
Temporal Deontic Action Logic
for the Verification of Compliance to Norms in ASP ∗

Laura Giordano
DISIT

Università del
Piemonte Orientale

Italy
laura.giordano@mfn.unipmn.it

Alberto Martelli
Dipartimento
di Informatica

Università di Torino
Italy

mrt@di.unito.it

Daniele Theseider Dupré
DISIT

Università del
Piemonte Orientale

Italy
dtd@di.unipmn.it

ABSTRACT
The verification of compliance of business processes to norms re-
quires the representation of different kinds of obligations, includ-
ing achievement obligations, maintenance obligations, obligations
with deadlines and contrary to duty obligations. In this paper we
develop a deontic temporal extension of Answer Set Programming
(ASP) suitable for verifying compliance of a business process to
norms involving such different types of obligations. To this end, we
extend Dynamic Linear Time Temporal Logic (DLTL) with deontic
modalities to define a Deontic DLTL. We then combine it with ASP
to define a deontic action language in which until formulas and next
formulas are allowed to occur within deontic modalities. Weshow
that in the language we can model the different kinds of obligations
which are useful in the verification of compliance to normative re-
quirements. The verification can be performed by bounded model
checking techniques.

Categories and Subject Descriptors
I.2.4 [Artificial Intelligence]: Knowledge Representation
Formalisms and Methods—Temporal Logic

General Terms
Verification

Keywords
Reasoning about Actions, Temporal Logic, Deontic Logic, Com-
pliance Verification

1. INTRODUCTION
The verification of compliance of business processes to norms

requires the representation of different kinds of obligations, includ-
ing achievement obligations, maintenance obligations, obligations

∗
This work has been partially supported by Regione Piemonte,Project “ICT4Law -

ICT Converging on Law: Next Generation Services for Citizens, Enterprises, Public
Administration and Policymakers”.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICAIL’13, June 10-14, 2013, Rome, Italy.
Copyright 2013 ACM 978-1-4503-2080-1/13/06 ...$15.00.

with deadlines and contrary-to-duty obligations. In [22] aclassi-
fication of obligations is proposed through a conceptual analysis
of several kinds of deadlines. These types of obligations are rec-
ognized in [21] as the relevant onesdeontic for business process
compliance.

In [9] an approach based on reasoning about actions was pro-
posed for the verification of compliance of business processes with
norms. The approach is based on the temporal extension of ASP
in [20], combining ASP with the dynamic linear time temporal
logic DLTL [27], an extension of LTL in which the temporal oper-
ators are enriched with regular program expressions. The business
process, its semantic annotation and the norms are encoded using
temporal ASP rules as well as temporal constraints. In particular,
defeasible causal laws are used for modeling norms, and commit-
ments [37] are used for representing achievement obligations.

In this paper we aim at generalizing the approach in [9] to deal
with the different kinds of obligations mentioned above, including
maintenance and punctual obligations. Our proposal is based on the
idea of extending Dynamic Linear Time Temporal Logic (DLTL)
[27] with Standard Deontic Logic (SDL) [40] to define a Deontic
DLTL (DDLTL) in which temporal formulas are allowed to occur
within the deontic operator. The proposed logic is similar in spirit
to the Dynamic Deontic and Temporal Logic proposed by Dignum
and Kuiper [13] to reason about obligations and deadlines. It is
also related with the logic combining temporal and deontic logics
in [6], where the product of LTL and SDL is the starting point to
study propagation properties of obligations. In [6] Broersen and
Brunel show that the genuine product of LTL and SDL is not com-
patible with the propagation properties, and define an alternative
notion of temporal deontic frames based on levels of deonticide-
ality. They observe that propagation properties of obligations “are
only valid if we assume that the ‘deontic realm’ is not changed by
an explicit update of the norms”. In this paper, we do not makethis
assumption and we consider situations in which actions may gen-
erate or cancel an obligation. For instance, the obligationto pay
for goods can be cancelled by the action of withdrawing from the
contract. For this reason we do not include the propagation proper-
ties in the definition of the temporal deontic logic. The dynamic of
propagation and cancellation of obligations, in our approach, is ad-
dressed in the action theory, where obligations can be defined to be
persistent or not (according to the kind of obligation) and an action
which cancels an obligation blocks its (default) persistence.

