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Abstract. In this paper we describe a language for reasoning about actions that can be used for
modelling and for programming rational agents. We propose a modal approach for reasoning
about dynamic domains in a logic programming setting. Agent behavior is specified by means
of complex actions which are defined using modal inclusion axioms. The language is able
to handle knowledge producing actions as well as actions which remove information. The
problem of reasoning about complex actions with incomplete knowledge is tackled and the
temporal projection and planning problems is addressed; more specifically, a goal directed
proof procedure is defined, which allows agents to reason about complex actions and to gen-
erate conditional plans. We give a non-monotonic solution for the frame problem by making
use of persistency assumptions in the context of an abductive characterization. The language
has been used for implementing an adaptive web-based system.
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1. Introduction

In this paper we describe a language for reasoning about actions that can be
used for specifying agents and for executing agent specifications. Reasoning
about the effects of actions in a dynamically changing world is one of the
main problems which must be faced by intelligent agents and, on the other
hand, the internal dynamics of the agent itself can be regarded as resulting
from the execution of actions on the mental state.

The action theory we adopt is a modal action theory, in which actions are
represented by modalities. The adoption of Dynamic Logic or a modal logic
to deal with the problem of reasoning about actions and change is common
to many proposals, as for instance [19, 38, 16, 41, 29], and it is motivated
by the fact that modal logic allows a very natural representation of actions as
state transitions, through the accessibility relation of Kripke structures. Since
the intentional notions (or attitudes), which are used to describe agents, are
usually represented as modalities, our modal action theory is also well suited
to incorporate such attitudes, although in this paper we will only deal with
beliefs.
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Our starting point is the modal logic programming language for reasoning
about actions presented in [12]. Such language extends the language A [27]
to deal with ramifications, by means of “causal rules” among fluents, and with
nondeterministic actions. The language relies on an abductive semantics, to
provide a nonmonotonic solution to the frame problem, and, when there are
no ramifications, it has been proved to be equivalent to the language A .

Such a language mainly focuses on ramification problem but does not pro-
vide a formalization of incomplete initial states with an explicit representation
of undefined fluents. Such an explicit representation is needed if we want to
model an agent which is capable of reasoning and acting on the basis of its
(dis)beliefs. Often an agent has incomplete information about the state of
the world and it needs to take actions to obtain the knowledge necessary for
determining how to act. These knowledge producing actions [40] are usually
called sensing actions.

There are several proposals in the literature for reasoning about actions
in the presence of sensing which have been developed along the line of a
Scherl and Levesque paper [40]. Let us mention the work on the high level
robot programming language GOLOG [20, 21], which is based on a theory
of actions in the situation calculus. Other proposals have been developed by
extending the action description language A [27], as in [35, 14], while in [42]
a formal account of a robot’s knowledge about the state of its environment
has been developed in the context of the fluent calculus.

In this paper, we start from the action language presented in [12] to define
a language capable of representing incomplete belief states and of dealing
with sensing actions as well as with complex actions. Our aim is that of
defining an agent programming language in which the possible behaviors
of an intelligent agent reasoning and acting in the world can be described.
In particular, the agent should be able to plan its behavior by choosing a
given course of actions among different possible ones according to its current
beliefs on the world, and can use sensors for acquiring the information it
lacks about the real world. As we will focus on modeling a single agent and
its interactions with the world, we will be only concerned with the description
of the internal dynamics of the agent, which results from the effects of actions
execution on its mental state: actions have certain effects on the world and
the agent updates its belief accordingly, when executing an action. Moreover
the agent can check the current state of the world, on which he might have
an incomplete information or which might have been modified by external
(exogenous) events, by making use of sensing actions. For these reasons,
in our formalism we will only keep the agent’s representation of the world,
while in other formalizations of sensing actions [40, 14], where the focus is
on developing a theory of actions and knowledge rather than on modeling
agent behaviors, both the mental state of the agent and the real state of the
world are represented. In order to represent the mental state of an agent, we
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introduce an epistemic level in our action logic. By using belief modalities,
we represent the mental state of an agent as a set of epistemic literals. Then,
as concerns world actions, i.e. actions affecting the real world, we only model
what the agent believes about action’s effects based on its beliefs about the
preconditions. As concerns sensing actions, we consider them as input actions
which produce fresh information on the value of some fluents in the real
world. In essence, sensing actions are regarded as non-deterministic actions,
whose outcome cannot be predicted by the agent.

Another aim of the paper is to extend the action language to deal with
complex actions. The definition of complex actions we introduce draws from
dynamic logic [30] for the definition of action operators like sequence, test
and non-deterministic choice. However, rather than referring to an Algol-like
paradigm for describing complex actions, as in [34], we refer to a Prolog-like
paradigm: complex actions are defined through (possibly recursive) defini-
tions, given by means of Prolog-like clauses.

In particular, we show that in modal logics, we can express complex action
definitions by means of a suitable set of axioms of the form

〈p0〉ϕ ⊂ 〈p1〉〈p2〉 . . .〈pn〉ϕ.

If p0 is a procedure name, and the pi(i = 1, . . . ,n) are either procedure names,
or atomic actions or tests, the above axiom can be interpreted as a proce-
dure definition, which can then be executed in a goal directed way, similarly
to standard logic programs. These axioms have the form of inclusion ax-
ioms, which were the subject of a previous work [11, 3], in which the class
of multimodal logics characterized by axioms of the form [s1] . . . [sm]ϕ ⊂
[p1] . . . [pn]ϕ, where [si] and [pi] are modal operators, have been analyzed.
These axioms have interesting computational properties because they can be
considered as rewriting rules.

This action theory has an immediate computational counterpart in a logic
programming language, called DyLOG. We develop a goal directed proof
procedure for reasoning about complex actions (including sensing actions),
which can be considered as an interpreter of such a language. This procedure
can be extended for constructing conditional plans to achieve a given goal
from an incompletely specified initial state. We can prove in the language
that such generated plans are correct, i.e. achieve the desired goal for a given
initial state. DyLOG can be used as an ordinary programming language for
executing procedures which model the behavior of an agent, but also to reason
about them, by extracting from them linear or conditional plans. It has been
implemented in Sictus Prolog. Its interpreter is a straightforward implemen-
tation of its operational semantics and can be downloaded in [1]. DyLOG

has been practically used for specifying the behavior of rational agents that
supply adaptive services in a web-based application context [4, 9].
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The outline of the paper is as follows. In Section 2 the modal action logic
is presented through an example. In Section 3 we describe the axiomatics and
the Kripke semantics of the action logic and, also, we describe the abductive
semantics on which is based our solution to the frame problem. Section 4 de-
scribes a goal directed proof procedure for computing linear plans to achieve
a given goal, as well as a procedure which computes conditional plans. Sec-
tion 5 describes the use of this agent programming language to implement
adaptive web applications. Sections 6 and 7 contain the discussion of related
work and some conclusion.

2. The Modal Action Logic

In our action logic actions are represented by a modality. We distinguish
between three kinds of actions: sensing actions, which affect the internal state
of the agent by enhancing its knowledge on the environment, world actions,
that is actions which have actual effects on the external world, and complex
actions, which are defined on the base of the previous ones together with test
and possibly complex actions as well. We denote by A the set of world actions
and by S the set of sensing actions. For each action a ∈ A ∪S we introduce
a normal modal operator [a]1. A formula [a]α means that α holds after every
execution of action a, while 〈a〉α, the dual of [a], means that there is a possible
execution of action a after which α holds (and similarly for the modalities for
sensing actions). Furthermore, we make use of the normal modal operator
2 to denote laws, namely formulas that holds always, after any sequence of
actions. The intended meaning of a formula 2α is that α holds after every
sequence of actions. The modality 2 is ruled by the axioms of the logic S4
(reflexivity and transitivity) and it interacts with the world actions modalities
through the axiom schema 2ϕ ⊃ [a]ϕ for each a ∈ A . This is sufficient to
guarantee that by 2 we can denote a (possibly empty) arbitrary sequence
of actions. In fact by reflexivity (2ϕ ⊃ ϕ), a formula that holds always will
also holds in an initial moment where no action has been executed yet; by
transitivity (2ϕ ⊃ 22ϕ) and by the interaction axiom 2ϕ ⊃ [a]ϕ, we have
that a formula that holds always will also hold after an arbitrary sequence of
world actions. In order to represent complex actions, the language contains
also a finite number of normal modal operators [pi], where pi is a constant
denoting a procedure name. We will use the modality 〈pi〉 as the dual of [pi]
and we denote by P the set of such procedure names.

In our language we use atomic propositions for fluent names, and l to
denote a fluent literal, consisting in a fluent name f or its negation ¬ f . Since
we want to reason about the effects of actions on the internal state of an agent,

1 That is, the modal operator [a] is ruled at least by axiom K([a]) : [a](α ⊃ β) ⊃ ([a]α ⊃
[a]β).
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we define a state as a set of belief formulas. More precisely, we introduce the
notion of epistemic fluent literal to be a modal atom Bl or its negation ¬Bl,
where l is a fluent literal and the modal operator B is used to model agent’s
beliefs. Intuitively, Bl means that l is believed to be the case. Moreover, we
use the modality M , which is defined as the dual of B , i.e. M l is ¬B¬l.
M α means that α is considered to be possible. The modal operator B is of
type KD and it is a normal modality ruled by the axiom schema Bϕ ⊃¬B¬ϕ
(seriality). It is worth noting that the usual modal logic used to represent
belief operators is KD45. In our formalization we do not add the positive and
negative introspection axioms to belief modality B because we restrict it to
be used in front of literals. Intuitively, this means that the epistemic state of
an agent is restricted to contain beliefs on the facts of the world and not on
other beliefs.2

DEFINITION 2.1 (Epistemic state). An epistemic state S is a set of epistemic
literals satisfying the following requirements:

1. for each fluent literal l, either Bl ∈ S or ¬Bl ∈ S (completeness);

2. for no fluent literal l, both Bl ∈ S and ¬Bl ∈ S (consistency).

Notice that, since B is serial the case when both Bl and B¬l hold cannot
occur. In fact, if Bl ∈ S then, by seriality, ¬B¬l ∈ S and thus, by consis-
tency, B¬l 6∈ S. Similarly when B¬l ∈ S. In essence a state is a complete
and consistent set of epistemic fluent literals, and it provides a three-valued
interpretation in which each literal l is true when Bl holds, false when B¬l
holds, and undefined when both ¬Bl and ¬B¬l hold (denoted by Ul).

Finally, the operators “∪” (non-deterministic choice), “;” (sequence) and
“?” (test) of dynamic logic [30] are used for building complex actions from
world actions, sensing actions, and complex action as well. They are ruled by
the axiom schemas : 〈a∪b〉ϕ ≡ 〈a〉ϕ∨〈a〉ϕ, 〈a;b〉ϕ ≡ 〈a〉〈b〉ϕ, and 〈ψ?〉ϕ ≡
ψ∧ϕ. The operator “∪” expresses the non-deterministic choice among two
actions: executing the choice a∪ b means to execute non-deterministically
either a or b. Instead, the operator “;” expresses the sequencing of two actions:
executing a;b means to execute the actions a and b in this order. Finally,
for the test operator, similarly to dynamic logic, if ψ is a formula then ψ?
can be used as a label for a modal operator, such as 〈ψ?〉. However, in our
language, we restrict the formulae that can occur as a label of a test operator
to a conjunction of epistemic fluents.

2 In [7] we extend the framework in order to deal with epistemic states containing nested
beliefs of rank two. In that context B is ruled by axioms of the logic KD45.
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2.1. WORLD ACTIONS

World actions allow the agent to affect the environment. In our formalization
we model the epistemic state of the agent while we do not model the real
world. For this reason we will not represent the actual effects of actions on
the world and we only formalize what the agent believes about these effects
based on belief preconditions. For each world action, the domain description
contains a set of simple action clauses, that allow direct effects and precondi-
tions of world actions on the epistemic state to be described. Basically, simple
action clauses consist of action laws and precondition laws.3

Action laws define direct effects of a world actions on an epistemic fluent
and allow actions with conditional effects to be represented. They have form:

2(Bl1 ∧ . . .∧Bln ⊃ [a]Bl0) (1)

2(M l1 ∧ . . .∧M ln ⊃ [a]M l0) (2)

(1) means that after any sequence of world actions (2), if the set of fluent
literals l1, . . . , ln (representing the preconditions of the action a) is believed
then, after the execution of a, l0 (the effect of a) is also believed. (2) is nec-
essary in order to deal with ignorance about preconditions of the action a. It
means that the execution of a may affect the beliefs about l0, when executed
in a state in which the preconditions are considered to be possible. When the
preconditions of a are unknown, this law allows to conclude that the effects
of a are unknown as well.

EXAMPLE 2.1. Let us consider the example of a robot which is inside a
room. Two air conditioning units, unit1 and unit2 can blow fresh air in the
room and the flow of the air from a unit can be controlled by a dial as the one
represented in Fig. 1. Such kind of dial can be accessed by raising a protective
cover and can be set in three positions: off, low, high. turn dial(I) denotes
the atomic action of turning the dial controlling the unit I clockwise from a
position to the next one, which causes to start the air flow blowing with low
speed when the unit is off, to increase the speed of the flow if it is low, and,
finally, to stop the unit’s blowing if the flow is high. Note that, in order to
avoid the introduction of many variant of the same clauses, as a shorthand,
we use the metavariable I, where I ∈ {unit1,unit2} and the metavariable P,
where P ∈ {low,high,o f f}, in other words f low(I,P) can be regarded as an
atomic proposition.

(a) 2(B f low(I, low) ⊃ [turn dial(I)]B f low(I,high))
(b) 2(M f low(I, low) ⊃ [turn dial(I)]M f low(I,high))

3 In this paper we do not introduce constraints or causal rules among fluents. However,
causal rules could be easily introduced by allowing a causality operator, as in [29] to which
we refer for a treatment of ramification in a modal setting.
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Figure 1. A snapshot of our robot. Initially it is inside the room, in front of the air conditioning
unit number 1.

(c) 2(B f low(I,high) ⊃ [turn dial(I)]B f low(I,o f f ))
(d) 2(M f low(I,high) ⊃ [turn dial(I)]M f low(I,o f f ))
(e) 2(B f low(I,o f f ) ⊃ [turn dial(I)]B f low(I, low))
(f) 2(M f low(I,o f f ) ⊃ [turn dial(I)]M f low(I, low))

The above action laws describe some of the effects of turning a dial on
the agent’s epistemic state: depending on its beliefs about the position of the
dial before executing the action, the agent gains knowledge about the new
dial’s position. Moreover, since in this paper we do not treat causal rules and
constraints, some action law must be introduced in order to describe the fact
that, as a consequence of turning the dial on the next position, the agent comes
to know that the dial is not in the previous position anymore4:

(g) 2(B f low(I,P) ⊃ [turn dial(I)]B¬ f low(I,P))
(h) 2(M f low(I,P) ⊃ [turn dial(I)]M ¬ f low(I,P))

Precondition laws allow to specify belief preconditions for world actions,
that is those epistemic conditions which make an action executable in a state.
They have form:

2(Bl1 ∧ . . .∧Bln ⊃ 〈a〉>) (3)

4 If causal laws would be available, this could be expressed as an indirect effect of the
action of turning, by means of a causal law defining a dependency relationship between the
value of the fluents representing the three different dial positions.
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meaning that after any sequence of world actions, if the conjunction of epis-
temic literals Bl1, . . . , Bln holds, then a can be executed. For instance, ac-
cording to the following clause, the robot must know to be in front of the air
conditioning unit I and the protective cover to be raised if it wants to turn the
dial controlling the unit’s flow by executing turn dial(I):

(i) 2(Bin f ront o f (I)∧Bcover up(I) ⊃ 〈turn dial(I)〉>)

2.1.1. Knowledge Removing Actions
Up to now, we considered actions with deterministic effects on the world, i.e.
actions in which the outcome can be predicted. The execution of such actions
causes the agent to have information about their effects, because the action is
said to deterministically cause the change of a given set of fluents. However
effects of actions can be non-deterministic and, then, unpredictable. In such a
case, the execution of the action causes the agent to lose knowledge about its
possible effects, because the action could unpredictably cause the change of
some fluent. In our framework, we can model actions with non-deterministic
effects as actions which may affect the beliefs about the value of a fluent, by
simply using action laws of form (2) but without adding the corresponding
law of the form (1).

EXAMPLE 2.2. Let us consider an action drop of dropping a glass from a
table. We want to model the fact that dropping a fragile glass may possibly
make the glass broken. It can be expressed by using a suitable action law of
the form (2):

2(M f ragile ⊃ [drop(I)]M broken).

It means that, in the case the agent considers possible that the glass is
fragile, then, after dropping it, it considers possible that it has become broken.
Note that, since Bα entails M α (seriality), the action law above can also be
applied in the case the agent believes that the glass is fragile, to conclude that
it is possibly broken. If action drop is executed in a state in which B f ragile
and B¬broken hold, in the resulting state M broken (i.e. ¬B¬broken) will
hold: the agent does not know anymore if the glass is broken or not (for a
formal account of fluents’ persistency after executing actions, see Section 3).

2.2. SENSING ACTIONS

Let us now consider sensing actions, which allow an agent to gather infor-
mation from the environment, enhancing its knowledge about the value of a
fluent. In modelling sensing actions we are interested to represent the possible
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epistemic states achieved by the agent after the execution of sensing. In fact,
since the actual result of the sensing execution cannot be predicted, in order
to represent the effects of such actions on the epistemic state we have to take
into account all the possibilities. Let us consider the case of binary sensing
actions, that allow to gather information about a fluent l. In this case the
sensing can have two possible outcomes, the one informing that l is true,
the other informing the it is false; thus there are two possible epistemic state
resulting from the execution of the action, the first containing the belief that l
holds, the second containing the belief that l do not hold. In order to formalize
it in our framework, we define a sensing action as a non-deterministic action.
In particular, a binary sensing action s ∈ S , that allow to check whether the
fluent l or its complement ¬l is true, is represented by means of axioms of
our logic that specify the effects of s on agent beliefs as the non-deterministic
choice between two ad hoc world actions sBl amd sB¬l : the former causing
the belief Bl, and the latter causing the belief B¬l.

