reduction for Graph Games: The cost of individual rationality!)



Overview of the Reduction
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Overview of the Reduction



Thank you!