In the paper we combine DDLTL with Answer Set Programming
[15] to define a Temporal Deontic ASP, which is an extension of
Temporal ASP introduced in [20]. In Temporal Deontic ASP, de-
ontic fluentsO(α) are allowed, whereα is restricted to until formu-
las or next formulas. Also, in a formulaO(αUβ) and inO(Xα),
α andβ must be non-temporal literals or “simple” temporal liter-

als. This restriction is introduced in order to allow for a simple
treatment of deontic literals exploiting bounded model checking
techniques in the verification of temporal properties of action do-
mains, where the consistency of a set of deontic literals is guaran-
teed through the verification of a set of constraints. We require the
deontic operator to be serial, as usual in SDL [40]. We show that
in Temporal Deontic ASP we can model the different kinds of obli-
gations mentioned above, including those involving deadlines and
violations, by dealing with the dynamics of obligations and, specif-
ically, with propagation properties of obligations expressed in the
action theory as non-monotonic causal laws.

Given a specification of a business process and of a set of busi-
ness rules as an action domain in Temporal Deontic ASP, a tem-
poral answer set of the action domain corresponds to a run of the
business process which includes all the obligations triggered during
the execution. Furthermore, it corresponds to a path in a temporal
deontic model of the logic DDLTL. Compliance verification can be
performed using Bounded Model Checking techniques [4], exploit-
ing the approach developed in [20] for the verification of temporal
properties of action theories by bounded model checking in ASP,
which extends the approach for bounded LTL model checking with
Stable Models in [26]. In fact, compliance requirements related to
obligations can be expressed as temporal properties.

Therefore, ASP provides a framework suitable for representing
the dynamics of obligations (and other fluents) in a process,as well
as for verifying compliance of the process to the obligations that
may be triggered in its execution.

2. DEONTIC DYNAMIC LINEAR TIME
TEMPORAL LOGIC

In this section we combine Dynamic Linear Time Temporal Logic
(DLTL) [27], an extension of LTL in which temporal operators
are enriched with program expressions as in dynamic logic, with
a deontic logic to define a Deontic Dynamic Linear Time Tempo-
ral Logic (DDLTL). The idea of combining dynamic logic, deontic
logic and temporal logic has been proposed in [13] for the specifi-
cation of deadlines. [13] first defines a dynamic deontic logic and,
then, combines it with a temporal logic. Here we start from DLTL
[27], which already combines temporal and dynamic logics, and
we add a deontic operatorO, whose semantics is that of Standard
Deontic Logic [40].

The Dynamic Linear Time Temporal Logic DLTL [27] is an ex-
tension of LTL in which temporal operators are enriched withpro-
gram expressions. In particular, in DLTL the next state modality
can be indexed by actions, and the until operatorUπ can be in-
dexed by a programπ which, as in PDL, can be any regular expres-
sion built from atomic actions using sequence (;), nondeterministic
choice (+) and finite iteration (∗).

LetΣ be a finite non-empty alphabet representing actions. DLTL
allows until formulas of the formαUπβ, where the programπ ∈
Prg(Σ) is a regular expression built from a setΣ of atomic actions.
More precisely,

Prg(Σ) ::= a | π1 + π2 | π1; π2 | π
∗

wherea ∈ Σ andπ1, π2, π range overPrg(Σ).
LetP = {p1, p2, . . .} be a countable set of atomic propositions

containing⊤ and⊥ (standing fortrue and false). We extend the
language of the logic of DLTL overσ by including in the language
the deontic operatorO as follows:

DDLTL(Σ) ::= p | ¬α | α ∨ β | αUπβ |O(α)

wherep ∈ P andα, β range over DDLTL(Σ).

As for LTL, DLTL models are infinite linear sequences of worlds
(propositional interpretations), each one reachable fromthe initial
world by a finite sequenceτ of actions in the alphabetΣ. Here, to
define the Kripke semantics of DDLTL, we generalize the seman-
tics of DLTL as given in [27].

A state of a model is a pair(n, w), wheren represents a time
point andw a world. Informally, a model consists in a set of linear
sequences,(i, w), (i + 1, w), . . ., representing the evolution of a
world in time. At timen, from a state(n, w), other states(n, w′)
(with the same time pointn) can be reached through the deontic ac-
cessibility relationRd. Each accessible state has a linear sequence
of worlds departing from it.