The intuition is that from the point of view of the agent a sensing action
on a fluent literal l has the non-deterministic effect of making l to be believed
or ¬l to be believed. Thus, for each binary sensing action s ∈ S we have an
axiom of form:

[s]ϕ ≡ [sBl ∪ sB¬l ]ϕ
which expresses the non-deterministic choice (by means of the choice op-
erator of dynamic logic “∪”) among the two world actions sBl and sB¬l .
Conditions which make the sensing action s executable in a epistemic state
are represented by the same preconditions of the defining actions sBl and sB¬l .
The actions sBl and sB¬l can be regarded as being predefined actions ruled by
the following simple action clauses:

2(Bl1 ∧ . . .∧Bln ⊃ 〈sBl〉>) 2(Bl1 ∧ . . .∧Bln ⊃ 〈sB¬l〉>)
2(>⊃ [sBl]Bl) 2(>⊃ [sB¬l ]B¬l)

Summarizing, the formulation above expresses the fact that s can be executed
in a state where the preconditions Bl1, . . . , Bln hold, leading to a new state
where the agent has acquired a belief about l: he may either believe that l or
that ¬l, see Fig. 2.

EXAMPLE 2.3. Let sense cover(I)∈ S denote the action of sensing whether
the cover protecting the dial that controls a unit I is raised, which is executable
if the robot believes to be in front of the unit I. This is the suitable axiom
representing belief precondition and effects:

(f) [sense cover(I)]ϕ ≡

[sense cover(I)Bcover up(I) ∪ sense cover(I)B¬cover up(I)]ϕ

where the sensing actions sense cover(I)Bcover up(I) and sense cover(I)B¬cover up(I)

are ruled by the set of laws:
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Bl1

Bln

sBl

· · ·

Si

sB¬l

S′i+1

S′′i+1

s

s

· · ·

· · ·

Bl

B¬l

Figure 2. The execution of a sensing action on a fluent l leads to a new state where the agent
has acquired a belief about l: either Bl or B¬l.

(j) 2(Bin f ront o f (I) ⊃ 〈sense cover(I)Bcover up(I)〉>)

(k) 2(>⊃ [sense cover(I)Bcover up(I)]Bcover up(I))
(l) 2(Bin f ront o f (I) ⊃ 〈sense cover(I)B¬cover up(I)〉>)

(m) 2(>⊃ [sense cover(I)B¬cover up(I)]B¬cover up(I))

More in general, we can deal with sensing on a finite set of literals, where
executing a sensing action leads to a new state where the agent knows which
literal is true among an associated set of literals. More formally, we associate
to each sensing action s ∈ S a set dom(s) of literals. The effect of s will be
to have the information about which literal in dom(s) is true. This is modeled
by introducing an axiom of the form:

[s]ϕ ≡ [
⋃

l∈dom(s)

sBl ]ϕ (4)

where for each l ∈ dom(s) the sensing action sBl (∈ A) is ruled by the fol-
lowing simple action clauses:

2(Bl1 ∧ . . .∧Bln ⊃ 〈sBl〉>) (5)

2(>⊃ [sBl]Bl) (6)

2(>⊃ [sBl]B¬l′) (7)

for each l′ ∈ dom(s), l 6= l′. Clause (5) means that after any sequence of world
actions, if the set of literals Bl1 ∧ . . .∧Bln holds, then the action sBl can be
executed. The other ones describe the effects of sBl : in any state, after the
execution of sBl , l is believed (6), while all the other fluents belonging to
dom(s) are believed to be false (7). Note that the binary sensing action on a
fluent l, is a special case of sensing where the associated finite set is {l,¬l}.

EXAMPLE 2.4. Let sense dial(I) ∈ S denotes the action of sensing the
position of the dial controlling a unit I. It returns as a value one element of the
associated set of literals dom(sense dial(I)) = { f low(I,o f f ), f low(I, low),
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f low(I,high)} and it is executable if the robot believes the cover protecting
the dial to be open and to be in front of the unit. This is the suitable axiom
representing belief preconditions and effects:

(n) [sense dial(I)]ϕ ≡
[
⋃

l∈{ f low(I,o f f ), f low(I,low), f low(I,high)} sense dial(I)Bl]ϕ

where the world actions sense dial(I)B f low(I,o f f ), sense dial(I)B f low(I,low) and
sense dial(I)B f low(I,high) are ruled by a suitable set of simple action clauses:

(o) 2(Bin f ront o f (I)∧ cover up(I) ⊃ 〈sense dial(I)B f low(I,P)〉>)

(p) 2(>⊃ [sense dial(I)B f low(I,P)]B f low(I,P))

(q) 2(>⊃ [sense dial(I)B f low(I,P)]B¬ f low(I,Q))

(r) 2(>⊃ [sense dial(I)B f low(I,P)]B¬ f low(I,R))

As before, metavariables are introduced in order to avoid to introduce
many variant of the same clause. In particular we used the metavariable I,
where I ∈ {unit1,unit2}, and the metavariables P,Q,R, where P,Q,R ∈ {o f f ,
low, high} and P 6= Q 6= R.

2.3. COMPLEX ACTIONS

In our modal action theory, complex actions are defined on the basis of world
actions, tests, and other complex actions. A complex action is defined by
means of a suitable set of inclusion axiom schemas of our modal logic, having
the form5:

〈p0〉ϕ ⊂ 〈p1〉〈p2〉 . . .〈pn〉ϕ (8)

where p0 is a procedure name in P , and pi (i = 1, . . . ,n) are either procedure
names, or world actions, or sensing actions, or test. Test actions are needed
for testing if some fluent holds in the current state and for expressing condi-
tional complex actions. A set of axioms of form (8) can be interpreted as a
procedure definition. Procedure definitions can be recursive and they can also
be non-deterministic, when they are defined by a collection of axioms of the
form specified above. Intuitively, they can be executed in a goal directed way,
similarly to standard logic programs. Indeed the meaning of (8) is that if in a
state there is a possible execution of p1, followed by an execution of p2, and
so on up to pn, then in that state there is a possible execution of p0.

Complex actions can be used to describe the behavior of an agent, as
shown in the following example.

EXAMPLE 2.5. Let us suppose that our robot has to achieve the goal of
setting high the fan speed of an air conditioning unit U of the room (see

5 For sake of brevity, sometimes we will write these axioms as 〈p0〉ϕ ⊂ 〈p1; p2; . . . ; pn〉ϕ.
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12 M. Baldoni, L. Giordano, A. Martelli, and V. Patti

Fig. 1). We define the procedure set the f an speed high(I), i.e. the proce-
dure specifying the action plans the robot may execute for achieving the goal,
by means of the set of axiom schemas (A-F):

(A) 〈set the f an speed high(I)〉ϕ ⊂ 〈B f low(I,high)?〉ϕ
(B) 〈set the f an speed high(I)〉ϕ ⊂

〈(Bin f ront o f (I)∧Bcover up(I)∧B¬ f low(I,high))?〉
〈turn dial(I)〉〈set the f an speed high(I)〉ϕ

(C) 〈set the f an speed high(I)〉ϕ ⊂
〈(Bin f ront o f (I)∧B¬cover up(I)∧M ¬ f low(I,high))?〉
〈raise cover(I)〉〈set the f an speed high(I)〉ϕ

(D) 〈set the f an speed high(I)〉ϕ ⊂
〈(Bin f ront o f (I)∧Ucover up(I)∧M ¬ f low(I,high))?〉
〈sense cover(I)〉〈set the f an speed high(I)〉ϕ

(E) 〈set the f an speed high(I)〉ϕ ⊂
〈(Bin f ront o f (I)∧Bcover up(I)∧U f low(I,high))?〉
〈sense dial(I)〉〈set the f an speed high(I)〉ϕ

(F) 〈set the f an speed high(I)〉ϕ ⊂
〈(B¬in f ront o f (I)∧M ¬ f low(I,high))?〉
〈go to unit(I)〉〈set the f an speed high(I)〉ϕ

The definition of set the f an speed high(I) is recursive and notice that it
is deterministic since all clauses are mutually exclusive. The complex behav-
ior defined is based on the world actions turn dial(I), go to unit(I), raise cover(I)
and on the sensing actions sense cover(I) and sense dial(I). Action turn dial(I)
is ruled by the action laws (a-h) in Example 2.1, and by precondition law (i)
above. sense cover(I) is ruled by axiom (f) and by laws (j-m) in Example 2.3,
while sense dial(I) with dom(sense dial(I)) = { f low(I,o f f ), f low(I, low),
f low(I,high)}, is ruled by the laws in Example 2.4. The simple action clauses
for the atomic actions go to unit(I) and raise cover(I) are given as follows:

(s) 2(B¬in f ront o f (I)∧B¬out room ⊃ 〈go to unit(I)〉>)
(t) 2(>⊃ [go to unit(I)]Bin f ront o f (I))
(u) 2(Bin f ront o f (J) ⊃ [go to unit(I)]B¬in f ront o f (J))
(v) 2(M in f ront o f (J) ⊃ [go to unit(I)]M ¬in f ront o f (J)))

(w) 2(Bin f ront o f (I) ⊃ 〈raise cover(I)〉>)
(x) 2(B¬cover up ⊃ [raise cover(I)]Bcover up(I))
(y) 2(M ¬cover up(I) ⊃ [raise cover(I)]M cover up(I))

where I,J are metavariables s.t. I,J ∈ {unit1,unit2} and I 6= J. Now we
can define all units high, which builds upon set the f an speed high(I) and
specifies how to achieve the goal of setting high all the air conditioning units,
assuming the robot to be initially inside the room.
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Programming Rational Agents in a Modal Action Logic 13

(G) 〈all units high〉ϕ ⊂ 〈set the f an speed high(unit1)〉
〈set the f an speed high(unit2)〉ϕ

(H) 〈all units high〉ϕ ⊂ 〈set the f an speed high(unit2)〉
〈set the f an speed high(unit1)〉ϕ

Notice that the two axioms defining the procedure all units high are not
mutually exclusive: the units can be set on the value high in any order. The
axioms specify alternative recipes that the robot can follow to increase the
fan speed of all the room’s units, each of them leading the robot to reach a
different place in the room at the end of the task.

2.4. REASONING ON DYNAMIC DOMAIN DESCRIPTIONS

In general, a particular dynamic domain will be described in terms of suitable
simple action clauses describing precondition and effects of world actions,
axioms describing the sensing and complex actions, and a set of epistemic
fluents describing the initial epistemic state.

DEFINITION 2.2 (Dynamic Domain Description). Given a set A of world
actions, a set S of sensing actions, and a set P of procedure names, let ΠA be
a set of simple action clauses for world actions, ΠS a set of axioms of form
(4) for sensing actions, ΠP a set of axioms of form (8). A dynamic domain
description is a pair (Π,S0), where Π is the tuple (ΠA ,ΠS ,ΠP ) and S0 is a
consistent and complete set of epistemic fluent literals representing the beliefs
of the agent in the initial state.

Note that ΠA contains also the simple actions clauses for the world actions
sBl’s occurring in the axioms for sensing actions.

EXAMPLE 2.6. An example of domain description is obtained by tak-
ing as ΠA the set of simple action clauses in Examples 2.1, 2.3, 2.4 and
2.5 plus the formula (e), as ΠS the axiom (f) in Example 2.3 and as ΠP
the set of procedure axioms (k-n, s-t) in Example 2.5. One possible initial
set of beliefs is given by state s containing the following epistemic literals:
Bin f ront o f (unit1), B¬in f ront o f (unit2), B¬out room, Bcover up(unit1),
B f low(unit1, low), B¬ f low(unit1,o f f ), B¬ f low(unit1,high), Ucover up(unit2),
U f low(unit2,o f f ), U f low(unit2, low), U f low(unit2,high) as well as the
epistemic literals derived by seriality of the belief operators: ¬B¬in f ront o f (unit1),
¬Bin f ront o f (unit2), ¬Bout room, ¬B¬cover up(unit1), ¬B¬ f low(unit1, low),
¬B f low(unit1,o f f ), ¬B f low(unit1,high).

Given a domain description, we can formalize two well known form of
reasoning about actions: the temporal projection problem, where the rea-
soning task is to predict the future effects of actions on the basis of (pos-
sibly incomplete) information on preceding states, and the planning problem,
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14 M. Baldoni, L. Giordano, A. Martelli, and V. Patti

where the task is to find a sequence of actions that is legal (each action is
executed in a context where its preconditions are satisfied) and that achieves
the goal (a formula representing the goal holds in the final state that results
from executing the action sequence)[33]. In particular, we formalize the tem-
poral projection problem “given a sequence a1, . . . ,an of world actions, does
the condition Fs hold after executing the actions sequence starting from the
initial state?” by the query 〈a1〉 . . .〈an〉Fs (n ≥ 0), where Fs is a conjunction
of epistemic literals. Notice that, since world actions a ∈ A defined in our
domain descriptions are deterministic w.r.t the epistemic state, as stated by
Proposition 4.2 in Section 4.1, the equivalence 〈a〉Fs≡ [a]Fs∧〈a〉> holds for
the world actions a defined in the domain description, and then, the success of
the existential query 〈a1〉 . . .〈an〉Fs entails the success of the universal query
[a1] . . . [an]Fs.

Moreover, we can deal with a special case of planning. Let us consider-
ing a generalization of the query above where atomic actions a1, . . . ,an are
replaced with complex actions p1, p2, . . . , pn. We get the following query:

〈p1〉〈p2〉 . . .〈pn〉Fs (n ≥ 0) (9)

where pi, i = 1, . . . ,n, is either a world action, or a sensing action, or a
procedure name, or a test. If n = 0 we simply write the above goal as Fs.

Intuitively, when we are faced with a query 〈p〉Fs we ask: “is there a legal
sequence of actions conforming to p that, when executed from the initial
state, leads to a final state where Fs holds?”. In fact query (9) succeeds if it is
possible to find a (terminating) execution of p1, p2, . . . , pn (in the given order)
leading to a state where Fs holds. Such terminating execution will be a legal
sequence of deterministic (world) actions (see propositions 4.2 and 4.1(b)
in section 4.1) and a correct plan w.r.t the goal Fs (see proposition 4.1(c)).
Thus, it easy to see that by the query 9 we formalize a special case of the
planning problem, where the procedure definitions constrain the search space
of reachable states in which to look for the wanted sequence6.

EXAMPLE 2.7. Consider the domain description in Example 2.6, with the
difference that the robot also knows that the cover protecting unit2’s dial is
not raised and that the dial is set on the position o f f . The query

〈all units high〉(B f low(unit1,high)∧B f low(unit2,high))

amounts to ask whether it is possible to find a terminating execution of the
procedure all units high (a plan) which leads to a state where all the air
conditioning units of the room are blowing air with high speed. The plan
is the following:

6 Note that, as a special case, we can define a procedure p which repeatedly selects any
world action, so that all the world action sequences can be taken into account.
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turn dial(unit1);go to unit(unit2);raise cover(unit2);
turn dial(unit2); turn dial(unit2)

When the information available at planning time is incomplete and the proce-
dure p includes sensing actions for acquiring the fresh information to be used
for deciding what step to take next, the planning task as expressed above
is not adequate. In particular, what action to perform next in a plan may
depend on the outcome of a previous sensing action and such outcome can
be known only at run time (when the agent actually consults its sensors). In
this setting no linear sequence of actions can be demonstrated to achieve the
goal. What we expect is that the planning process returns a conditional plan
that achieves the goal no matter how the sensing turns out [33]. The plan
has to be conditional because it must contain, for every possible outcome
of the sensing, a legal course of actions that leads to the goal, in such a
way that, when it will be executed and the sensors will actually return the
missing information, it will be always possible to determine the next step to
take toward the goal. Thus, in presence of sensing, by the query 〈p〉Fs we will
look for a conditional plan conforming to p which determines the actions to
be executed for all possible results of the sensing actions. The resulted plan
will have a tree structure where branches correspond to the possible outcome
of sensing. Each execution of the plan can be proved to be a legal sequence
of world actions which is guaranteed to lead to the goal state under certain
assumptions on the outcome of the sensings (it follows from the property
stated in 4.4, section 4.2). Intuitively, it ensures that the plan is correct w.r.t.
the goal and that the plan is executable, i.e. when an agent executes it and
consults the sensors, it can always determine the next step to take toward the
goal. To deal with these matters, in section 4 we will define for our language
a goal directed proof procedure, which, given a query 〈p1〉〈p2〉 . . .〈pn〉Fs,
extracts a linear plan to achieve the wanted goal, and a second one that in
presence of sensing actions extracts conditional plans.

3. The Persistency Problem

The persistency problem is known in the literature on formalization of dy-
namic domains as the problem of specifying those fluents which remain un-
affected by the execution of a given action. In our formalization, we provide
a non-monotonic solution to the persistency problem. Intuitively, the problem
is faced by using persistency assumptions: when an action is performed, any
epistemic fluent F which holds in the state before executing the action is
assumed to hold in the resulting state unless the action makes it false. As in
[12], we model persistency assumptions by abductive assumptions: building
upon the monotonic interpretation of a dynamic domain description we pro-
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vide an abductive semantics to account for this non-monotonic behavior of
the language.

3.1. THE MONOTONIC INTERPRETATION OF A DYNAMIC DOMAIN

DESCRIPTION

First of all, let us introduce some definitions. Given a dynamic domain de-
scription (Π,S0), let us call L(Π,S0) the propositional modal logic on which
(Π,S0) is based. The simple action clauses for primitive actions in ΠA and
the initial beliefs in S0 define a theory in L(Π,S0) that we denote with Σ(Π,S0).

