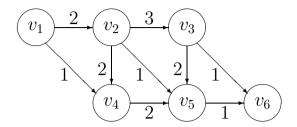
Terza prova parziale di Modelli Matematici per la Logistica

1. Si consideri la seguente rete di trasporto, in cui i numeri indicano la capacità massima degli archi e le capacità minime sono tutte nulle:



Determinare il flusso massimo da v_1 a v_6 con l'algoritmo del contrassegno, esaminando nodi e archi secondo l'ordine crescente degli indici, contrassegnando tutti i nodi possibili e aggiungendo al contrassegno il massimo incremento corrente. Determinare anche il taglio minimo.

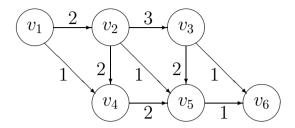
2. Si consideri il problema di magazzino con capacità produttiva e capacità del magazzino illimitate, su un orizzonte di 5 periodi. Per ogni periodo, le domande sono date dal vettore d = (3, 5, 2, 2, 6), i costi unitari di produzione dal vettore c = (4, 8, 3, 6, 7) e i costi unitari di magazzino dal vettore h = (2, 1, 2, 1).

Determinare la produzione di ogni periodo e i costi complessivi

TEMPO SUGGERITO 15m PUNTEGGIO 12

Prova scritta di Modelli Matematici per la Logistica

1. Si consideri la seguente rete di trasporto, in cui i numeri indicano la capacità massima degli archi e le capacità minime sono tutte nulle:



Determinare il flusso massimo da v_1 a v_6 con l'algoritmo del contrassegno, esaminando nodi e archi secondo l'ordine crescente degli indici, contrassegnando tutti i nodi possibili e aggiungendo al contrassegno il massimo incremento corrente.

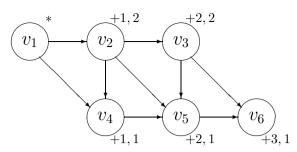
Determinare anche il taglio minimo.

2. Si consideri il seguente problema dello zaino:

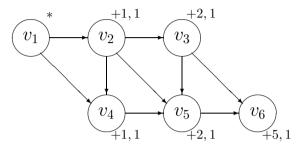
$$Oggetto \ A \ B \ C \ D \ E \ F \ G \ H \ Valore \ 20 \ 18 \ 15 \ 13 \ 12 \ 9 \ 8 \ 5 \ Peso \ 15 \ 13 \ 11 \ 9 \ 8 \ 7 \ 5 \ 3 \ Peso \ massimo \ trasportabile = 34$$

Determinare la soluzione con l'algoritmo greedy e valutare la soluzione utilizzando il bound di Dantzig iniziale.

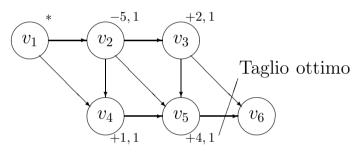
TEMPO SUGGERITO 15m PUNTEGGIO 12 1.



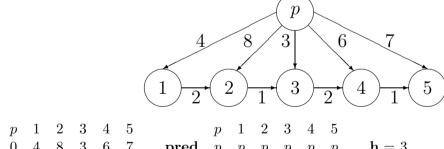
Cammino aumentante: $v_1 - v_2 - v_3 - v_6$



Cammino aumentante: $v_1 - v_2 - v_5 - v_6$



2. Il problema equivale a determinare il cammino minimo da p ai nodi 1, 2, 3, 4, 5 sul seguente grafo (i numeri indicano i costi degli archi):



	p	1	2	3	4	Э		p	1	2	3	4	Э	
\mathbf{d}	0	4	8	3	6	7	$\operatorname{\mathbf{pred}}$	p	p	p	p	p	p	h = 3
\mathbf{d}	0	4	8	3	5	7	$\operatorname{\mathbf{pred}}$	p	p	p	p	3	p	$\mathbf{h} = 1$
\mathbf{d}	0	4	6	3	5	6	$\operatorname{\mathbf{pred}}$	p	p	1	p	3	p	$\mathbf{h} = 4$
\mathbf{d}	0	4	6	3	5	6	$\operatorname{\mathbf{pred}}$	p	p	1	p	3	4	h = 2
\mathbf{d}	0	4	6	3	5	6	$\operatorname{\mathbf{pred}}$	p	p	1	p	3	4	h = 5
STOP														

Nel primo periodo si producono 8 unità (3 per il primo, 5 per il secondo) e nel terzo periodo 10 unità (2 per il terzo e il quarto, 6 per il quinto), con un costo complessivo $3 \times 4 + 5 \times (4+2) + 2 \times 3 + 2 \times (3+2) + 6 \times (3+2+1) = 94$

3. Riordinando gli oggetti si ha:

Oggetto	H	G	E	D	B	C	A	F
Valore	5	8	12	13	18	15	20	9
Peso	3	5	8	9	13	11	15	7
Rapporto	1.67	1.60	1.50	1.44	1.38	1.36	1.33	1.29

L'algoritmo greedy prende gli oggetti H,G,E,D,F con peso 32 e valore 47. La limitazione iniziale è $\lfloor 5+8+12+13+\frac{18}{13} \ 9 \rfloor = 50$. L'approssimazione è $\frac{47}{50}=94\%$