DEFINITION 1. LetW be a non-empty set of worlds. Atempo-
ral deontic modeloverΣ is a tupleM = (S ,Rt, Rd, V), where

• S ⊆ N×W is a set of states, such thatWi = {w : (i, w) ∈
S} is the set of worlds at time pointi andW0 ⊆W1 ⊆ . . .;

• Rt : S → Σ × S is a total temporal accessibility function,
such thatRt(n, w) = (a, (n + 1, w)) for somea ∈ Σ;

• Rd ⊆ S ×S is adeontic accessibility relationamong states,
such that if((n, w), (n′, w′)) ∈ Rd, thenn = n′; moreover,
Rd is serial, i.e., for alls ∈ S there iss′ ∈ S such that
(s, s′) ∈ Rd;

• V : S → 2P is a valuation function.

For eachn ∈ N, Wn is the set of of worlds accessible at time
point n. The fact that the setsWn are increasing, means that at
time n there may be a world which was not present at timen − 1.
Time is linear and, when applied to a states ∈ S , the functionRt

returns a pair(a, s′) wherea is the action executed ins, ands′ is
the state obtained by executinga in s. As in standard deontic logic,
we have assumed the accessibility relationRd to be serial.

In the following, we denote byτ, τ ′, . . . the finite action se-
quences inΣ∗ (including the empty one). For any program ex-
pressionπ, we let [[π]] to be the set of finite sequences associated
with π. For all finite action sequencesτ , we writes⇒τ s′ to mean
thats′ is reachable froms through the action sequenceτ . We de-
fines⇒τ s′ by induction on the length ofτ as follows: (i)s⇒ε s

and (ii)s ⇒τa s′ iff s⇒τ s′′ andRt(s
′′) = (a, s′), for somes′′.

In the following, we denote by≤ the usual prefix ordering overΣ∗

namely,τ ≤ τ ′ (τ is a prefix ofτ ′) iff ∃τ ′′ such thatττ ′′ = τ ′.
Moreover, we letτ < τ ′ iff τ ≤ τ ′ andτ 6= τ ′.

Given a modelM = (S ,Rt, Rd, V) overΣ, a states ∈ S and a
formulaα, thesatisfiability of a formulaα in s, writtenM, s |= α,
is defined as follows:

• M, s |= p iff p ∈ V (s);

• M, s 6|= ⊥;

• M, s |= ¬α iff M, s 6|= α;

• M, s |= α ∨ β iff M, s |= α or M, s |= β;

• M, s |= αUπβ iff there existsτ ∈ [[π]] such thats ⇒τ s′

andM, s′ |= β. Moreover, for everyτ ′ such thatε ≤ τ ′ < τ

and and for everys′′ ∈ S such thats⇒τ ′

s′′, M, s′′ |= α;

• M, s |= O(α) iff for all s′ ∈ W such that(s, s′) ∈ Rd,
M, s′ |= α

A formula αUπβ is true in a states if “ α until β” is true on a
finite stretch of behavior which is in the linear time behavior of the
programπ, starting froms. The operatorO is read “it is obligatory
that” andO(α) is true in a states if α holds in all the statess′

that are ideal with respect tos. The possibility operatorP, which
is read “it is permitted that”, can be defined as the dual ofO, i.e.,
P(α) ≡ ¬O¬(α).

As in DLTL, from the until operator, the derived modalities〈π〉,
[π], X (next), U , 3 and 2 can be defined as follows:〈π〉α ≡
⊤Uπα, [π]α ≡ ¬〈π〉¬α, Xα ≡

W

a∈Σ〈a〉α, αUβ ≡ αUΣ∗

β,

3α ≡ ⊤Uα, 2α ≡ ¬3¬α, where, inUΣ∗

, Σ is taken to be a
shorthand for the programa1 + . . . + an. Informally, a formula
[π]α is true in a states of a linear temporal model ifα holds in
all the states of the model which are reachable froms through any
execution of the programπ. A formula〈π〉α is true in a states of a
linear temporal model if there exists a state of the model reachable
from s through an execution of the programπ, in whichα holds.

Observe that for obligations of the formO(Xφ) the semantics
in [6] satisfies the “perfect recall property”O(Xφ) → XO(φ),
stating that no obligation is ‘forgotten’ over time. This axiom, how-
ever, is not a valid formula in DDLTL. We assume that each obli-
gation can be cancelled by an explicit cancellation action.Hence,
the semantics above neither satisfies the perfect recall property nor
the propagation property in [6]. However, in the following we will
introduce weaker (non-monotonic) propagation propertiesfor obli-
gations in the temporal deontic action language.