The axiomatization of L(Π,S0), called S(Π,S0), contains all the axioms and
rules for propositional calculus, plus, for each modality the rule of necessita-
tion and axiom schema K. Moreover, the axiomatization contains:

− for the operator B , the axiom schema D(B) : Bϕ ⊃ M ϕ (seriality);

− for the operator 2, the axiom schemas T (2) : 2ϕ ⊃ 22ϕ (reflexivity),
4(2) : 2ϕ ⊃ 22ϕ (transitivity), and the interaction axiom I(2,ai) :
2ϕ ⊃ [ai]ϕ, one for each world action ai ∈ A ;

The operators “;” and “∪” are ruled as usual in dynamic logic [30]. The test
operator “?” is ruled by the axiom 〈ψ?〉ϕ ≡ ψ∧ϕ. Finally, the axiomatiza-
tion includes the axioms ΠP and in ΠS characterizing complex actions and
sensing actions, respectively.

The model theoretic semantics of the logic L(Π,S0) is given through a stan-
dard Kripke semantics with inclusion properties among the accessibility re-
lations [2]. Let us define formally the notion of Kripke (Π,S0)-interpretation
for the logic L(Π,S0).

DEFINITION 3.1 (Kripke semantics). A Kripke (Π,S0)-interpretation M is
a tuple 〈W,RB ,{Ra : a ∈ A ∪P ∪S},R2,V 〉, where:

− W is a non-empty set of possible worlds;

− RB is a binary relation on W (the accessibility relation associated with
B) which is serial;

− every Ra is a binary relation on W (the accessibility relation associ-
ated with [a]);

− R2 is a binary relations on W (the accessibility relation associated
with 2) which is reflexive and transitive, and satisfies the condition
R2 ⊇ (∪aiRai)

∗, i.e. R2 contains the reflexive and transitive closure of
the union of the Rai (where the ai’s are atomic word actions in A .)

− V is a valuation function, that is a mapping from W and the set of
fluent names to the set {T,F}.
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Moreover, we define the accessibility relations for the complex actions built
by means of operators “∪”, “;” as usual in dynamic logic [30]:

− Rψ? = {(w,w) | M,w |= ψ};

− Ra;b = Ra◦Rb, where “◦” denotes the composition of binary relations.

− Ra∪b = Ra ∪Rb, where ‘∪” denotes the union of binary relations.

Finally, we require that for each axiom 〈p1〉〈p2〉 . . .〈pn〉ϕ ⊃ 〈p0〉ϕ in ΠP ⊆
(Π,S0), the following inclusion property on the accessibility relation holds:

Rp0 ⊇ Rp1 ◦Rp2 ◦ . . .◦Rpn (10)

Note that, a pi can be also a test. Similarly, we require that for each sensing
axiom [s]ϕ ≡ [

⋃
l∈dom(s) sBl ]ϕ in ΠS ⊆ (Π,S0), the following property on the

accessibility relation holds:

Rs ≡
⋃

l∈dom(s)

RsBl . (11)

The truth conditions are defined as usual. In particular:

− M,w |= Bϕ, iff for all w′ ∈W such that (w,w′) ∈ RB , M,w′ |= ϕ;

− M,w |= M ϕ, iff there exists a w′ ∈W such that (w,w′)∈RB and M,w′ |=
ϕ;

− M,w |= [t]ϕ, where t is either a world action a, or a sensing action s, or
a procedure name p, or a test ϕ?, or a sequence t; t ′, or a union t ∪ t ′, iff
for all w′ ∈W such that (w,w′) ∈ Rt , M,w′ |= ϕ;

− M,w |= 〈t〉ϕ, where t is either a world action a, or a sensing action s, or
a procedure name p, or a test ϕ?, or a sequence t; t ′, or a union t ∪ t ′, iff
there exists a w′ ∈W such that (w,w′) ∈ Rt and M,w′ |= ϕ;

− M,w |= 2ϕ iff for all w′ ∈W such that (w,w′) ∈ R2, M,w′ |= ϕ.

The set of all Kripke (Π,S0)-interpretations is denoted by M(Π,S0). Given
a Kripke (Π,S0)-interpretation M = 〈W,RB ,{Ra : a ∈ A ∪P ∪S},R2,V 〉 of
M(Π,S0), we say that a formula ϕ of L(Π,S0) is satisfiable in M, if for some
world w ∈W we have M,w |= ϕ. We say that ϕ is valid in M if for all worlds
w∈W M,w |= ϕ. Moreover, a formula ϕ is satisfiable with respect to the class
M(Π,S0), if ϕ is satisfiable in some Kripke (Π,S0)-interpretation in M(Π,S0) and
valid with respect to M(Π,S0) if it is valid in all Kripke (Π,S0)-interpretations
in M(Π,S0) (in this case, we write |= ϕ).

The axiom system S(Π,S0) is a sound and complete axiomatization with
respect to M(Π,S0) [30, 2].
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3.2. THE ABDUCTIVE SEMANTICS

The abductive semantics builds on monotonic logic L(Π,S0) and it is defined in
the style of Eshghi and Kowalski’s abductive semantics for negation as failure
[25]. Let us denote by F an epistemic fluent literal, that is Bl or its negation
¬Bl, where l is a fluent literal. We define a new set of atomic propositions
of the form M[a1][a2] . . . [am]F and we take them as being abducibles.7 Their
meaning is that the epistemic fluent F can be assumed to hold in the state
obtained by executing world actions a1,a2, . . . ,am. Each abducible can be
assumed to hold, provided it is consistent with the domain description (Π,S0)
and with other assumed abducibles. More precisely, we add to the axiom
system of L(Π,S0) the persistency axiom schema:

[a1][a2] . . . [am−1]F ∧M[a1][a2] . . . [am−1][am]F ⊃ [a1][a2] . . . [am−1][am]F
(12)

where a1,a2, . . . ,am (m > 0) are world actions, and F is an epistemic fluent.
Its meaning is that, if F holds after the action sequence a1,a2, . . . ,am−1, and
F can be assumed to persist after action am (i.e., it is consistent to assume
M[a1][a2] . . . [am]F), then we can conclude that F holds after performing the
sequence a1,a2, . . . ,am.

Given a domain description (Π,S0), let |= be the satisfiability relation in
the monotonic modal logic L(Π,S0) defined above. We denote with Σ(Π,S0) the
set of the simple action clauses for world actions in ΠA and the initial beliefs
in S0.

DEFINITION 3.2 (Abductive solution for a dynamic domain description). A
set of abducibles ∆ is an abductive solution for (Π,S0) if, for every epistemic
fluent F and for every world action sequence a1,a2, . . . ,am:

a) ∀M[a1][a2] . . . [am]F ∈ ∆, Σ(Π,S0)∪∆ 6|= [a1][a2] . . . [am]¬F

b) ∀M[a1][a2] . . . [am]F 6∈ ∆, Σ(Π,S0)∪∆ |= [a1][a2] . . . [am]¬F.

Condition a) is a consistency condition, which guarantees that each assump-
tion cannot be assumed if its “complementary” formula holds. Condition b)
is a maximality condition which forces an abducible to be assumed, unless
its “complement” is proved. When an action is applied in a certain state,
persistency of those fluents which are not modified by the direct effects of
the action, is obtained by maximizing persistency assumptions.

Let us now define the notion of abductive solution for a query in a domain
description.

7 Notice that here M is not a modality. Rather, Mα is the notation used to denote a new
atomic proposition associated with α. This notation has been adopted in analogy to default
logic, where a justification Mα intuitively means “α is consistent”.
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DEFINITION 3.3 (Abductive solution for a query). Given a domain descrip-
tion (Π,S0) and a query 〈p1; p2; . . . ; pn〉Fs, an abductive solution for the
query in (Π,S0) is defined to be an abductive solution ∆ for (Π,S0) such
that Σ(Π,S0)∪∆ |= 〈p1; p2; . . . ; pn〉Fs.

The consistency of an abductive solution, according to Definition 3.2, is
guaranteed by the seriality of B (from which ¬(Bl ∧B¬l) holds for every
literal l). However the presence in Π of alternative action laws for an action a,
which have mutually inconsistent effects and are applicable in the same state,
may cause unintended solutions which are obtained by the contraposition of
precondition laws. Let us consider the following example.

EXAMPLE 3.1. [Unintended solution] Consider a domain description (Π,S0),
where Π includes the following set of action and precondition laws for the
world action a, and the initial epistemic state of the agent includes the epis-
temic fluents Bq, B¬p, and Br (see Figure 3).

(1) 2(Br ⊃ 〈a〉>) (2) 2(Bq ⊃ [a]B p)
(3) 2(B p ⊃ [a]B¬p)

Bq

Br

Bq B p

B¬p

a a

⊥
¬Br

persistence

B¬p B p

S0 S1

Figure 3. Unintended solution caused by contraposition from (1): [a]⊥⊃ ¬Br.

Notice that the action laws (2) and (3), which rule the effects of action
a, have contradictory effects B p and B¬p (we recall that, by seriality, B¬p
implies ¬B p). The domain description has an unintended abductive solution
∆ containing the assumption M[a]Bq but not M[a]Br because ¬Br holds after
the execution of action a. The solution is unintended as we would expect that
the epistemic fluent Br, which holds in the initial state and is not modified
by the direct effects of a, still holds by persistency after a is executed. Let
us see why the persistency of Br is blocked after a (i.e., M[a]Br could not
be assumed). After the execution of a, the epistemic fluent B p holds as a
direct effect; let us suppose that belief Bq persists (M[a]Bq ∈ ∆). By Bq and
B p in S1 and the laws (2) and (3) we can infer that [a]B p and [a]B¬p hold
in S1, that is [a]⊥ holds in S1 (in other words, the formula [a][a]⊥ could be
inferred from the theory (1-3) together with the assumption ∆). From this, by
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the contrapositive of the precondition law expressed in (1) – [a]⊥ ⊃ ¬Br –
we can derive the formula [a]¬Br, that is ¬Br holds in S1. Deriving [a]¬Br
blocks the persistency of Br from the initial state: M[a]Br cannot be assumed
because of the condition a) of Definition 3.2 (consistency condition).

It is hard to accept that the persistency of an epistemic fluent (Br in the
previous example) after the execution of a certain action is blocked even if
there is no direct effect of that action that may affect the epistemic fluent.
Indeed, intuitively, persistency of a fluent after performing an action must
only depend on the effects of the action and on the truth values of the fluents
in the state preceding the action execution.

Such unexpected solutions can be avoided by introducing an e-consistency
requirement on domain descriptions, as for the language A in [23]. Essen-
tially, in order to avoid the use of the contraposition of a precondition law, we
require that, for every set of action laws (for a given action) which may be
applicable in the same state, the set of their effects is consistent.

DEFINITION 3.4 (e-consistency). A domain description (Π,S0) is e-consistent
if for each world action a ∈ A , for all the sets R

R = {2(Fs1 ⊃ [a]F1), . . . ,2(Fsn ⊃ [a]Fn)}

of a’s action laws in ΠA ⊆ Π s.t. the preconditions Fs1, . . . ,Fsn are not
mutually inconsistent, it holds that the set of effects {F1, . . . ,Fn} is consistent.

Besides causing the existence of unintended solutions, the presence of
actions with complementary effects in a domain description can also lead
to have multiple solutions or no solution.

EXAMPLE 3.2. [Multiple solutions and no solution] Consider the Exam-
ple 3.1. If the rule (1) is substituted by the rule 2(Bq ⊃ 〈a〉>) the resulting
domain description has no solution. Instead, assume Bt holds in the initial
state and that that rule (1) is substituted by 2(Br∧Bt ⊃ 〈a〉>). The result-
ing domain description has two abductive solutions, the former containing
M[a]Bq and M[a]Br, the latter containing M[a]Bq and M[a]Bt.

Since world actions are deterministic w.r.t. the epistemic state (see Propo-
sition 4.3) and we do not have causal rules that can introduce non-deterministic
effects or negative loops, assuming that the domain description is e-consistent,
the following property holds for abductive solutions:

PROPOSITION 3.1. Given an e-consistent dynamic domain description (Π,S0),
there is a unique abductive solution for (Π,S0).
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Existence and unicity of abductive solutions would not hold in a more
general setting in which also causal rules are allowed (see, for instance, [29]).
However, also in such a case, existence and unicity of abductive solutions can
be enforced by putting suitable restrictions on the domain description.

EXAMPLE 3.3. To see an example of abductive solution, let us consider
the domain description (Π,S0), where Π is the tuple (ΠA ,ΠS ,ΠP ) of Exam-
ple 2.6 and S0 includes the following epistemic fluent literals: Bin f ront o f (unit1),
B¬in f ront o f (unit2), B¬out room, B¬cover up(unit2), Bcover up(unit1).
The simple action clauses in ΠA meet the e-consistency requirement. The
query:

〈go to unit(unit2)〉〈raise cover(unit2)〉(Bin f ront o f (unit2)∧
Bcover up(unit2))

has an abductive solution ∆ containing (among the others) the following
abductive assumptions:

M[go to unit(unit2)]B¬out room,
M[go to unit(unit2)]Bcover up(unit1),
M[go to unit(unit2)]B¬cover up(unit2),
M[go to unit(unit2)][raise cover(unit2)]B¬out room,
M[go to unit(unit2)][raise cover(unit2)]Bcover up(unit1),
M[go to unit(unit2)][raise cover(unit2)]Bin f ront o f (unit2),
M[go to unit(unit2)][raise cover(unit2)]B¬in f ront o f (unit1)

In particular, since the protective cover of unit number 2 is not affected by
the execution of the action go to unit(unit2), the dial remains protected af-
ter moving (see the assumption M[go to unit(unit2)]B¬cover up(unit2)).
Then, we can conclude that the effect Bcover up(unit2) holds after the action
raise cover(unit2) is performed. Moreover, the assumption M[go to unit(unit2)]
[raise cover(unit2)]Bin f ront o f (unit2) says that Bin f ront o f (unit2), which
is made true by action go to unit(unit2), persists after action raise cover(unit2).

4. Proof Procedure: finding correct plans

In section 4.1 we present a proof procedure which constructs a linear plan,
by making assumptions on the possible result of sensing actions which are
needed for the plan to reach the wanted goal. Such a proof procedure defines
the computational part for the language presented in the previous sections.
We call this logic programming language DyLOG.
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In section 4.2 we introduce a proof procedure that constructs a conditional
plan which achieves the goal for all the possible outcomes of the sensing
actions.

4.1. LINEAR PLAN GENERATION

In this section we introduce a goal directed proof procedure based on negation
as failure (NAF) which allows a query to be proved from a given dynamic
domain description. From a procedural point of view our non-monotonic way
of dealing with the frame problem consists in using negation as failure, in
order to verify that the complement of the epistemic fluent F is not made true
in the state resulting from an action execution, while in the modal theory we
adopted an abductive characterization to deal with persistency. However, it is
well studied how to give an abductive semantics for NAF [25].

The first part of the proof procedure, denoted by “ p̀s ” and presented in
Fig. 4, deals with execution of complex actions, sensing actions, world ac-
tions and tests. The proof procedure reduces the complex and sensing actions
in the query to a sequence of world actions and tests, and verifies if execution
of the world actions is possible and if the test actions are successful. To do
this, it reasons about the execution of a sequence of world actions from the
initial state and computes the values of fluents at different states. During a
computation, a state is represented by a sequence of world actions a1, . . . ,am.
The value of fluents at a state is not explicitly recorded but it is computed
when needed in the computation. The second part of the procedure, denoted
by “ ` f s ” and presented in Fig. 5, allows the values of fluents in a state to be
determined.

A query of the form 〈p1; p2; . . . ; pn〉Fs, where pi, 1≤ i≤ n (n≥ 0), is either
a world action, or a sensing action, or a procedure name, or a test, succeeds if
it is possible to execute p1, p2, . . . , pn (in the order) starting from the current
state, in such a way that Fs holds at the resulting state. In general, we will
need to establish if a goal holds at a given state. Hence, we will write:

a1, . . . ,am `ps 〈p1; p2; . . . ; pn〉Fs with answer (w.a.) σ

to mean that the query 〈p1; p2; . . . ; pn〉Fs, i.e. 〈p1〉〈p2〉 . . .〈pn〉Fs, can be proved
from the domain description (Π,S0) at the state a1, . . . ,am with answer σ,
where σ is an action sequence a1, . . . ,am, . . .am+k which represents the state
resulting by executing p1, . . . , pn in the current state a1, . . . ,am. We denote by
ε the initial state.

The five rules of the derivation relation p̀s in Fig. 4 define, respectively,
how to execute procedure calls, tests, sensing actions and world actions. To
execute a complex action p we non-deterministically replace the modality
〈p〉 with the modality in the antecedent of a suitable axiom for it (rule 1). To
execute a test (Fs)?, the value of Fs is checked in the current state. If Fs holds

BGMP_AMAIsp_LBAI.tex; 31/10/2003; 18:55; p.22



Programming Rational Agents in a Modal Action Logic 23

1)

a1···m `ps 〈p′1; . . . ; p′n′ ; p2···n〉Fs w. a. σ
a1···m `ps 〈p; p2···n〉Fs w. a. σ

where p ∈ P and
〈p〉ϕ ⊂ 〈p′1; . . . ; p′n′〉ϕ ∈ ΠP

2)

a1···m ` f s Fs′ a1···m `ps 〈p2···n〉Fs w. a. σ
a1···m `ps 〈(Fs′)?; p2···n〉Fs w. a. σ

3)

a1···m ` f s Fs′ a1···m,a `ps 〈p2···n〉Fs w. a. σ
a1···m `ps 〈a; p2···n〉Fs w. a. σ

where a ∈ A and
2(Fs′ ⊃ 〈a〉>) ∈ ΠA

4)

a1···m `ps 〈sBl ; p2···n〉Fs w. a. σ
a1···m `ps 〈s; p2···n〉Fs w. a. σ

where s ∈ S and
l ∈ dom(s)

5)

a1···m ` f s Fs

a1···m `ps 〈ε〉Fs w. a. σ where σ = a1···m

Figure 4. The derivation relation `ps . a1···m is a1, . . . ,am and p2···n is p2, . . . , pn.

in the current state, the test is simply eliminated, otherwise the computation
fails (rule 2). To execute a world action a, first we need to verify if that
action is possible by using the precondition laws. If these conditions hold
we can move to a new state in which the action has been performed (rule
3). To execute a sensing action s (rule 4) we non-deterministically replace it
with one of the world actions which define it (see Section 2.2), that, when
it is executable, will cause Bl and B¬l ′, for each l′ ∈ dom(s), with l 6= l′.
Rule 5 deals with the case when there are no more actions to be executed.
The sequence of world actions to be executed a1, . . . ,am has been already
determined and, to check if Fs is true after a1, . . . ,am, proof rules 6-10 below
are used.