Observe also that DDLTL is a conservative extension of DLTL.
It can be shown that DDLTL is decidable.

PROPOSITION 1. Satisfiability of a formula in DDLTL can be
solved inEXPTIME.

PROOF. Satisfiability in DDLTL can be polinomially reduced to
concept satisfiability in the description logicALCFreg , which ex-
tendsALC with functional roles and role operators from Proposi-
tional Dynamic Logic [25], namely, composition, union, reflexive-
transitive closure and test. Satisfiability inALCFreg is known to
be in EXPTIME [18]. The reduction proof is similar to the one in
[36] and, more specifically, to the proof of Lemma 1 in [31] for
LTLALC with expanding domains.

The reduction of satisfiability in DDLTL to satisfiability inthe
description logicALCFreg makes it possible to exploitALCFreg

inference procedures for the verification of the satisfiability and va-
lidity of formulas in DDLTL. However, this would require a mono-
tonic solution to model persistence of the effects of actions, includ-
ing obligations. In the following we develop a clausal non mono-
tonic fragment of DDLTL, adopting the ASP paradigm and extend-
ing both ASP rules and the notion of answer set to deontic temporal
formulas in the line of the temporal answer set programming lan-
guage in [20]. In this approach we adopt a nonmonotonic solution
for the frame problem where default negation in ASP is exploited to
deal with persistency of fluents and with the propagation properties
of obligations in a flexible way, as well as to capture the defeasible
nature of norms. To reason about properties of action theories, we
exploit bounded model checking techniques in ASP following[26,
20].

3. A TEMPORAL DEONTIC ACTION
LANGUAGE

In this section, we introduce a temporal deontic extension of An-
swer Set Programming (ASP) which combines ASP with DDLTL,
as a language for defining temporal deontic action theories.Action

theories will consist of two components: a set of deontic temporal
rules (namely ASP rules which may contain deontic and tempo-
ral literals), and a set of DDLTL formulas constraining the domain
description. While ASP rules are used in the definition of action
effects and preconditions and, in particular, in the specification of
business rules, the DDLTL component can be used to define tem-
poral constraints on the action domain as well as to encode tempo-
ral/deontic properties to be checked.

Both in ASP rules and in the set of constraints, we restrict the
language of DDLTL by limiting the nesting of temporal and de-
ontic operator to allow only a restricted choice of temporalfor-
mulas to occur within the deontic operators. As we will see, with
this restriction, the verification techniques based on LTL Bounded
Model Checking [4] and their ASP encoding [26] can be adaptedto
deal with temporal deontic formulas without the need to reason on
temporal deontic Kripke structures. In this respect, our approach
is related with the proposals in reasoning about actions andplan-
ning, which deal with epistemic knowledge by explicitly introduc-
ing knowledge literals within the states of the action domain [11,
3, 33]. However, here we allow deontic literals (including some
restricted kinds of temporal formulas) to occur in the states of the
action domain.

Let L be a first order language which includes a finite number
of constants and variables, but no function symbol. LetP be the
set of predicate symbols,V ar the set of variables andC the set of
constant symbols. We callfluentsthe atomic literals of the form
p(t1, . . . , tn), where, for eachi, ti ∈ V ar ∪ C.

A simple fluent literall is an atomic literalp(t1, . . . , tn) or its
negation¬p(t1, . . . , tn). We denote byLitS the set of all simple
fluent literals, and we assume that the fluent⊥, representing the
inconsistency, and the fluent⊤ (true) are included inLitS .

A deontic fluent literalhas the formO(α) or ¬O(α), whereα

is a restricted temporal formula defined as follows:

α ::= l |Xl | l1U l2 | l1U〈a〉⊤

where l, l1, l2 ∈ LitS , l2 6= ⊥ and a ∈ Σ. The meaning of
the formulal1U〈a〉⊤ is that l1 holds until eventually actiona is
executed. As we will see we allow this kind of temporal formulas
in deontic literals to model the obligation to execute an action a

within a certain deadline. We denote byLitD the set of all deontic
fluent literals.

A temporal fluent literalhas the form[a]l, 〈a〉l or Xl, where
l ∈ LitS ∪ LitD anda is an action name (an atomic proposition,
possibly containing variables).

Given a (simple, deontic or temporal) fluent literall, not l rep-
resents the default negation ofl. A (simple, deontic or temporal)
fluent literal possibly preceded by a default negation, willbe called
anextended fluent literal.

Observe that fluent literals do not contain nested deontic opera-
tors and they contain very limited nesting of temporal operators.

The laws of a domain description are formulated as rules of a
temporally extended logic programming language having theform

l0 ← l1, . . . , lm, not lm+1, . . . , not ln (1)

where theli’s are simple, deontic or temporal fluent literals, with
l0 6= 〈a〉l. As usual in ASP, rules with variables are a shorthand for
the set of their ground instances; and we letΣ be the set of ground
instances of atomic actions in the domain description.

A state, informally, is a set of ground fluent simple and deontic
literals.

The execution of an action in a state may change the values of
fluents through its direct and indirect effects. In particular, an action
can generate or cancel obligations.

We assume that a law as (1) can be applied in all states while,
when prefixed withInit , it only applies to the initial state.

A domain descriptionD is a pair(Π,C), whereΠ is a set of laws
describing the effects and executability preconditions ofactions (as
described below), andC is a set oftemporal deontic constraints,
namely DDLTL formulas, built on the set of ground fluents, in
which deontic formulas are restricted to deontic fluent literals.

Π is a set of laws such as action laws, causal laws, precondition
laws, persistency laws, initial state laws, that are normally used in
action theories, and can all be defined as instances of (1).

Action lawsdescribe the effects of atomic actions. The meaning
of an action law

[a]l0 ← l1, . . . , lm, not lm+1, . . . , not ln,

(wherel0 ∈ LitS ∪ LD andl1, . . . , ln are either simple or deontic
fluent literals or temporal fluent literals of the form[a]l) is that exe-
cuting actiona in a state in whichl1, . . . , lm hold andlm+1, . . . , ln
do not hold makes the effectl0 to hold in the state obtained after
the action execution. For instance, in

[accept_price]O(⊤ U 〈pay〉⊤)

[cancel_payment]¬O(⊤ U 〈pay〉⊤)

the actionaccept_price creates an obligation to pay, while the ac-
tion cancel_payment cancels that obligation1. As discussed in
[5], obligations should come with a deadline; we refer to sections 6
and 7 for our treatment of deadlines.

Precondition lawshave the form:

[a]⊥ ← l1, . . . , lm, not lm+1, . . . , not ln

(wherel1, . . . , ln are either simple or deontic fluent literals) mean-
ing thata cannot be executed (it has an inconsistent effect) in case
l1, . . . , lm hold andlm+1, . . . , ln do not hold. For instance

[send_contract] ⊥← ¬confirmed

states that a contract cannot be sent if it has not been confirmed.
Causal lawsdefine causal dependencies among propositions,

which are used to derive indirect effect of actions, calledramifica-
tions in the literature of reasoning about actions and change, where
it is well known that causal dependencies among propositions are
not suitably represented by material implication in classical logic.
Static causal lawshave the form:

l0 ← l1, . . . , lm, not lm+1, . . . , not ln

where theli’s are simple or deontic fluent literals. Their meaning
is: if l1, . . . , lm hold andlm+1, . . . , ln do not hold in a state, then
l0 is caused to hold in that state. An example is

¬order_confirmed← order_deleted

in a business process where a customer can delete her order after
confirmation by the provider.

Dynamic causal lawshave the form:

Xl0 ← t1, . . . , tm, not tm+1, . . . , not tn

wherel0 is a simple or deontic fluent literal and theti’s are either
simple or deontic fluent literals, or temporal fluent literals of the
form Xli (meaning that the fluent literalli holds in the next state).
Their meaning is: ift1, . . . , tm hold andlm+1, . . . , ln do not hold,
then l0 is caused to hold in the next state. For instance, dynamic
causal laws can be used to define persistency:
1In a richer modeling, obligations could have as additional param-
eters, as in case ofcommitments[37], an agent as adebtor and
another as acreditor.

XF ← F, not X¬F

(whereF is a fluent) while the rule:

X¬O(⊤ U 〈A〉⊤)← O(⊤ U 〈A〉⊤), 〈A〉⊤

cancels the obligation to execute action A after the execution of A
(see Section 5).