The second part of the procedure (see Fig. 5) determines the derivabil-
ity of an epistemic fluent conjunction Fs at a state a1, . . . ,am, denoted by
a1, . . . ,am ` f s Fs, and it is defined inductively on the structure of Fs. An
epistemic fluent F holds at state a1,a2, . . . ,am if: either F is an immediate
effect of action am, whose preconditions hold in the previous state (rule 7a);
or the last action, am, is an ad hoc primitive action sF (introduced to model
the sensing action s), whose effect is that of adding F to the state (rule 7b);
or F holds in the previous state a1,a2, . . . ,am−1 and it persists after executing
am (rule 7c); or a1,a2, . . . ,am is the initial state and F holds in it. Notice
that rule 7(c) allows to deal with the frame problem: F persists from a state
a1,a2, . . . ,am−1 to the next state a1,a2, . . . ,am unless am makes ¬F true, i.e.
it persists if ¬F fails from a1,a2, . . . ,am. In rule 7c not represents negation
as failure. Moreover, rule 7(a) can deal with a more general form of simple
action clauses than the ones presented in Section 2. In particular, it deals
with action laws of the form 2(Fs ⊃ [a]F) and precondition laws of the form
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6) a1···m ` f s >

7a)

a1···m−1 ` f s Fs′

a1···m ` f s F
where m > 0 and

2(Fs′ ⊃ [am]F) ∈ ΠA

7b) a1···m ` f s F if am = sF

7c)

not a1···m ` f s ¬F a1···m−1 ` f s F

a1···m ` f s F where m > 0

7d) ε ` f s F if F ∈ S0

8)

a1···m ` f s Fs1 a1···m ` f s Fs2

a1···m ` f s Fs1 ∧Fs2

9)

a1···m ` f s Bl

a1···m ` f s ¬B¬l

Figure 5. The derivation relation ` f s . a1···m is a1, . . . ,am and p2···n is p2, . . . , pn.

2(Fs ⊃ 〈a〉>), where Fs is an arbitrary conjunction of epistemic fluents and
F is an epistemic fluent, respectively. Rule 8 deals with the conjunction while
rule 9 allows ¬B¬l to be concluded from Bl which is justified by the property
of seriality of the belief modality.8

A proof for a query of the form 〈p1; p2; . . . ; pn〉Fs from a dynamic domain
description (Π,S0) at state a1, . . . , am with answer σ is a finite tree constructed
using the rules 1-9 described above, such that:

− the root is labelled with a1, . . . ,am `ps 〈p1; p2; . . . ; pn〉Fs w. a. σ;

− the leaves have the form either a1, . . . ,am ` f s >, or a1, . . . ,am ` f s F where
am is sF , or ε ` f s F where F ∈ S0.

σ is an action sequence a1, . . . ,am, . . .am+k which represents the state result-
ing by executing p1, . . . , pn in the current state a1, . . . ,am. We say that a query
〈p1; p2; . . . ; pn〉Fs succeeds from a dynamic domain description (Π,S0) with
answer σ if it has a proof in the initial state ε with the execution trace σ as
answer, that is ε `ps 〈p1; p2; . . . ; pn〉Fs with answer σ. Notice that the proof
procedure does not perform any consistency check on the computed abductive
solution. However, under the assumption that the domain description is e-
consistent and that the beliefs on the initial state S0 are consistent, soundness
of the proof procedure above can be proved w.r.t. any acceptable solution.

8 The proof procedure works assuming that M l is replaced by ¬B¬l.
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THEOREM 4.1 (Soundness). Let (Π,S0) be an e-consistent dynamic domain
description and let 〈p1; p2; . . . ; pn〉Fs be a query. For every abductive solution
∆ for (Π,S0), for every answer σ, if 〈p1; p2; . . . ; pn〉Fs succeeds from (Π,S0)
with answer σ, then Σ(Π,S0)∪∆ |= 〈p1; p2; . . . ; pn〉Fs.

The proof (in Appendix A) is by induction on the rank of the derivation of the
query, and it makes use of a soundness and completeness result for the mono-
tonic part of the proof procedure presented in this section w.r.t. the monotonic
part of the semantics. Indeed, if the assumptions M[a1][a2] . . . [am]F are re-
garded as facts rather then abducibles and they are added to the program, the
non-monotonic step 7c in the proof procedure can be replaced by a monotonic
one. The resulting monotonic proof procedure can be shown to be sound and
complete with respect to the Kripke semantics of the modal logic L(Π,S0).

Our proof procedure computes just one solution, while abductive seman-
tics may give multiple solutions for a domain description. However, as we al-
ready mentioned, under the condition that a domain description is e-consistent
there is a unique abductive solution for the domain description (see Proposi-
tion 3.1). Under such restriction, we argue that our proof procedure is also
complete.

Since a query 〈p1; p2; . . . ; pn〉Fs is an existential formula, a successful an-
swer σ represents a possible execution of the sequence p1, p2, . . . , pn. Indeed,
for the answer σ we can prove the Proposition 4.1. Property (a) says that σ is
a possible execution of p1, p2, . . . , pn, (b) says that σ is a legal sequence of
actions, and, finally, (c) says that the plan σ is correct w.r.t. Fs.

PROPOSITION 4.1. Let (Π,S0) be an e-consistent dynamic domain descrip-
tion and let 〈p1; p2; . . . ; pn〉Fs be a query. For every abductive solution ∆ for
(Π,S0), for every answer σ, if ε `ps 〈p1; p2; . . . ; pn〉Fs with answer σ then:

(a) Σ(Π,S0)∪∆ |= 〈σ〉Fs ⊃ 〈p1; p2; . . . ; pn〉Fs;

(b) Σ(Π,S0)∪∆ |= 〈σ〉>

(c) Σ(Π,S0)∪∆ |= [σ]Fs

Let us remember that σ is a sequence of world actions of the domain.
Then, before proving the above proposition about σ, we prove some useful
property concerning world actions of our domain descriptions.

The following proposition states that world actions in our domain de-
scriptions are deterministic w.r.t. the epistemic state, i.e. there is only one
epistemic state reachable by executing a world action a in a given epistemic
state.

PROPOSITION 4.2. Let (Π,S0) be an e-consistent dynamic domain descrip-
tion and let G be a query of the form 〈p1; p2; . . . ; pn〉Fs. For every abductive
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solution ∆ for (Π,S0), the following property holds:

Σ(Π,S0)∪∆ |= 〈a〉G ⊃ [a]G

where a is a world action of (Π,S0)

Proof. In order to prove this property we make use of the soundness and
completeness results of the monotonic proof procedure `∆ w.r.t. the Kripke
semantics. Let us assume Σ(Π,S0) ∪ ∆ |= 〈a〉G and we prove Σ(Π,S0) ∪ ∆ |=
[a]G. Since 〈a〉G has the form of a query, by the completeness result of
Theorem A.3, our hypothesis implies that 〈a〉G succeeds from (Π,S0), i.e.
ε `∆ 〈a〉G. But if ε `∆ 〈a〉G, then by definition of ∆̀ (rule 3 of Theorem A.1)
there exists a proof of Fs from (Π,S0) in the state a, i.e. a `∆ G. Then, by the
soundness result of Theorem A.1, Σ(Π,S0)∪∆ |= [a]G.

Proposition 4.2 can be easily generalized to world action sequences.

PROPOSITION 4.3. Let (Π,S0) be an e-consistent dynamic domain descrip-
tion and let G be a query of the form 〈p1; p2; . . . ; pn〉Fs. For every abductive
solution ∆ for (Π,S0), the following property hold:

Σ(Π,S0)∪∆ |= 〈a1;a2; . . . ;am〉G ⊃ [a1;a2; . . . ;am]G

where where a1,a2, . . . ,am (m > 0) are world actions of (Π,S0).

Now we are in the position to give the proof of the proposition 4.1.

Proof.[of Proposition 4.1] Property (a) Our hypothesis is ε `ps 〈p1; p2; . . . ; pn〉Fs
with answer σ. Let us assume Σ(Π,S0) ∪∆ |= 〈σ〉Fs. It means that for each
(Π,S0)-interpretation and world w, M,w |= Σ(Π,S0)∪∆ implies M,w |= 〈σ〉Fs.
M,w |= 〈σ〉Fs iff it exists a world w′ s.t. (w,w′) ∈ Rσ, where σ is an action
sequence a1, . . . ,am. Then, since by hypothesis the action sequence σ is an an-
swer for the query 〈p1; p2; . . . ; pn〉Fs, it is easy to prove that (w,w′)∈ Rp1;...;pn

too. It can be done by analyzing that part of the derivation of 〈p1; p2; . . . ; pn〉Fs
which deals with the reductions of the complex actions in the query to the ac-
tion sequence a1, . . . ,am. In particular, the path connecting w and w′ labelled
by Rp1;...;pn is constructed by collecting: i) the inclusion relations expressed
by the procedure axioms, when rule 1) has been applied for reducing a pro-
cedure definition; ii) the inclusion relations expressed by the suitable sensing
axioms, when rule 4) has been applied for reducing a sensing action; iii) the
accessibility relations expressed by the suitable test axioms, when rule 2 has
been applied for reducing a test.

Property (b) Our hypothesis is ε `ps 〈p1; p2; . . . ; pn〉Fs with answer σ, i.e.
it exists a proof ϒ for the query 〈p1; p2; . . . ; pn〉Fs from (Π,S0) at state ε
w.a. σ. Then, by definition of p̀s , we can deduce that during the proof
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complex actions in the query have been reduced to the sequence of world
actions contained in the answer σ, i.e. there is a sub-proof of ϒ with root
a1; . . . ;am `ps 〈ε〉Fs w.a. σ, where σ = a1; . . . ;am. From it, by the soundness
result of Theorem A.4, it follows Σ(Π,S0) ∪∆ |= 〈a1;a2; . . . ;am〉Fs, and, then,
Σ(Π,S0)∪∆ |= 〈a1;a2; . . . ;am〉>.

Property (c) Let us consider the proof of (b) given above. From our hy-
pothesis ε `ps 〈p1; p2; . . . ; pn〉Fs with answer σ we obtain Σ(Π,S0)∪∆ |= 〈a1;a2; . . . ;am〉Fs,
then, using Proposition 4.3, by modus ponens, Σ(Π,S0)∪∆ |= [a1;a2; . . . ;am]Fs,
and, since a1; . . . ;am = σ, Σ(Π,S0)∪∆ |= [σ]Fs.

4.2. CONDITIONAL PLAN GENERATION

In this section we introduce a proof procedure that constructs a conditional
plan which achieves the goal for all the possible outcomes of the sensing
actions. Let us start with an example.

EXAMPLE 4.1. Consider the Example 2.6 and the query

〈all units high〉(B f low(unit1,high)∧B f low(unit2,high))

We want to find an execution of all units high reaching a state where all the
air conditioning units of the room are blowing air with high speed. When
in the initial state the agent does not have information about the unit2 (i.e.
it is unknown if the cover protecting the dial of unit2 is raised and which
is the position of the unit dial) the action sequence the agent has to per-
form to achieve the goal depends on the outcome of the sensing actions
sense cover(unit2) and sense dial(unit2). Indeed, after performing the ac-
tion sequence turn dial(unit1); go to unit(unit2) the robot has to execute
a sensing on unit2 cover in order to know if it is raised or not. The result of
sensing determines the robot future course of actions: if it comes to know that
the cover it is raised, it can execute directly a sensing on the dial for knowing
if is in the position off, low, or high, otherwise it has to raise the dial cover
before to proceed with the sensing. Going on, the result of sense dial(unit2)
determines the further robot behavior: if it comes to know that the unit flow
is off, it has to turn the dial twice in order to reach the position high, if it
discover that the unit flow is low, it has to turn the dial only once in order to
reach the desired position, finally, if it comes to know that the flow is already
high it does not perform any action.

Given the query above, the proof procedure described in the previous sec-
tion extracts, among the others, the following world action sequences, making
assumptions on the possible results of sense cover(unit2) and sense dial(unit2):

- turn dial(unit1);go to unit(unit2);sense cover(unit2)Bcover up(unit2);
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sense dial(unit2)B f low(unit2,low); turn dial(unit2)

- turn dial(unit1);go to unit(unit2);sense cover(unit2)B¬cover up(unit2);
raise cover(unit2);sense dial(unit2)B f low(unit2,high).

Intuitively, in the first solution the procedure assumed that the sensing
actions sense cover(unit2) and sense dial(unit2) cause to belief that the pro-
tecting cover is up and the unit flow is low, respectively. Under these as-
sumptions, it plans to execute the turn dial(unit2) action. Instead, in the
second solution the procedure assumed that after sensing the dial results to
be protected by the cover and then it plans to raise the cover before sensing
the dial. Since after sensing the dial the procedure assumed that the unit flow
is already high, it does not plan any further action.

Instead the proof procedure we are going to present, given the same query,
will look for a conditional plan that achieves the goal (B¬open(unit1)∧
B¬open(unit2)) for any outcome of the sensing actions, as follows:

turn dial(unit1);
go to unit(unit2);
sense cover(unit2);

((Bcover up(unit2)?);
sense dial(unit2);

((B f low(unit2,high)?);∪
(B f low(unit2, low)?);

turn dial(unit2);∪
(B f low(unit2,o f f )?);

turn dial(unit2); turn dial(unit2));∪
(B¬cover up(unit2)?);

raise cover(unit2);sense dial(unit2);
((B f low(unit2,high)?);∪
(B f low(unit2, low)?);

turn dial(unit2);∪
(B f low(unit2,o f f )?);

turn dial(unit2); turn dial(unit2)))

Intuitively, given a query 〈p〉Fs, the proof procedure we are going to de-
fine computes a conditional plan σ (if there is one), which determines the
actions to be executed for all possible results of the sensing actions. All the
executions of the conditional plan σ are possible behaviors of the procedure
p.

DEFINITION 4.1 (Conditional plan). A conditional plan is defined induc-
tively by the followings:

1. a (possibly empty) sequence of world actions a1;a2; . . . ;an is a condi-
tional plan;
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2. if a1;a2; . . .an is a world action sequence, s ∈ S is a sensing action, and
σ1, . . . ,σt are conditional plans then a1;a2; . . . ;an;s;((Bl1?);σ1 ∪ . . .∪
(Blt?);σt) is a conditional plan, where l1, . . . , lt ∈ dom(s).

Given a query 〈p1; p2; . . . ; pn〉Fs the proof procedure constructs, as answer, a
conditional plan σ such that:

1. all the executions of σ are possible executions of p1; p2; . . . ; pn, and

2. all the executions of σ lead to a state in which Fs holds.

The proof procedure is defined on the basis of the previous relations p̀s and
` f s . We simply need to replace relation `ps with the relation `pscond that
has all the rules of `ps but Rule 4 (dealing with the execution of sensing
actions). Rule 4 in `pscond is replaced by the following Rule 4-bis:

4-bis)

∀li ∈ F , a1···m `pscond 〈s
Bli ; p2···n〉Fs w. a. a1···m;sBli ;σ′

i

a1···m `pscond 〈s; p2···n〉Fs w. a. a1···m;s;((Bl1?);σ′
1 ∪ . . .∪ (Blt?);σ′

t)

where s ∈ S and F = {l1, . . . , lt} = dom(s), a1···m is a1, . . . ,am, and p2···n is
p2, . . . , pn. As a difference with the previous proof procedure, when a sensing
action is executed, the procedure has to consider all possible outcomes of the
action, so that the computation splits in multiple branches. If all branches lead
to success, it means that the main query succeeds for all the possible results
of action s. In such a case, the conditional plan σ will contain the σ′

i’s as
alternative sub-plans and every branch of σ is actually a linear plan.

DEFINITION 4.2. Let σ be a conditional plan as defined in Section 4.2 and
σ′ a linear plan as defined in Section 4.1. We say that σ′ ⊆ σ if and only if:

− σ is equal to σ′, or

− σ is a1; . . . ;an;s;((Bl1?);σ1∪. . .∪(Blt?);σt), where s∈ S , and l1, . . . , lt ∈
dom(s), and σ′ is a1; . . . ;an;sBli ;σ′′, where σ′′⊆σi, for some i∈{1, . . . , t}.

The intuition is that the linear plan σ′ is included in the conditional plan σ.

PROPOSITION 4.4. Let (Π,S0) be a dynamic domain description, G a query
and a1, . . . ,am a state. Then, if a1, . . . ,am `pscond G with answer the condi-
tional plan σ, then a1, . . . ,am `ps G with answer σ′, for any σ′ ⊆ σ.

Proof. The proof is by induction of the hight of the `pscond -proof ϒ for the
query G. If the height h of ϒ is 1, the ϒ is an axiom and this lemma holds
trivially.