The language also includes constraints of the form

⊥ ← l1, . . . , lm, not lm+1, . . . , not ln

where theli’s are simple, deontic or temporal fluent literals.
Although in the language we have only introduced the deontic

modalityO, the other deontic modalities, such asP andF, can be
defined fromO using static causal laws.

4. TEMPORAL DEONTIC ANSWER SETS
In [20], the semantics of a domain description is defined by ex-

tending the notion ofanswer set[15] to definetemporal answer
sets, which capture the linear structure of temporal models. In this
section we adapt the notion oftemporal answer setsto temporal
deontic domain descriptions. The main concern we need to address
is that of consistency of deontic formulas in each state of a tem-
poral deontic answer set. In fact, by the seriality requirement on
the deontic accessibility relationRd in Kripke frames, it cannot be
the case that an unsatisfiable set of deontic fluents may belong to a
state.

In the following we shortly recall the definition of temporalan-
swer set from [20] and we modify it to deal with consistency of
deontic modalities. To this purpose, we letΠ be the ground instan-
tiation of the domain description, andΣ the set of all the ground
instances of the action names inΠ.

For conciseness, we call “simple (deontic, temporal) literals” the
“simple (deontic,temporal) fluent literals”. To define the notion
of extension, we need to introduce additional rules of the form:
[a1; . . . ; ah](t0 ← t1, . . . , tm, not tm+1, . . . , not tn) that will be
used to define the reduct of a program, where theti’s are simple,
deontic or temporal literals. The modality[a1; . . . ; ah] in front of
the rule says that the rule applies in the state obtained after the ex-
ecution of the sequence of actionsa1, . . . , ah. Conveniently, also
the notion of temporal literal used so far needs to be extended to
include literals of the form[a1; . . . ; ah]l, meaning that the (simple
or deontic) literall holds after after the execution of the sequence
of actionsa1, . . . , ah.

Generalizing the definition of temporal answer sets in [20],we
define a temporal deontic answer set as a temporal deontic inter-
pretation(σ, S), whereσ ∈ Σω is a sequence of actions andS is
a consistent set of ground literals of the form[a1; . . . ; ak]l, where
a1 . . . ak is a prefix ofσ and l is a ground simple or deontic flu-
ent literal. Each prefixa1 . . . ak of σ corresponds to a state of the
interpretation, the state obtained by the execution of the actions
a1 . . . ak, namelyw(σ,S)

a1...ak
= {l : [a1; . . . ; ak]l ∈ S}.

A temporal interpretation(σ, S), is propositionally consistentiff
it is not the case that both[a1; . . . ; ak]l ∈ S and[a1; . . . ; ak]¬l ∈
S, for some simple or deontic fluent literall, and it is not the case
that [a1; . . . ; ak]⊥ ∈ S. A temporal interpretation(σ, S) is said
to be total if either [a1; . . . ; ak]p ∈ S or [a1; . . . ; ak]¬p ∈ S,
for eacha1 . . . ak prefix of σ and for each simple or deontic fluent
atomp.

The notion of satisfiability of a rule in a temporal deontic inter-
pretation(σ, S), as well as the notion ofreductΠ(σ,S) of (a domain
description)Π relative to(σ, S) can be defined as natural exten-
sions of Gelfond and Lifschitz’ ones [15]. With these notions, a

temporal deontic answer setof Π is defined as a consistent tem-
poral deontic interpretation(σ, S) such thatS is minimal (in the
sense of set inclusion) among theS′ such that(σ, S′) is a partial
interpretation satisfying the rules in the reductΠ(σ,S).

Thesatisfiability of a simple, temporal or extended literalt in a
partial deontic temporal interpretation(σ, S) in the statea1 . . . ak,
(written (σ, S), a1 . . . ak |= t) is defined as follows:

(σ, S), a1 . . . ak |= ⊤
(σ, S), a1 . . . ak 6|= ⊥
(σ, S), a1 . . . ak |= l iff [a1; . . . ; ak]l ∈ S,

for l simple literal
(σ, S), a1 . . . ak |= [a]l iff [a1; . . . ; ak; a]l ∈ S,

or a1 . . . aka is not a prefix ofσ
(σ, S), a1 . . . ak |= 〈a〉l iff [a1; . . . ; ak; a]l ∈ S,

anda1 . . . aka is a prefix ofσ
(σ, S), a1 . . . ak |= Xl iff [a1; . . . ; ak; b]l ∈ S,

anda1 . . . akb is a prefix ofσ

The satisfiability of rule bodies in a deontic temporal interpretation
is defined as usual. A ruleH ← Body is satisfied in a deontic
temporal interpretation(σ, S) if, for all action sequencesa1 . . . ak