By inductive hypothesis the lemma holds for queries whose proof ϒ has
height less than or equal to h. Let us prove it for h + 1. There are a case
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for each rule in which ϒ can terminate. All cases but Rule 4-bis are an easy
application of inductive hypothesis. Let us consider the case of Rule 4-bis.

∀li ∈ F ,

ϒ′
i

a1···m `pscond 〈s
Bli ; p2···n〉Fs w. a. a1···m;sBli ;σi

a1···m `pscond 〈s; p2···n〉Fs w. a. a1···m;s;((Bl1?);σ1 ∪ . . .∪ (Blt?);σt)

where s ∈ S and F = {l1, . . . , lt} = dom(s), a1···m is a1, . . . ,am, and p2···n is
p2, . . . , pn. Now, by induction hypothesis, we have that a1, . . . ,am `ps 〈sBli ; p2;
. . . ; pn〉Fs with answer a1; . . . ;am;sBli ;σ′

i, for any σ′
i ⊆ σi, for all li ∈ F .

Therefore, it easy to see that, by applying Rule 4, a1, . . . ,am `ps 〈s; p2; . . . ; pn〉Fs
with answer a1; . . . ;am;sBli ;σ′

i, for any σ′
i ⊆σi, for all li ∈F , that is the thesis.

As a corollary of Proposition 4.4 we have that Proposition 4.1 holds for
every branch of a condition plan. The following theorem states the soundness
of the proof procedure for generating conditional plans.

THEOREM 4.2 (Soundness). Let (Π,S0) be a dynamic domain description
and let 〈p1; p2; . . . ; pn〉Fs be a query. For every abductive solution ∆ for
(Π,S0), for every answer σ, if 〈p1; p2; . . . ; pn〉Fs succeeds from (Π,S0) with
answer σ, then Σ(Π,S0)∪∆ |= 〈p1; p2; . . . ; pn〉Fs.

Proof. If a1, . . . ,am `pscond 〈p1; p2; . . . ; pn〉Fs with answer the conditional plan
σ then, by Proposition 4.4, a1, . . . ,am `ps 〈p1; p2; . . . ; pn〉Fs with answer σ′,
where σ′ ⊆ σ. Therefore, by Theorem A.4, we can conclude the thesis.

Finally, by the following proposition, we state that an extracted conditional
plan σ is correct w.r.t. the conjunction of epistemic fluents Fs and the initial
situation S0. In particular, this means that executing the plan σ (constructed
by the procedure) always leads to a state in which Fs holds, for all the possible
results of the sensing actions.

PROPOSITION 4.5. Let (Π,S0) be a dynamic domain description and let
〈p1; p2; . . . ; pn〉Fs be a query. For every abductive solution ∆ for (Π,S0), for
every answer σ, if 〈p1; p2; . . . ; pn〉Fs succeeds from (Π,S0) with answer σ,
then Σ(Π,S0)∪∆ |= [σ]Fs.

In order to prove this property, we need before to prove the following
lemma.

LEMMA 4.1. Let (Π,S0) be a dynamic domain description, G a query and
a1, . . . ,am a state. Then, if a1, . . . ,am `pscond G with answer the conditional
plan σ, then Σ(Π,S0) |= [a1; . . . ;am][

⋃
σ′⊆σ σ′]G ⊃ [a1; . . . ;an][σ]G.
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Proof. The proof is by induction on the structure of the conditional plan σ.
The case σ is a1; . . . ;an is trivial. Let us suppose that σ is a1; . . . ;am;s;((Bl1?);σ1∪
. . .∪ (Blt?);σt), and, by inductive hypothesis this lemma holds for the condi-
tional plans σi, 1≤ i≤ t. Now, by hypothesis, |= Σ(Π,S0) and |= [a1; . . . ;am][

⋃
σ′⊆σ σ′]G,

that is |= [a1; . . . ;an;sBli ;σ′′
i ]G, for all σ′′

i ⊆ σi, where 1 ≤ i ≤ t. Then, for
each interpretation M, for each world w, M,w |= [a1; . . . ;an;sBli ;σ′′

i ]G, for
all σ′′

i ⊆ σi, where 1 ≤ i ≤ t. Therefore, by definition of satisfiability, we
have M,w′ |= [sBli ;σ′′

i ]G, for any world w′ s.t. (w,w′)∈ Ra1;...;an , and M,w′′ |=
[σ′′

i ]G, for any world w′′ s.t. (w′,w′′) ∈ RsBli , for all σ′′
i ⊆ σi, where 1 ≤ i ≤ t.

By inductive hypothesis we have that M,w′′ |= [σi]G, where 1 ≤ i ≤ t. Since
(w′,w′′) belongs RsBli , 2(> ⊃ [sBli ]Bli) ∈ Π and, by hypothesis, |= Σ(Π,S0)

we have that M,w′ |= > ⊃ [sBli ]Bli, that is M,w′′ |= Bli. Then, it follows
that (w′′,w′′) ∈ RsBli and, therefore, M,w′′ |= [(Bli?);σi]G. Now, since Rs ⊇⋃

l∈dom(s) RsBl and, therefore, (w′,w′′) belongs to Rs too, we have that M,w′ |=
[s;(Bli?);σi]G, for all i, 1 ≤ i ≤ t. That is, M,w′ |= [s;((Bl1?);σ1 ∪ . . .∪
(Blt?);σt)]G. Since this holds for any w′ s.t. (w,w′) ∈ Ra1;...;an , it follows
that M,w |= [a1; . . . ;an;s;((Bl1?);σ1 ∪ . . .∪ (Blt?);σt)]G, that is the thesis.

Proof.[of Proposition 4.5] To prove the thesis, we prove |= Σ(Π,S0)∪∆⊃ [σ]Fs.
Assume |= Σ(Π,S0) ∪∆, then we show that |= [σ]Fs. By hypothesis, we have
that ε `pscond 〈p1; . . . ; pn〉Fs with answer σ, then, by Proposition 4.4, we have
that ∀σ′ ⊆ σ, ε `ps 〈p1; . . . ; pn〉Fs with answer σ′. By Proposition 4.1, ∀σ′ ⊆
σ, Σ(Π,S0)∪∆ |= [σ′]Fs, that is Σ(Π,S0)∪∆ |= [

⋃
σ′⊆σ σ′]Fs, and, by Lemma 4.1,

Σ(Π,S0)∪∆ |= [σ]Fs.

5. Implementation and Web Applications

In this section, first we will briefly sketch some issues that arised in imple-
menting the DyLOG language, then we will describe our experience in using
DyLOG as an agent logic programming language to implement Adaptive Web
Applications.

5.1. IMPLEMENTATION

A DyLOG interpreter has been implemented in Sicstus Prolog. This imple-
mentation allows DyLOG to be used as an ordinary programming language
for executing procedures which specify the behavior of an agent, but also
for reasoning about them, by extracting linear or conditional plans. The plan
extraction process of the interpreter is straightforward implementation of the
proof procedure contained in the theoretical specification of the language.

For sake of readability, in the DyLOG implementation we adopted an
english-like notation for the modal formulas of a domain description, that is
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action laws for world actions (AL), precondition laws for world actions (PL)
sensing definitions for sensing action (SD), procedure definitions for com-
plex actions (PD), beliefs about the initial situation (IB). Then our interpreter
expects a program having the usual components with the following notation:

AL : 2(Fs ⊃ [a]F) ; a causes F if Fs
PL : 2(Fs ⊃ 〈a〉true) ; a possible if Fs
SD : [s]ϕ ≡ [sBl ∪ sB¬l ]ϕ ; s senses l
PD : 〈p0〉ϕ ⊂ 〈p1〉〈p2〉 . . .〈pn〉ϕ ; p0 is p1, . . . , p′′n
IB : F ; obs (F)

Notice that in our implementation we do not explicitly use the epistemic
operator B: if a fluent f (or its negation ¬ f ) is present in a state, it is intended
to be believed, unknown otherwise. Thus each fluent can have one of the
three values: true, false or unknown. In general, in order to test the value of a
fluent f in clauses of the kind (PD) we use the notation “?( f )”; the notation
?(u( f )) is used to test if a fluent is unknown (i.e. to test if neither f nor ¬ f
is present in the state). Let us mention that the implementation deals with
domain descriptions containing a simple form of causal laws and functional
fluents with associated finite domain, which are not explicitly treated in this
paper.

5.1.1. On-line and hypothetical execution
DyLOG programs are executed by an interpreter which is a straightforward
implementation of the proof procedure in Section 4. Our interpreter allows to
interleave two kinds of execution of programs, that we will call on-line and
hypothetical execution respectively.

On the one hand, the procedures that specify the agent behavior can be
executed on-line as in standard programming: the agent chooses an action
among the ones that are legally executable at a certain point of the program
and it must commit to it, thus there is no possibility of undoing it. In fact when
the interpreter executes an action in this modality it is not allowed to back-
track by retracting the effects of the action. In general, the on-line execution
of a world action modifies the agent state according to the action and causal
laws, but when during the execution we encounter a sensing action, we must
wait to know the outcome of the sensing (an external input) before to update
the agent state and proceed. Moreover, on-line execution of an action can
have a real effect when the agent application is set in a real environment, such
as for instance moving a robot or sending a message. This can be specified
in DyLOG by associating with each primitive action some Prolog code that
implements the effects of the action on the world (the association is done by
means of the keyword performs). In a setting where the DyLOG program is
designed for controlling a robot such code could contain the call to a robot
controller, while in a web setting, it could contain instructions for requesting
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to the actual execution device to send a given web page to the browser (see
Section 5.2).

On the other hand, a rational agent must be able to cope with complex or
unexpected situations by reasoning about the effects of a procedure before
executing it. Thus before to commit to a given behavior the interpreter can be
asked to hypothetically execute the procedure. In this modality the agent will
reason on possible sequences of actions by exploring different alternatives
and extract a plan that achieves the desired goal. In order to deal with this
hypothetical execution, the DyLOG implementation provides a metapredicate
plan(Fs after p, as), where p is a procedure, Fs a condition on the goal state
and as a sequence of primitive actions. The procedure p can be nondetermin-
istic. When p does not contain sensing actions, the predicate plan will extract
from it a sequence as of primitive actions, a plan, corresponding to a possible
execution of the procedure, leading to a state in which Fs holds, starting
from the current state. Such predicate implements the query of form 〈p〉Fs
considered in the previous section, which ask for a terminating execution of
p leading to a state in which Fs holds 9. Thus, it works by executing p in the
same way as the on-line interpreter of the language, with a main differences:
primitive actions are executed without any effect on the external environment,
and, as a consequence, they are backtrackable. When the planning predicate
plan(Fs after p, as) is applied to a procedure p that contains sensing actions,
the interpreter simply implements the proof procedure in Section 4.2: it looks
ahead over sensing actions and tries to extract a conditional plan, that is
guaranteed to lead to a state where Fs holds no matter the sensing turns out
(branches correspond to the possible outcomes of sensing).

Further details are here omitted. Both the interpreter and the programming
manual are available at [1].

5.2. WEB APPLICATIONS

In the last years the use of DyLOG as specification language for implement-
ing intelligent software agents have been experimented in significant agent
based scenarios. In particular, our running application project fits in the area
of intelligent adaptive systems accessible via web [4, 8]. Most of the work
carried on in this field [15] concerns the personalization of the site language
and graphics and sometimes also of its contents, e.g. in the case of news
portals the system will select the information to show according to the specific
interests of the users. The most successful approach is based on user models,
which are prototypes of users, sometimes refined after the interaction of the
users with the site. However, there are applications, such as recommendation
systems, which are designed to help users to solve problems of interest, where

9 Notice that the predicate plan can be also applied to action sequences: plan((Fs after
a1, . . . ,an), ). In this case it implements the temporal projection task.
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the user goals may vary at every connection, therefore cannot be inferred from
the past user’s behavior or from his/her general model. In such contexts the
possibility to reason about actions and to adapt the system behavior to the
current user goals can play a very important role in order to achieve a more
complete adaptation.

In this framework in a set of papers [4, 8, 10, 9] we proposed an approach
based on logic agents, where adaptation is based on the reasoning capabilities
of a DyLOG rational agent, applied to a declarative description of the domain
(internal to the system) and meant to achieve the goals of the specific user.
Recently we focused on an adaptive tutoring scenario and developed a web-
based multi-agent system, called Wlog, that supports students in the process
of constructing and validating a study plan by adapting to the learning goal
and to the declared competence of the student.

5.2.1. A tutoring system
The system WLog has a multi-agent architecture, sketched in Fig. 6. The

User’s browser

DyLOG’s inference
mechanism

Agent
Reasoner

Agent
Executor

Domain knowledge model

HTML page

User’s preferences,
goals, and
current situation

Call
Inference results

FIPA
performatives

Java 
Servlets

DyLOG
program

DyLOG
program

Figure 6. A sketch of the WLOG multiagent system.

server-side of the system consists mainly of two kinds of agents: reasoners
and executors. The kernel of the system are the reasoners that have been
implemented as DyLOG agents. The executors are Java servlets embedded
in a Tomcat web server, playing the role of an interface among the rational
agents and the users; they mainly produce HTML pages according to the
directives sent by the DyLOG agents or, when necessary, forward data to the
DyLOG agents themselves.

Let us focus on the implementation of the reasoners as DyLOG agents. Our
reasoners work on a dynamic domain description, where the basic actions that
can be executed are of the kind “attend course X”. Effects and preconditions
of actions (courses) are expressed by simple action clauses and are essentially
given in terms of a set of abstract competences, possibly connected by causal
relationships. The set of all the possible competences and of their relations
defines an ontology. Complex professional expertise are described composing
courses in predefined schemas by means of DyLOG procedure definitions.
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Such procedures are used by the agent to accomplish the task to build a study
plan, i.e. a sequence of courses for achieving a certain high-level competence.
Working at the level of competences is close to human intuition and enables
the application of both goal-directed reasoning processes and explanation
mechanisms. In particular, given a description of the domain of the available
courses, the reasoning capabilities provided by DyLOG have been exploited
both to guide a student in building a study plan to acquire some desired com-
petence, and to verify whether a study plan proposed by a student is correct,
e.g. course preconditions are respected and the plan allows the student to
acquire the desired competence. Indeed, verifying the correctness of a user-
given study plan can be naturally interpreted in the DyLOG framework as
an instance of the temporal projection problem, where, given a sequence of
courses (actions) a1, . . . ,an composed by the user and a set of competences
represented by the fluent conjunction Fs, we want to verify if the sequence
is a correct study plan for achieving the competence Fs (the learning goal).
Moreover, the problem of constructing a study plan that achieves a learning
goal and user’s conditions, and fits in a predefined curriculum schemas can be
naturally interpreted as a planning problem à la DyLOG, when we represent
curriculum schemas as procedures and we look for a possible execution that
lead to satisfy the goal.

EXAMPLE 5.1. To give a more concrete flavor, let us see the top level
procedure that specify the behavior of a reasoner when it is requested to
perform a study plan construction task. It is called advice and mainly extract
a study plan that after will be executed (proposed to the student via HTML
pages).

advice(Plan) is
ask user pre f erences ∧ ?requested(Curriculum) ∧
plan(credits(C)∧ max credits(B)∧ (C ≤ B)after

achieve goal(has competence(Curriculum),Plan) ∧ Plan.

Intuitively, the reasoner asks the student what kind of final expertise he wants
to achieve and his background knowledge (e.g. if he already attended some of
the possible courses). Afterwards, it adopts the user’s goals and tries to build
a plan for achieving the goal of having the desired final expertise. The meta-
predicate plan returns the plan, in this case by extracting those executions
of the procedure achieve goal that satisfy the user’s goals as well as the
further conditions that are possibly specified (e.g. that the number of credits
gained by following the study plan is not bigger than a predefined maximum).
The extracted plan can be conditional, predicting also the future interactions
with the user. In fact, if the agent finds different courses that supply a same
competence, whose prerequisites are satisfied, it is programmed in such a way
that it asks the user to make a choice. The conditional plan returned by the

BGMP_AMAIsp_LBAI.tex; 31/10/2003; 18:55; p.35



36 M. Baldoni, L. Giordano, A. Martelli, and V. Patti

reasoning process can be executed in the on-line modality. Every action has
some code associated to it, that is to be performed when the action is actually
executed; such a code produces the real effects of the action in the world, that
in our case consists in sending to the executor the message of showing a given
web page.

In the procedure advice above the agent behavior starts by interacting with
the student, that is mainly asked to specify which kind of support he needs and
his learning goals (ask user pre f erences). In DyLOG the interaction with
the user is specified by means of sensing actions. In fact, generally sensing
actions allow an agent to gather inputs from the external world, thus, in the
web application context, it seemed to be a natural choice to use sensing for
requesting the user to enter a value for a fluent, true or false in case of ordinary
fluents, a value from the domain in case of fluents with a finite domain.

In the simplest case the user is explicitly requested to enter a truth value
for a fluent. This kind of interaction, however is not sufficient, because rather
than asking for a fluent truth value, it can be useful to offer a set of alternatives
to the user, among which he will make a choice. To deal with this matter, in
[4] DyLOG has been augmented by introducing a special subset of sensing
actions, called suggesting actions which can be used when the agent has to
find out the value of fluents representing the user’s preferences among a finite
subset of alternatives. The difference w.r.t. standard sensing actions is that
while those consider as alternative values for a given fluent its whole domain,
suggesting actions offer only a subset of it. The agent has an active role in
selecting the possible values among which the user chooses: only those that
lead to fulfill the goal will be selected. Such values are identified by means
of a reasoning process. Such difference arises when we cope with conditional
plan extraction. In the normal sensing case the agent must consider all the
possible outcomes of sensing, then it looks for a conditional plan that suc-
ceeds for all the possible input values. Instead suggesting actions allow the
agent to reason about the options it could offer to the user and to select only
the ones that lead to fulfill certain goals (the idea is that only the selected
options will be offered at execution time). Formally, for modeling this kind of
reasoning, it is sufficient to slightly modify the rule 4-bis of proof procedure
for generating conditional plans presented in Section 4.2, by defining F in
the following way:

F = max(F ′) s.t. F ′ ⊆ {l1, . . . , lt} = dom(s)

Basically, when a suggesting action s is executed, the proof procedure can
consider, instead of the whole associated domain dom(s) of the possible out-
comes, the biggest subset of it for which the computation (split in branches)
succeeds.
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6. Related Work

The problem of reasoning about actions in presence of sensing and of in-
complete states has been tackled by many authors in the literature. In the
Scherl and Levesque’ work [40] a framework has been proposed to formalize
knowledge-producing actions in classical logic, adapting the possible world
model of knowledge to the situation calculus. As a difference, we describe
an epistemic state by a set of epistemic literals, a simplification similar to the
one considered in [13], which leads to a loss of expressivity, but to a gain in
tractability.

In [33] Levesque formulates the planning task in domains including sens-
ing. Starting from the theory of sensing actions in situation calculus presented
in [40], he defines complex plans as robot programs, that may contain sensing
actions, conditionals and loops, and specifies the planning task as the problem
to find a robot program achieving a desired goal from a certain initial state.
However the paper does not suggest how to generate automatically such robot
plans, while we presented a proof procedure to deal with it (Section 4.2).
On the same line there is a recent paper by De Giacomo et al. [28] where
some desired properties of a program returned by a planning process and
ready to be executed have been investigated. The framework of reference is
IndiGolog, a variant of GOLOG intended to be executed on-line in an in-
cremental way. In particular the authors propose a formal characterization of
plans as epistemically feasible programs, i.e. programs for which an execut-
ing agent, at every stage of execution, by virtue of what it knew initially and
the subsequent reading of sensors, always can decide what step to take next
toward the goal. Based on this notion, they considered two kind of programs
restricted w.r.t. the syntactic form, namely linear programs (programs that
not performs sensing) and tree programs (roughly, conditional plans where
one can only test a condition that has just been sensed). It can be proved that
when a program belonging to one of these classes is executable, it is also
epistemically feasible, i.e. the agent always knows what to do next. Notice
that the conditional plans that are extracted by our proof procedure have the
form of tree programs.

The works in [13, 35, 14] have tackled the problem of extending the
Gelfond and Lifschitz’ language A for reasoning about complex plans in
presence of sensing and incomplete information. In [35] Lobo et al. introduce
the language AK , which provides both actions to increase agent knowledge
and actions to lose agent knowledge. It has a general semantics in which
epistemic states are represented by sets of worlds. The epistemic state of an
agent is represented in AK as a set of worlds (states), rather then by a set of
epistemic literals as in our proposal. This makes the semantics of AK more
general then ours. In particular, AK disjunctive knowledge can be represented,
while it cannot in our approach. However, since in the language of AK there
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is not an explicit representation of epistemic fluents, it is not possible for the
agent to query itself about its knowledge (the agent has no introspection).
Precondition laws to rule executability of actions are not provided. In par-
ticular, knowledge laws, which describe the effects of sensing actions, have
preconditions on the effects of actions rather than on their executability. In
AK complex plans are defined as Algol-like programs, containing sequence,
conditional statements and iteration. Given a domain description in AK , a
query of the form φ after [α] is true if φ holds in every model of D after the
execution of the plan α in the initial state, where α is a complex plan, possibly
including conditionals and iterations. As a difference with [35], rather than
verifying the correctness of a plan, in this paper we have addressed the prob-
lem of finding a finite conditional plan (a possible execution of a procedure)
which is provably correct with respect to a given condition.

In [14] Baral and Son define an action description language, also called
AK , which deals with sensing actions and distinguishes between the state
of the world and the state of knowledge of an agent about the world. The
semantics of the language is proved to be equivalent to the one in [35] when
rational models are considered. Baral and Son [13, 14] define several sound
approximation of the language AK with a smaller state space with respect to
AK , based on three-valued interpretations. Our approach has strong similar-
ities with the 0-Approximation. Indeed, our epistemic states are, essentially,
three-valued models and, as for the 0-Approximation, our language does not
provide reasoning about cases. The meaning of queries in [14] is substantially
similar to the one in [35] and, therefore, it is different from ours.

Following [17, 18], in [22] De Giacomo and Rosati propose a minimal
knowledge approach for reasoning about actions and sensing, in presence of
incomplete information. They use a formalism which combines the modal
µ-calculus and autoepistemic logic. In their language, they have epistemic
formulas kp (where p is a literal conjunction) and they allow precondition
laws of the form kp ⊃ 〈a〉true and action laws of the form kp ⊃ [a]kq. On
the other hand, their domain description does not contain formulas of the
form M p ⊃ [a]M q, which in our case are needed for describing the possible
effects of an action when there is uncertainty about its preconditions. The
last kind of action laws in our approach are also used for modelling actions
with non-deterministic effects, which make the agent to loose information.
Such actions are not provided in [22]. An algorithm is introduced to compute
a transition graph from an action specification. This graph can be used for
verifying properties of the possible executions through model checking and to
prove rather sophisticated temporal properties like liveness and maintenance
goals. Though sensing actions are specified as nondeterministic actions, their
treatment in the construction of the transition graph is similar to ours, in that,
a sensing action is regarded as the nondeterministic choice of two atomic
actions, the one which makes the fluent known, and the other one which make
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its negation known. Frame axioms are only provided for sensing actions, and
in a way that a sensing action does not have any effect on fluents whose value
is known before their execution.

In [42] Thielscher faces the problem of representing a robot’s knowledge
about its environment in the context of the Fluent Calculus, a formalism for
reasoning about actions based on predicate logic. In order to account for
knowledge, basic fluent calculus is extended by introducing the concept of
possible world state and defining knowledge of a robot in terms of possible
states. The formalism deals with sensing actions and it allows to distinguish
between state of the world and state of knowledge of an agent about the world.
A monotonic solution to the frame problem for knowledge is provided, by
means of suitable knowledge update axioms but, as a difference with [14],
independent specifications of state and knowledge update can be given. A
concept of conditional action, denoted by I f ( f ,a), is introduced in order to
deal with planning in presence of sensing. Such I f -constructs allow the robot
to condition its course of actions on the result of sensing actions included
in its plan. However I f -constructs uses only atomic conditions, while our
formalism allow to express as complex actions conditional constructs with
arbitrary complex conditions.

In [37] Petrick and Bacchus present an approach to planning with incom-
plete information and sensing, where planners states are represented as sets
of formulas from a modal logic of knowledge. As in our approach, actions
are modeled in terms of how they modify the knowledge state of the planner
rather than in terms of how they modify the physical world. Formulas in the
knowledge state can be first-order modal formulas, and, in order to retain
tractability on the kind of reasoning which can be performed, the knowledge
state is structured as a collection of four databases, and queries are suitable
restricted.

As concerns the problem of defining complex actions, there is a close
relation between our language and GOLOG [34], though, from the techni-
cal point of view, it is based on a different approach. While our language
makes use of modal logic, GOLOG is based on classical logic and, more
precisely, on the situation calculus. We make use of abduction to deal with
persistency, while in GOLOG is given a monotonic solution of the frame
problem by introducing successor state axioms. In our case, procedures are
defined as axioms of our modal logic, while in GOLOG they are defined by
macro expansion into formulae of the situation calculus. GOLOG definition
is very general, but it makes use of second order logic to define iteration and
procedure definition. Hence there is a certain gap between the general theory
on which GOLOG is based and its implementation in Prolog. In contrast, we
have tried to keep the definition of the semantics of the language and of its
proof procedure as close as possible.
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We would like to mention the work in [20, 21] where GOLOG is extended
in order to deal with concurrency (ConGolog) and with execution of high-
level programs. In particular, in [21] the problem is tackled of executing
programs including sensing. The notions of off-line and on-line execution
are introduced and a way of combining them is considered.

Between the other approaches addressing the problem to reason about
complex actions, let us mention the work of Hölldobler et al. [31], where the
focus is on the definition of a planning language for specifying complex plans.
This language, based on first-order logic, allows for procedure definitions,
conditional and recursive plans, and some form of non-deterministic choice.
The authors give also a formal definition of the notions of executability, termi-
nation and correctness of complex plans, from the point of view of a skeptical
agent. Nevertheless the problem of treating sensing is not addressed and it is
possible to deal with uncertain knowledge only by using non-determinism.

7. Conclusions

In this paper we have presented a logic programming language for modelling
and programming rational agents. The language is based on a modal theory
of actions and mental attitudes where modalities are used for representing
actions and beliefs modelling the agent’s mental state. Our action theory
allows to deal with sensing actions as well as with complex actions. The
problem of reasoning about complex actions with incomplete knowledge has
been tackled and in particular the temporal projection and planning problem
have been addressed. We adopted a non-monotonic approach to deal with
the frame problem, by making use of abduction: persistency is achieved by
maximizing persistency assumptions. The integration of non-monotonic tech-
niques and modal logics leads to a very expressive and powerful language
that allows to reason about action and change, as well as to model the agent’s
mental attitude dynamics. Moreover, the adoption of the logic programming
paradigm is crucial in order to define a language which can be used both for
specifying and for programming agents, and then to bridge the gap between
logical model and practical implementation of agent systems.

In this paper we also briefly motivated and describe our experience in
using DyLOG for implementing web applications, where reasoning and plan-
ning techniques are used for supplying adaptive services to users and we refer
to [4, 9] for more details.

In the last few years, the AI community devoted a great deal of attention
to the issue of communication and dialogue among agents in the context
of a formal approach to the theory of agency [26, 24, 39]. On this line in
a set of works [36, 6, 7] the problem of providing a DyLOG agent with a
communication kit has been tackled. The logical action framework has been
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extended to integrate a communication theory and the problem of specifying
and reasoning about communications and conversation protocols has been
faced.

The formal account of communication we proposed aims at coping with
two main aspects: the state change caused by a communicative act on the local
agent’s mental state, and the decision strategy used by an agent for sending
suitable answers to a received communication. Regarding the first aspect, the
DyLOG action theory has been extended to represent primitive communica-
tive actions in terms of preconditions and effects on mental states, including
(possibly nested) belief and goal fluents. Regarding the second aspect, agents
have been equipped with a set of FIPA-like conversation protocols, modelled
by taking the agent’s point of view and by building on primitive speech acts.
Such protocols specify possible communication patterns for agent’s conversa-
tions and then guide the selection process of the proper answer, constraining
the search space of possible agent responses. The communication theory is
viewed as a homogeneous component of the general agent theory, as both
conversational policies, that guide the agent’s communicative behavior, and
other policies defining the agent’s complex behavior are represented by non-
deterministic procedures definitions (procedure axioms). The proof procedure
presented in section 4 has been adapted to the extended framework, in order
to support agent’s reasoning and planning in presence of communications.

In [5] we have shown how to interpret the semantic web, and in particular
web services, in our framework for multiagent communication. A web ser-
vice can be seen as an agent which communicates with other agents, and the
behavior of the service can be expressed as a conversation protocol in a logic
language. Having a logic specification of the protocol, it is possible to reason
about the effects of engaging specific conversations, and to verify properties
of the protocol.
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Appendix

A. Soundness results

The proof of soundness of the proof procedure in Section 4.1 with respect
an acceptable solution makes use of a soundness and completeness result for
the monotonic part of the proof procedure w.r.t. the monotonic part of the
semantics. Indeed, if the assumptions M[a1; . . . ;am]F are regarded as facts
rather than abducibles and they are added to the program, the non-monotonic
rule 7c in the proof procedure can be replaced by a monotonic one. The
resulting monotonic proof procedure can be shown to be sound and complete
with respect to the Kripke semantics of the modal logics L(Π,S0). Formally,
the monotonic proof procedure is defined by the relation ∆̀ .

DEFINITION A.1. Let ∆ be a consistent set of abductive assumptions. The
relation `∆ is defined by the rules 1-7b, 7d-9 in Fig.4 and Fig.5 in Sec-
tion 4.1, where ` is replaced with `∆ , and by the following rule:

7c’) a1; . . . ;am `∆ F where M[a1, . . . ,am]F ∈ ∆

We will write a1, . . . ,am `∆ 〈p1; p2; . . . ; pn〉Fs with answer σ to mean that
the query 〈p1; p2; . . . ; pn〉Fs can be proved from the domain description (Π,S0)
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at the state a1, . . . ,am with answer σ by means of rules for the monotonic
proof procedure defined above.

THEOREM A.1 (Soundness of `∆ ). Let (Π,S0) be an e-consistent dynamic
domain description and let G be a query of form 〈p1; p2; . . . ; pn〉Fs. Let ∆ be
a consistent set of abductive assumptions. If there is a `∆−proo f ϒ for a
query G from a dynamic domain description (Π,S0) at state a1, . . . ,am, then
Σ(Π,S0)∪∆ |= [a1; . . . ;am]G.

Proof. We prove the soundness of `∆ by induction on the height of the proof
ϒ. If the height h of ϒ is 1, then ϒ is an axiom. There are four cases, rules
6, 7b, 7c’, 7d, and for all of them the theorem holds trivially. By inductive
hypothesis the theorem holds for queries whose proof ϒ has height less than
or equal to h. Let us prove it for h + 1. We consider the following cases, one
for each inference rule in which ϒ can terminate.

Case Rule 1 Assume that the root inference figure in ϒ is rule 1. Hence, in
our hypothesis, ϒ has form:

ϒ1
a1, . . . ,am `∆ 〈p′1; . . . ; p′n′ ; p2; . . . ; pn〉Fs w. a. σ

a1, . . . ,am `∆ 〈p; p2; . . . ; pn〉Fs w. a. σ

where p ∈ P and 〈p〉ϕ ⊂ 〈p′1; . . . ; p′n′〉ϕ ∈ ΠP . Let G′ = 〈p2; . . . ; pn〉Fs.
To prove the thesis, we prove |= Σ(Π,S0)∪∆ ⊃ [a1; . . . ;am]〈p〉G′. Assume
|= Σ(Π,S0)∪∆, then we show that |= [a1; . . . ;am]〈p〉G′ holds.

Since ϒ1 is shorter than ϒ, by inductive hypothesis, we get that Σ(Π,S0)∪
∆ |= [a1; . . . ;am]〈p′1; . . . ; p′n′〉G

′. Now, since we assumed |= Σ(Π,S0) ∪∆,
then we have that for each interpretation M and for each world w, M,w |=
[a1; . . . ;am]〈p′1; . . . ; p′n′〉G

′. Then, by definition of satisfiability, we have
M,w′ |= 〈p′1; . . . ; p′n′〉G

′, for any world w′ s.t. (w,w′) ∈ Ra1;...;am . Since
〈p′1; . . . ; p′n′〉ϕ ⊃ 〈p〉ϕ is an axiom in ΠP , we have also M,w′ |= 〈p′1; . . . ;
p′n′〉G

′ ⊃ 〈p〉G′ and hence M,w′ |= 〈p〉G′. Since it holds for any w′

s.t. (w,w′) ∈ Ra1;...;am , it follows that M,w |= [a1; . . . ;am]〈p〉G′, for any
interpretation M and world w, that is |= [a1; . . . ;am]〈p〉G′.

Case Rule 2 Assume that the root inference figure in ϒ is rule 2. Hence, in
our hypothesis, ϒ has form:

ϒ1
a1, . . . ,am `∆ Fs′

ϒ2
a1, . . . ,am `∆ 〈p2; . . . ; pn〉Fs w. a. σ

a1, . . . ,am `∆ 〈(Fs′)?; p2; . . . ; pn〉Fs w. a. σ

Let G′ = 〈p2; . . . ; pn〉Fs. To prove the thesis, we prove |= Σ(Π,S0) ∪∆ ⊃
[a1; . . . ;am]〈Fs′?〉G′. Assume |= Σ(Π,S0)∪∆, then we show that |= [a1; . . . ;
am]〈Fs′?〉G′ holds.
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Since ϒ1 and ϒ2 are shorter than ϒ, by inductive hypothesis, we get
that Σ(Π,S0) ∪∆ |= [a1; . . . ;am]Fs′ and Σ(Π,S0) ∪∆ |= [a1; . . . ;am]G′ hold.
Now, since we assumed |= Σ(Π,S0) ∪∆, then we have that for each inter-
pretation M and for each world w, M,w |= [a1; . . . ;am]Fs′ and M,w |=
[a1; . . . ;am]G′. Then, by definition of satisfiability, we have (1) M,w′ |=
Fs′ and (2) M,w′ |= G′, for any w′ s.t. (w,w′) ∈ Ra1;...;am . From (1) and
(2), by definition of satisfiability, we have also M,w′ |= 〈Fs′?〉G′ and,
since it holds for any w′ s.t. (w,w′) ∈ Ra1;...;am , it follows that M,w |=
[a1; . . . ;am]〈Fs′?〉G′, for any interpretation M and world w, that is |=
[a1; . . . ;am]〈Fs′?〉G′.

Case Rule 3 Assume that the root inference figure in ϒ is rule 3. Hence, in
our hypothesis, ϒ has form:

ϒ1
a1, . . . ,am `∆ Fs′

ϒ2
a1, . . . ,am,a `∆ 〈p2; . . . ; pn〉Fs w. a. σ

a1, . . . ,am `∆ 〈a; p2; . . . ; pn〉Fs w. a. σ

where a ∈ A and 2(Fs′ ⊃ 〈a〉>) ∈ ΠA . Let G′ = 〈p2; . . . ; pn〉Fs. To
prove the thesis, we prove |= Σ(Π,S0) ∪ ∆ ⊃ [a1; . . . ;am]〈a〉G′. Assume
|= Σ(Π,S0)∪∆, then we show that |= [a1; . . . ;am]〈a〉G′ holds.