(including the empty action sequenceε), (σ, S), a1 . . . ak |= Body

implies (σ, S), a1 . . . ak |= H . A rule Init H ← Body is sat-
isfied in a deontic temporal interpretation(σ, S) if, (σ, S), ε |=
Body implies (σ, S), ε |= H , whereε is the empty action se-
quence. A rule[a1; . . . ; ah](H ← Body) is satisfied in a deontic
temporal interpretation(σ, S) if, (σ, S), a1 . . . ak |= Body im-
plies(σ, S), a1 . . . ak |= H .

Let Π be a set of rules over an action alphabetΣ, not contain-
ing default negation, and letσ ∈ Σω. The following definitions
generalize the corresponding definitions in [20].

DEFINITION 2. A deontic temporal interpretation(σ, S) is a
deontic temporal answer set ofΠ if S is minimal (in the sense of
set inclusion) among theS′ such that(σ, S′) is a partial deontic
temporal interpretation satisfying the rules inΠ.

To define deontic temporal answer sets of a programΠ contain-
ing negation, given a deontic temporal interpretation(σ, S) over
σ ∈ Σω, we define thereduct,Π(σ,S), of Π relative to(σ, S) ex-
tending Gelfond and Lifschitz’ transform [16] to compute a differ-
ent reduct ofΠ for each prefixa1, . . . , ah of σ.

DEFINITION 3. The reduct,Π(σ,S)
a1,...,ah

, of Π relative to(σ, S)
and to the prefixa1, . . . , ah of σ , is the set of all the rules

[a1; . . . ; ah](H ← l1, . . . , lm)

such thatH ← l1, . . . , lm, not lm+1, . . . , not ln is in Π and
(σ, S), a1, . . . , ah 6|= li, for all i = m + 1, . . . , n.
ThereductΠ(σ,S) of Π relative to(σ, S) is the union of all reducts
Π

(σ,S)
a1,...,ah

for all prefixesa1, . . . , ah of σ.

DEFINITION 4. A deontic temporal interpretation(σ, S) is a
deontic temporal answer set ofΠ if (σ, S) is a deontic temporal
answer set of the reductΠ(σ,S).

The notion of propositional consistency introduced above is too
weak to guarantee that the set of obligations occurring in the states
of a deontic temporal answer set are consistent with each other, ac-
cording to the notion of consistency in Section 2. We say thata
temporal interpretation(σ, S), is deontically consistentiff for each
prefixa1 . . . ak, w(σ,S)

a1...ak
is satisfiable in the logic DDLTL. Domain

descriptionsΠ such that all the answer sets ofΠ are total and deon-
tically consistent are of special interest as their answer sets(σ, S)
corresponds to a path in a DDLTL model.

PROPOSITION 2. Given a deontically consistent temporal in-
terpretation(σ, S) with σ = a1a2a3 . . ., there is a DDLTL model
M , with valuation functionV , such that:

• M contains the pathw0 ⇒
a1 w1 ⇒

a2 w2 ⇒
a3 . . .;

• V (wk) = {p : p simple literal and[a1, . . . , ak]p ∈ S}

• M, wk |= O(α), for eachO(α) such that[a1, . . . , ak]O(α)
∈ S.

Note that the deontic consistency of the answer set is essential to
guarantee the existence of the modelM .

Given the restriction on the deontic literals admitted in the action
language, we can introduce a set of conditions on temporal deontic
answer sets which guarantee its (deontic) consistency.