Since ϒ1 and ϒ2 are shorter than ϒ, by inductive hypothesis, we get
that Σ(Π,S0)∪∆ |= [a1, . . . ,am]Fs′ and Σ(Π,S0)∪∆ |= [a1, . . . ,am,a]G′ hold,
with 2(Fs′ ⊃ 〈a〉>) ∈ ΠA ⊂ Π. Thus, since we assumed |= Σ(Π,S0) ∪
∆, then |= [a1; . . . ;am]Fs′ and |= [a1; . . . ;am;a]G′ and also |= 2(Fs′ ⊃
〈a〉>), since the law belong to ΠA ⊂ Π and we assumed |= Σ(Π,S0) ∪∆.
By definition of validity respect to the class M(Π,Obs), it means that
for each Kripke interpretation M and for each world w ∈ W , M,w |=
[a1; . . . ;am]Fs′, M,w |= [a1; . . . ;am;a]G′ and M,w |= 2(Fs′ ⊃ 〈a〉>). In
particular, for definition of satisfiability, M,w |= [a1; . . . ;am]Fs′ iff M,w′ |=
Fs′, for each world w′ s.t. (w,w′) ∈ Ra1;...;am . Since Ra1;...;am ⊆ R2, then
M,w′ |= Fs′ ⊃ 〈a〉> that together with M,w′ |= Fs′ implies M,w′ |=
〈a〉>. By satisfiability definition, it means that it exists a world w′′ s.t.
(w′,w′′) ∈ Ra. Since M,w |= [a1, . . . ,am,a]G′ and (w,w′′) ∈ Ra1;...;am;a,
then M,w′′ |= G′. From M,w′ |= 〈a〉> and M,w′′ |= G′ it follows that
M,w′ |= 〈a〉G. Since it holds for each w′ s.t. (w,w′) ∈ Ra1;...;am , we have
that, for each interpretation M, for each w, M,w |= [a1; . . . ;am]〈a〉G′, that
is |= [a1; . . . ;am]〈a〉G′.

Case Rule 4 Assume that the root inference figure in ϒ is rule 4. Hence, in
our hypothesis, ϒ has form:

ϒ1

a1, . . . ,am `∆ 〈sBl ; p2; . . . ; pn〉Fs w. a. σ
a1, . . . ,am `∆ 〈s; p2; . . . ; pn〉Fs w. a. σ
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where s∈ S and l ∈ dom(s). Let G′ = 〈p2; . . . ; pn〉Fs. To prove the thesis,
we prove |= Σ(Π,S0)∪∆⊃ [a1; . . . ;am]〈s〉G′, where s is a sensing action in
S . Assume |= Σ(Π,S0)∪∆, then we show that |= [a1; . . . ;am]〈s〉G′ holds.

Since ϒ1 is shorter than ϒ, by inductive hypothesis, we get that Σ(Π,S0)∪

∆ |= [a1; . . . ;am]〈sBl〉G′ holds, with l ∈ dom(s). Since we assumed Σ(Π,S0)∪
∆ we have that for each interpretation M and for each world w, M,w |=
[a1; . . . ;am]〈sBl〉G′, that, by satifiability definition, implies M,w′ |= 〈sBl〉G′,
for each w′ such that (w,w′) ∈ Ra1;...;am . From M,w′ |= 〈sBl〉G′, by defi-
nition of satisfiability, we have that it exist a world w′′ s.t. (w′,w′′)∈ RsBl

and M,w′′ |= G′. Moreover, since s ∈ S , [s]ϕ ≡ [
⋃

l∈dom(s) sBl ]ϕ is an ax-
iom in ΠS . Therefore the inclusion property between accessibility rela-
tions Rs ⊇

⋃
l∈dom(s) RsBl holds. Hence, from the fact that it exists w′′ s.t.

(w′,w′′)∈RsBl and M,w′′ |= G′, we can conclude that (w′,w′′) belongs to
the relation Rs too and, by definition of satisfiability, that M,w′ |= 〈s〉G′

holds. Since it holds for each w′ s.t. (w,w′) ∈ Ra1;...;am , we have that,
for each interpretation M, for each w, M,w |= [a1; . . . ;am]〈s〉G′, that is
|= [a1; . . . ;am]〈s〉G′.

Case Rule 5 Assume that the root inference figure in ϒ is rule 5. Hence, in
our hypothesis, ϒ has form:

ϒ1
a1, . . . ,am `∆ Fs

a1, . . . ,am `∆ 〈ε〉Fs w. a. σ

where σ = a1; . . . ;am. Obvious, by inductive hypothesis.

Case Rule 7a Assume that the root inference figure in ϒ is rule 7a. Hence, in
our hypothesis, ϒ has form:

ϒ1
a1, . . . ,am−1 `∆ Fs′

a1, . . . ,am `∆ F

where m > 0 and 2(Fs′ ⊃ [am]F) ∈ ΠA . To prove the thesis, we prove
|= Σ(Π,S0)∪∆⊃ [a1; . . . ;am]F , where F is an epistemic fluent. Assume |=
Σ(Π,S0)∪∆, then we show that |= [a1; . . . ;am]F holds. Since ϒ1 is shorter
than ϒ, by inductive hypothesis, we get that Σ(Π,S0)∪∆ |= [a1; . . . ;am−1]Fs′

holds, with 2(Fs′ ⊃ [am]F) ∈ ΠA ⊂ Π. Thus, since we assumed |=
Σ(Π,S0) ∪∆, then we have that for each interpretation M and world w,
M,w |= [a1; . . . ;am−1]Fs′ and also M,w |= 2(Fs′ ⊃ [am]F). In particular,
for definition of satisfiability, M,w |= [a1; . . . ;am−1]Fs′ iff M,w′ |= Fs′,
for each world w′ s.t. (w,w′) ∈ Ra1;...;am−1 . Since Ra1;...;am−1 ⊆ R2, then
M,w′ |= Fs′ ⊃ [am]F that together with M,w′ |= Fs′ implies M,w′ |=
[am]F . Since it holds for any w′ s.t. (w,w′) ∈ Ra1;...;am−1 , it follows that
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M,w |= [a1; . . . ;am−1][am]F , for any interpretation M and world w, i.e.
|= [a1; . . . ;am]F .

Case Rule 8 Assume that the root inference figure in ϒ is rule 8. Hence ϒ
has form:

ϒ1
a1, . . . ,am `∆ Fs1

ϒ2
a1, . . . ,am `∆ Fs2

a1, . . . ,am `∆ Fs1 ∧Fs2

Since ϒ1 and ϒ1 are shorter than ϒ, by inductive hypothesis we have
Σ(Π,S0)∪∆ |= [a1, . . . ,am]Fs1 and Σ(Π,S0)∪∆ |= [a1, . . . ,am]Fs2 and hence,
for definition of satisfiability relation, Σ(Π,S0) ∪ ∆ |= [a1, . . . ,am]Fs1 ∧
Fs2.

Case Rule 9 Assume that the root inference figure in ϒ is rule 9. Hence, in
our hypothesis, ϒ has form:

ϒ1
a1, . . . ,am `∆ Bl

a1, . . . ,am `∆ ¬B¬l

To prove the thesis, we prove |= Σ(Π,S0)∪∆ ⊃ [a1; . . . ;am]¬B¬l. Assume
|= Σ(Π,S0)∪∆, then we show that |= [a1; . . . ;am]¬B¬l holds.

Since ϒ1 is shorter than ϒ, by inductive hypothesis, we get that Σ(Π,S0)∪
∆ |= [a1; . . . ;am]Bl. Now, since we assumed |= Σ(Π,S0)∪∆, then we have
that for each interpretation M and for each world w, M,w |= [a1; . . . ;am]Bl.
Then, by definition of satisfiability, we have M,w′ |= Bl, for any world
w′ s.t. (w,w′) ∈ Ra1;...;am . Moreover, since modality B is serial and Bϕ ⊃
¬B¬ϕ is an axiom of our modal logic, we have M,w′ |= Bl ⊃¬B¬l. By
modus ponens it follows that M,w′ |= ¬B¬l. Since it holds for any w′

s.t. (w,w′) ∈ Ra1;...;am , it follows that M,w |= [a1; . . . ;am]¬B¬l, for any
interpretation M and world w, i.e. |= [a1; . . . ;am]¬B¬l.

Let us consider now the completeness of the monotonic proof procedure
`∆ respect to the Kripke semantics. The completeness proof is given by con-
structing a canonical model for a given theory Σ(Π,S0) ∪∆, where Σ(Π,S0) is a
theory in L(Π,S0) and ∆ is a given consistent set of abductive assumptions. We
introduced the notion of operational derivability of a query G from a domain
description (Π,S0) in a certain state represented by the sequence a1, . . . ,am.
A sequence a1, . . . ,am, with m ≥ 0, is a shorthand for the sequence of modal-
ities [a1] . . . [am], where the ai’s are world actions, and it keeps track of the
sequence of actions performed during the computation. In the following, we
will refer to such sequences as modal contexts. Intuitively, a modal context
is a name for a possible world. During the model’s construction, we will use
modal contexts, possibly extended with epistemic modal operators, in order
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to specify the set W of possible words of the model. We will denote by ε the
empty sequence of modalities.

DEFINITION A.2 (Derivation relation
∗
⇒ΠP ). Given a set ΠP of procedure

axioms in a domain description (Π,S0), the derivation relation
∗
⇒ΠP is the

transitive and reflexive closure of the relation ⇒ΠP defined as follow: for
each [p0]ϕ ⊃ [p1][p2] . . . [pn]ϕ ∈ ΠP and for each modal context Γ, Γ′,Γp0Γ′

⇒ΠP Γp1 . . . pnΓ′.

DEFINITION A.3 (Canonical Model). The canonical model Mc for a theory
T = Σ(Π,S0) ∪ ∆, where (Π,S0) is an e-consistent domain description, is a
tuple

〈W,RB ,{Rai : ai ∈ A},{Rs : s ∈ S},{Rp : p ∈ P},R2,V 〉

where:

− W = {a1 . . .anB,a1 . . .anM ,a1 . . .an : n ≥ 0,ai ∈ A} where, a1 . . .anB
(a1 . . .anM ) denote the concatenation between the modal context a1 . . .an

and the operator B (M );

− Rai = {(a1 . . .an,a1 . . .anai) ∈W ×W : a1, . . . ,an `∆ Fs′, with 2(Fs′ ⊃
〈ai〉>) ∈ Π};

− R2 is a binary relation on W ×W. It is reflexive, transitive, and satis-
fies the condition R2 ⊇ (∪aiRai)

∗, ai ∈ A , i.e. R2 contains the reflexive
and transitive closure of the union of the Rai;

− Rp = {(a1 . . .an,a1 . . .anan+1 . . .an+m)∈W ×W : p
∗
⇒ΠP an+1 . . .an+m};

− Rs = {(a1 . . .an,a1 . . .ansF) ∈ W ×W : s ∈ S ,sF ∈ A , where F is an
epistemic fluent;

− RB = {(a1 . . .an,a1 . . .anB)∈W ×W}∪{(a1 . . .an,a1 . . .anM )∈W ×
W} ∪ {(a1 . . .anB,a1 . . .anB) ∈ W ×W} ∪ {(a1 . . .anM ,a1 . . .anM ) ∈
W ×W};

− for each fluent name f , for each modal context a1 . . .an, n ≥ 0 we set:

(a) V (a1 . . .anB, f ) = T iff a1, . . . ,an `∆ B f ;

(b) V (a1 . . .anM , l) = T iff a1, . . . ,an `∆ ¬B¬ f and a1, . . . ,an `∆ ¬B f ,
or a1, . . . ,an `∆ B f .

We recall back that in the monotonic formulation abducibles are consid-
ered to be new atomic propositions. Then, we set:

(c) V (ε,M[a1; . . . ;am]F) = T iff M[a1; . . . ;am]F ∈ ∆.
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In all other cases the function V is defined to be false.

Moreover we have:

− Rψ? = {(a1 . . .an,a1 . . .an) ∈W ×W : a1, . . . ,an `∆ ψ}

The canonical model Mc for a theory Σ(Π,S0) ∪∆ given by Definition A.3
is a Kripke (Π,S0)-interpretation. In fact, it is easy to see that each property
on accessibility relations stated in Definition 3.1 is satisfied by the canonical
model Mc.

The following proposition states that the canonical model Mc for a theory
Σ(Π,S0)∪∆ is a Kripke (Π,S0)-interpretation.

PROPOSITION A.1. The canonical model Mc given by Definition A.3 is a
Kripke (Π,S0)-interpretation, that is:

1. each property on accessibility relations stated in Definition 3.1 is satisfied
by the canonical model Mc, and

2. V is a valuation function.

Proof.

1. The proof is omitted. It is based on quite standard techniques and it
similar to the ones presented in [2].

2. The proof is based on standard techniques [32] and it is omitted. Let
us stress that, in order to prove that the value-assignment V of Mc in
definition A.3 is a valuation function, it is essential the e-consistency
requirement on the domain description (Π,S0).

Completeness proof is based on the following two properties of Mc.

THEOREM A.2. Let Σ(Π,S0) be a theory in L(Π,S0), where (Π,S0) is an e-
consistent domain description, let be ∆ a consistent set of abductive assump-
tions, and Mc the canonical model of Σ(Π,S0) ∪∆. Let G be a query of form
〈p1; p2; . . . ; pn〉Fs, then the following properties hold:

1. for each modal context a1 . . .an : ai=1,...,n ∈ A ,
Mc,a1 . . .an |= G iff a1, . . . ,an `∆ G;

2. Mc satisfies Σ(Π,S0)∪∆; i.e., since Σ(Π,S0)∪∆ = {ΠA ∪∆∪S0},
for all formulae D ∈ {ΠA ∪∆∪S0}, Mc,ε |= D.

Proof. We prove property (1) by induction on the structure of G.

G = T : Trivial.
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G = F : there are four cases. F have form B f , B¬ f , ¬B f , or ¬B¬ f .

G = B f : Mc,a1 . . .an |= B f iff for each world w′ s.t. (a1 . . .an,w′) ∈
RB , Mc,w′ |= f . Now, by definition of RB , iff Mc,a1 . . .anB |= f
and Mc,a1 . . .anM |= f , that is, iff (1) V (a1 . . .anB, f ) = T and (2)
V (a1 . . .anM , f ) = T. By definition of V in Mc, iff (1) a1, . . . ,an `∆
B f and (2) a1, . . . ,an `∆ B f , or a1, . . . ,an `∆ ¬B f and a1, . . . ,an `∆
¬B¬ f ; that is, iff a1, . . . ,an `∆ B f

G = B¬ f : Mc,a1 . . .an |= B¬ f iff for each world w′ s.t. (a1 . . .an,w′)∈
RB , Mc,w′ |= ¬ f . Now, by definition of RB , iff Mc,a1 . . .anB |=
¬ f and Mc,a1 . . .anM |= ¬ f , that is, iff (1) V (a1 . . .anB, f ) = F
and (2) V (a1 . . .anM , f ) = F. By definition of V in Mc, iff (1)
a1, . . . ,an `∆ B¬ f , or a1, . . . ,an `∆ ¬B f and a1, . . . ,an `∆ ¬B¬ f ,
and (2) a1, . . . ,an `∆ B¬ f ; that is, iff a1, . . . ,an `∆ B¬ f .

G = ¬B f : Mc,a1 . . .an |=¬B f iff it exists a world w′ s.t. (a1 . . .an,w′)∈
RB and Mc,w′ |=¬ f . Now, by definition of RB , iff Mc,a1 . . .anB |=
¬ f or Mc,a1 . . .anM |= ¬ f , that is, iff (1) V (a1 . . .anB, f ) = F or
(2) V (a1 . . .anM , f ) = F. By definition of V in Mc, iff (1) a1, . . . ,an `∆
B¬ f , or a1, . . . ,an `∆ ¬B f and a1, . . . ,an `∆ ¬B¬ f , or (2) a1, . . . ,an `∆
B¬ f . If a1, . . . ,an `∆ ¬B f and a1, . . . ,an `∆ ¬B¬ f is the case, it
is obvious, otherwise if a1, . . . ,an `∆ B¬ f is the case, we obtain
the thesis by applying the rule 9.

G = ¬B¬ f : Mc,a1 . . .an |=¬B¬ f iff it exists a world w′ s.t. (a1 . . .an,w′)∈
RB and Mc,w′ |= f . Now, by definition of RB , iff Mc,a1 . . .anB |=
f or Mc,a1 . . .anM |= f , that is, iff (1) V (a1 . . .anB, f ) = T or (2)
V (a1 . . .anM , f ) = T. By definition of V in Mc, iff (1) a1, . . . ,an `∆
B f or (2) a1, . . . ,an `∆ B f , or a1, . . . ,an `∆ ¬B f and a1, . . . ,an `∆
¬B¬ f . If a1, . . . ,an `∆ ¬B f and a1, . . . ,an `∆ ¬B¬ f is the case, it
is obvious, otherwise if a1, . . . ,an `∆ B f is the case, we obtain the
thesis by applying the rule 9.

G = Fs1 ∧Fs2 : Mc,a1 . . .an |= Fs1∧Fs2 iff Mc,a1 . . .an |= Fs1 and Mc,a1 . . .an |=
Fs2; by inductive hypothesis a1, . . . ,an `∆ Fs1 and a1, . . . ,an `∆ Fs2.
Hence, by definition of ∆̀, rule 8, a1, . . . ,an `∆ Fs1 ∧Fs2.

G = 〈a〉G′ : Mc,a1 . . .an |= 〈a〉G′, where a∈A , iff it exists w′ ∈W s.t. (a1 . . .an,w′)∈
Ra and Mc,w′ |= G′. Now, by definition of Ra in Mc, we have w′ =
a1 . . .ana and a1, . . . ,an `∆ Fs′, where 2(Fs′ ⊃ 〈a〉>) ∈ Π. Moreover,
from Mc,a1 . . .ana |= G′, by inductive hypothesis, a1, . . . ,an,a `∆ G′.
Hence, by definition of ∆̀, rule 3, a1, . . . ,an `∆ 〈a〉G′.

G = 〈(Fs′)?〉G′ : Mc,a1 . . .an |= 〈(Fs′)?〉G′ iff it exists w′ ∈W s.t. (a1 . . .an,w′)∈
R(Fs′)? and Mc,w′ |= G′. Now, by definition of Rψ? in Mc, we have
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w′ = a1 . . .an and a1, . . . ,an `∆ Fs′. Moreover, since Mc,a1 . . .an |= G′,
by inductive hypothesis a1, . . . ,an `∆ G′. Hence, by definition of ∆̀, rule
3, a1, . . . ,an `∆ 〈(Fs′)?〉G′.

G = 〈p〉G′ : Mc,a1 . . .an |= 〈p〉G′, where p ∈ P , iff it exists w′ ∈ W s.t.
(a1 . . .an,w′) ∈ Rp and Mc,w′ |= G′. Now, by definition of Rp in Mc,

we have w′ = a1 . . .anan+1 . . .an+m and p
∗
⇒ΠP an+1 . . .an+m. Moreover,

from Mc,a1 . . .anan+1 . . .an+m |= G′ by inductive hypothesis a1, . . . ,an,

an+1, . . .an+m `∆ G′. From it, we proceed by iterative applications of rule
3, for dealing with atomic actions, and of rules 1 and 4 of `∆, on the line
of the steps of the derivation p⇒ΠP p′1 . . . p′n′⇒ΠP . . .⇒ΠP an+1 . . .an+m.
At the end of the process, a1, . . . ,an `∆ 〈p′1〉 . . .〈p′n′〉G

′, and hence, by
rule 1, a1, . . . ,an `∆ 〈p〉G′.

G = 〈s〉G′ : Mc,a1 . . .an |= 〈s〉G′, where s∈ S , iff it exists w′ ∈W s.t. (a1 . . .an,w′)∈
Rs and Mc,w′ |= G′. Now, by definition of Rs in Mc, we have w′ =
a1 . . .ansBl with sBl ∈ A and l ∈ dom(s). Then, by inductive hypothesis
a1, . . .an,sBl `∆ G′, with l ∈ dom(s). Hence, by definition of ∆̀, rule 3,
a1, . . .an,`∆ 〈sBl〉G′, and then, by rule 4, a1, . . .an,`∆ 〈s〉G′.

We prove the property 2) if we prove that for all formulae D in {ΠA ∪∆∪
S0} holds that Mc,ε |= D. We reason by cases on the structure of D.

D = 2(Fs′ ⊃ [ai]F) : Mc,ε |=2(Fs′⊃ [ai]F) iff for each world w′ s.t. (ε,w′)∈
R2, Mc,w′ |= Fs′ ⊃ [ai]F . In particular, by definition of R2, w′ is a
generic modal context a1 . . .an, then we have to prove Mc,a1 . . .an |=
Fs′ ⊃ [ai]F , for each a1 . . .an. Let us assume a) Mc,a1 . . .an |= Fs′ and
we prove the thesis b) Mc,a1 . . .an |= [ai]F . Note that our thesis b) holds
iff for each world w′′ s.t. (a1 . . .an,w′′) ∈ Rai , Mc,w′′ |= F , where, by
definition of Rai in Mc, w′′ = a1 . . .anai. By property 1, our assumption
a) holds iff a1, . . . ,an `∆ Fs′, and proving our thesis is equivalent to prove
a1, . . . ,an,ai `∆ F . Since 2(Fs′ ⊃ [ai]F) is a clause in ΠA , by definition
of `∆ (rule 7a),a1, . . . ,an,ai `∆ F follows from a1, . . . ,an `∆ Fs′.

D = 2(Fs′ ⊃ 〈ai〉>) : Mc,ε |=2(Fs′⊃〈ai〉>) iff for each world w′ s.t. (ε,w′)∈
R2, Mc,w′ |= Fs′ ⊃ 〈ai〉>. In particular, by definition of R2 in Mc, w′ is
a generic modal context a1 . . .an, then we have to prove Mc,a1 . . .an |=
Fs′ ⊃ 〈ai〉>, for each a1 . . .an. Let us assume a) Mc,a1 . . .an |= Fs′ and
we prove b) Mc,a1 . . .an |= 〈ai〉>. By property 1, our assumption a)
holds iff a1, . . . ,an `∆ Fs′. Proving b) means to prove that it exists a
world w′ s.t. (a1 . . .an,w′) ∈ Rai . By definition of Rai in Mc, w′ must
be a1 . . .anai and (a1 . . .an,a1 . . .anai) ∈ Rai if a1, . . . ,an `∆ Fs′, with
2(Fs′ ⊃ 〈ai〉>) ∈ Π. But a1, . . . ,an `∆ Fs′ is true by our assumption a)
and 2(Fs′⊃〈ai〉>)∈Π holds by hypothesis, then (a1 . . .an,a1 . . .anai)∈
Rai .
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D = F : F have form B f , B¬ f , ¬B f , or ¬B¬ f .

D = B f : Mc,ε |= B f iff for each w′ s.t (ε,w′) ∈ RB , Mc,w′ |= f . Now,
by definition of RB in Mc, Mc,B |= f and Mc,M |= f , that is, iff
(1) V (B, f ) = T and (2) V (M , f ) = T. By definition of V in Mc,
iff (1) ε `∆ B f and (2) ε `∆ B f , or ε `∆ ¬B f and ε `∆ ¬B¬ f . (1)
and (2) hold because, by hypothesis, B f ∈ S0.

D = B¬ f : Mc,ε |= B¬ f iff for each w′ s.t (ε,w′) ∈ RB , Mc,w′ |= ¬ f .
Now, by definition of RB in Mc, Mc,B |= ¬ f and Mc,M |= ¬ f ,
that is, iff (1) V (B, f ) = F and (2) V (M , f ) = F. By definition of
V in Mc, iff (1) ε `∆ B¬ f , or ε `∆ ¬B f and ε `∆ ¬B¬ f , and (2)
ε `∆ B¬ f . (1) and (2) holds because, by hypothesis, B¬ f ∈ S0.

D = ¬B f : Mc,ε |= ¬B f iff it exists a world w′ s.t. (ε,w′) ∈ RB and
Mc,w′ |=¬ f . Now, by definition of RB , iff Mc,B |=¬ f or Mc,M |=
¬ f , that is, iff (1) V (B, f ) = F or (2) V (M , f ) = F. By defini-
tion of V in Mc, iff (1) ε `∆ B¬ f , or ε `∆ ¬B f and ε `∆ ¬B¬ f ,
or (2) ε `∆ B¬ f . This disjunction holds because, by hypothesis,
¬B f ∈ S0 and, by Definition 2.1, if ¬B f ∈ S0 we have that either
B¬ f ∈ S0 or ¬B¬ f ∈ S0.

G = ¬B¬ f : Mc,aε |=¬B¬ f iff it exists a world w′ s.t. (ε,w′)∈RB and
Mc,w′ |= f . Now, by definition of RB , iff Mc,εB |= f or Mc,εM |=
f , that is, iff (1) V (B, f ) = T or (2) V (M , f ) = T. By definition
of V in Mc, iff (1) ε `∆ B f or (2) ε `∆ B f , or ε `∆ ¬B f and ε `∆
¬B¬ f . This disjunction holds because, by hypothesis, ¬B¬ f ∈ S0

and, by Definition 2.1, if ¬B¬ f ∈ S0 we have that either ¬B f ∈ S0

or B f ∈ S0.

D = M[a1; . . . ;am]F : Mc,ε |= M[a1; . . . ;am]F iff V (ε,M[a1; . . . ;am]F) = T,
which by definition of V in Mc holds iff M[a1, . . . ,am]F ∈ ∆, that is true
by hypothesis.

Now we can prove the following result.

THEOREM A.3 (Completeness of `∆). Let (Π,S0) be an e-consistent dy-
namic domain description and let G be a query of form 〈p1; p2; . . . ; pn〉Fs. Let
∆ be a consistent set of abductive assumptions. If Σ(Π,S0)∪∆ |= [a1; . . . ;am]G,
then there is a `∆−proo f ϒ for the query G from the domain decription
(Π,S0) at state a1, . . . ,am.

Proof. Our hypothesis is Σ(Π,S0)∪∆ |= [a1, . . . ,am]G, that holds iff |= Σ(Π,S0)∪
∆⊃ [a1; . . . ;am]G. Then, for every Kripke (Π,S0)-interpretation and for every
world w ∈ W , M,w |= Σ(Π,S0) ∪∆ implies M,w |= [a1; . . . ;am]G. Hence, in
particular for the canonical model Mc and the world ε, Mc,ε |= Σ(Π,S0) ∪∆
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implies Mc,ε |= [a1; . . . ;am]G. By Theorem A.2, property 2, we have that
Mc,ε |= Σ(Π,S0) ∪ ∆ holds, thus Mc,ε |= [a1; . . . ;am]G holds, and then, by
Theorem A.2, property 1, a1, . . . ,an `∆ G.

Now we are in the position to give the proof of the soundness of the proof
procedure in Section 4.1 respect to an acceptable solution.

THEOREM A.4 (Soundness of `ps ). Let (Π,S0) be an e-consistent dynamic
domain description and let 〈p1; p2; . . . ; pn〉Fs be a query. For every abductive
solution ∆ for (Π,S0), for every answer σ, if 〈p1; p2; . . . ; pn〉Fs succeeds from
(Π,S0) with answer σ, then Σ(Π,S0)∪∆ |= 〈p1; p2; . . . ; pn〉Fs.

Proof. In order to prove the theorem, we prove the following property: if
a1, . . . ,am `ps 〈p1; p2; . . . ; pn〉Fs succeeds (finitely fails) then a1, . . . ,am `∆
〈p1; p2; . . . ; pn〉Fs succeeds (finitely fails). In fact, by this property and by
making use of the Theorems A.1 and A.3 we can conclude the thesis. The
proof is by double induction on the rank r of the `ps -proof ϒ of the query
〈p1; p2; . . . ; pn〉Fs, that is on its nesting level, starting from the innermost one,
and the height h of ϒ.

Let ϒ be a `ps -proof of rank r = 0 and height h = 1, then ϒ is an axiom
and the property holds trivially.

By inductive hypothesis the theorem holds for queries whose proof ϒ has
height less than or equal to h. Let us prove it for h+1.

− Let us consider the case that the query succeeds. We consider the
following cases, one for each inference rule in which ϒ can terminate.

Case Rule 1 Assume that the root inference figure in ϒ is Rule 1. Hence,
in our hypothesis, ϒ has form:

ϒ′

a1, . . . ,am `ps 〈p′1; . . . ; p′n′ ; p2; . . . ; pn〉Fs w. a. σ
a1, . . . ,am `ps 〈p; p2; . . . ; pn〉Fs w. a. σ

where p ∈ P and 〈p〉ϕ ⊂ 〈p′1; . . . ; p′n′〉ϕ ∈ ΠP . Since ϒ′ is shorter
than ϒ, by inductive hypothesis, we get that if a1, . . . ,am `ps 〈p′1;
. . . ; p′n′ ; p2; . . . ; pn〉Fs succeeds then a1, . . . ,am `∆ 〈p′1; . . . ; p′n′ ; p2;
. . . ; pn〉Fs succeeds. Now, by application of Rule 1 of `∆ we obtain
the thesis.

Cases Rule 2, Rule 3, Rule 4, Rule 5, Rule 7a, Rule 8, Rule 9, are
similar.

Case Rule 7c Trivial, because the case never arises when the rank r is
0.
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− Let us consider the case the query finitely fails. We consider the fol-
lowing cases, one for each inference rule in which an attempt ϒi to prove
the query can terminate.

Case Rule 1 Assume that the root inference figure in a ϒi is Rule 1.
Hence, in our hypothesis, ϒi has form:

every attempt ϒ′
i finitely fails

a1, . . . ,am `ps 〈p′1; . . . ; p′n′ ; p2; . . . ; pn〉Fs w. a. σ
a1, . . . ,am `ps 〈p; p2; . . . ; pn〉Fs w. a. σ

where p ∈ P and 〈p〉ϕ ⊂ 〈p′1; . . . ; p′n′〉ϕ ∈ ΠP . Since every ϒ′
i is

shorter than ϒi, by inductive hypothesis, we get that if a1, . . . ,am `ps

〈p′1; . . . ; p′n′ ; p2; . . . ; pn〉Fs finitely fails then a1, . . . ,am `∆ 〈p; p2;
. . . ; pn〉 Fs finitely fails. Then, the query finitely fails too.

Cases Rule 2, Rule 3, Rule 4, Rule 5, Rule 7a, Rule 8, Rule 9, are
similar.

Case Rule 7c Trivial, because the case never arises when the rank r is
0.

Let ϒ be a `ps -proof of rank r + 1 and height h + 1 (the case of rank
r + 1 and height h = 1 is trivially true because it never arises). By inductive
hypothesis the theorem holds for queries whose proof ϒ has rank less or equal
r and height less than or equal to h. Let us prove it for the rank r+1 and height
h+1.

− Let us consider the case the query succeeds. We consider the following
cases, one for each inference rule in which ϒ can terminate.

Case Rule 1 Assume that the root inference figure in ϒ is Rule 1. Hence,
in our hypothesis, ϒ has form:

ϒ′

a1, . . . ,am `ps 〈p′1; . . . ; p′n′ ; p2; . . . ; pn〉Fs w. a. σ
a1, . . . ,am `ps 〈p; p2; . . . ; pn〉Fs w. a. σ

where p ∈ P and 〈p〉ϕ ⊂ 〈p′1; . . . ; p′n′〉ϕ ∈ ΠP . Since ϒ′ is shorter
than ϒ, by inductive hypothesis, we get that if a1, . . . ,am `ps 〈p′1; . . . ;
p′n′ ; p2; . . . ; pn〉Fs succeeds then a1, . . . ,am `∆ 〈p′1; . . . p′n′ ; p2; . . . ; pn〉Fs
succeeds. Now, by application of Rule 1 of `∆ we obtain the thesis.

Cases Rule 2, Rule 3, Rule 4, Rule 5, Rule 7a, Rule 8, Rule 9, are
similar.
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Case Rule 7c Assume that the root inference figure in ϒ is Rule 1. If
a1, . . . ,am ` f s F succeeds, then ϒ has form:

every attempt ϒi finitely fails
not a1, . . . ,am ` f s ¬F

ϒ′′

a1, . . . ,am−1 ` f s F

a1, . . . ,am ` f s F

where m > 0. Since ϒ′′ is shorter than ϒ, by inductive hypothesis,
we get that if a1, . . . ,am−1 ` f s F succeeds then a1, . . . ,am−1 `∆ F
succeeds. Moreover, if a1, . . . ,am ` f s F succeeded, then every pos-
sible ` f s -proof ϒi (of rank less or equals to m) of a1, . . . ,am ` f s ¬F
must finitely fails. From this, by inductive hypothesis we have that
a1, . . . ,am `∆ ¬F finitely fails and for Theorem A.3 (contrappo-
sition) Σ(Π,S0) ∪∆ 6|= [a1; . . . ;am]¬F . Since ∆ is an abductive so-
lution, by Definition 3.2 (maximality condition) M[a1; . . . ;am]F ∈
∆. Then, by Definition A.1, we have that a1, . . . ,am `∆ F can be
derived by rule 7c’.

− Let us consider the case the query finitely fails. We consider the fol-
lowing cases, one for each inference rule in which all attempt ϒi to prove
the query can terminate.

Case Rule 1 Assume that the root inference figure in ϒi is Rule 1. Hence,
in our hypothesis, ϒi has form:

every attempt ϒ′
i finitely fails

a1, . . . ,am `ps 〈p′1; . . . ; p′n′ ; p2; . . . ; pn〉Fs w. a. σ
a1, . . . ,am `ps 〈p; p2; . . . ; pn〉Fs w. a. σ

where p ∈ P and 〈p〉ϕ ⊂ 〈p′1; . . . ; p′n′〉ϕ ∈ ΠP . Since every ϒ′
i is

shorter than ϒi, by inductive hypothesis, we get that if a1, . . . ,am `ps

〈p′1; . . . ; p′n′ ; p2; . . . ; pn〉Fs finitely fails then a1, . . . ,am `∆ 〈p′1; . . . ; p′n′ ;
p2; . . . ; pn〉Fs finitely fails. Then the query finitely fails too.
Cases Rule 2, Rule 3, Rule 4, Rule 5, Rule 7a, Rule 8, Rule 9, are
similar.

Case Rule 7c Let us consider the case a1, . . . ,am ` f s F and every pos-
sible ` f s -proof ϒi has form:

. . .
not a1, . . . ,am ` f s ¬F

ϒ′′
i

a1, . . . ,am−1 ` f s F

a1, . . . ,am ` f s F

with m > 0 and where or not a1, . . . ,am ` f s ¬F finitely fails or
a1, . . . ,am−1 ` f s F finitely fails. The case a1, . . . ,am−1 ` f s F finitely
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fails is a simple application of induction hypothesis on the height
of the proof (same rank). If not a1, . . . ,am ` f s ¬F finitely fails,
then there exists a ` f s -proof ϒ′

i (of rank less or equals to r) of
a1, . . . ,am ` f s ¬F that succeeds. From this, by inductive hypothe-
sis we have that a1, . . . ,am `∆ ¬F succeeds and for Theorem A.3
(contraposition) Σ(Π,S0) ∪∆ |= [a1, . . . ,am]¬F . Then, since ∆ is an
abductive solution, by Definition 3.2 M[a1; . . . ;am]F 6∈ ∆. Then, by
Definition A.1, we have that a1, . . . ,am `∆ F finitely fails.
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