PROPOSITION 3. A temporal deontic interpretation(σ, S) is
deontically consistent iff it is propositionally consistent and, for
each prefixa1 . . . ak of σ, the statew(σ,S)

a1...ak
does not contain any

of the following sets of deontic literals, for all simple fluentsp, sim-
ple literalsl1, l2 and distinct action namesa1, a2, a3, a4:

- {O(p), O(¬p)}
- {O(Xp), O(X¬p)}
- {O(l1U l2),O(¬l2),O(¬l1)}
- {O(l1U l2),O(¬l2),O(X¬l2),O(X¬l1)}
- {O(l1U l2),O(¬l2),O(¬l1U l2)}
- {O(l1U l2),O(¬l2),O(¬l1U〈a1〉⊤),O(¬l1U〈a2〉⊤)}
- {O(l1U〈a1〉⊤),O(l1U〈a2〉⊤),O(¬l1)}
- {O(l1U〈a1〉⊤),O(l1U〈a2〉⊤),O(l1U〈a3〉⊤),O(X¬l1)}
- {O(l1U〈a1〉⊤),O(l1U〈a2〉⊤),O(¬l1U〈a3〉⊤),

O(¬l1U〈a4〉⊤)}

The (Only if) part is obvious. The (If) part of this proposition can
be proved by showing that a statew

(σ,S)
a1...ak

satisfying the above con-
dition is satisfiable in a DDLTL model. We omit the proof. Observe
that, although the obligationO(l1U l2) is inconsistent with the obli-
gationO(¬l2U¬(l1 ∧ l2)) (as¬l2U(¬l1 ∧¬l2) entails¬(l1U l2)),
the second obligation is not admitted in our action language.

The conditions above can be formulated by introducing in the
domain description causal laws to identify the answer sets falsify-
ing these conditions (see section 7). The violation of the above
consistency conditions discloses an inconsistency in the definition
of the rules describing the obligations, which has to be resolved by
modifying the rules (and possibly introducing preferencesamong
them).

5. PROPAGATION PROPERTIES FOR
OBLIGATIONS

In the definition of DDLTL we have not assumed any propaga-
tion property for obligations, to admit situations in whichactions
may cancel an obligation. However, some kind of propagationis
needed. If we have an obligation to pay within a deadline, encoded
asO(¬deadlineUpaid)2, then we expect that, if the obligation
has not been fulfilled in a given state and the deadline has notyet
occurred, the obligation is still valid in the next state. However,
we do not want the obligation to be propagated in case the obliga-
tion itself is canceled. We then define for an obligationO(l1U l2) a
defeasible propagation property as follows:

XO(l1U l2)← O(l1U l2), l1, not X¬O(l1U l2)

2We discuss in the next section the representation of obligations
with deadlines.

meaning that, in any state, if there is an obligationO(l1U l2), which
is not fulfilled in that state and it is still possible to fulfill it (l1
is true), then the obligation persists to the next state, unless the
obligation is cancelled. An action which cancels an obligation has
the effect of making its negation¬O(l1U l2) hold. Note that¬l2
is not included in the body of the propagation property. In fact,
propagation is blocked when the obligation is fulfilled: indeed, we
assume that both the fulfillment and the violation of a commitment
discharge the obligation, thus blocking its persistency:

X¬O(l1U l2)← O(l1U l2), l2 (fulfillment)
X¬O(l1U l2)← O(l1U l2),¬l1,¬l2 (violation)

The fulfillment rule says that, thefulfillmentof the obligation causes
the obligation to be discharged. The violation rule says that thevi-
olation of the obligation causes the obligation to be discharged.
In order to keep track of the fulfillment or violation of obligations
during the execution of a business process, and to express ina uni-
form way the formulae to be verified (see section 7) we introduce,
for each obligationO(A), the simple fluents:fulfilledO(A) and
violatedO(A). For the obligationO(l1U l2), we add the rules:

fulfilledO(l1Ul2) ← O(l1U l2), l2
violatedO(l1Ul2) ← O(l1U l2),¬l1,¬l2

Similar rules are introduced for obligations of the formO(l1U〈a〉l2),
replacingl2 in the rules above with〈a〉l2.

The persistency, fulfillment and violation rules for obligations of
the formO(Xl) are the following:

XO(l)← O(Xl), not ¬XO(l)
XfulfilledO(Xl) ← O(Xl), Xl, not ¬XO(l)

XviolatedO(Xl) ← O(Xl), Xl, not ¬XO(l)

wherel is the complement ofl. The first rule is a defeasible ver-
sion of the perfect recall property in [6]: if the obligationO(Xl)
occurs in a state, the obligationO(l) is added to the next state, un-
less cancelled. According to the 2nd and 3rd rules, an obligation
O(Xl) is fulfilled if l holds in the next state, and is violated if¬l

holds in the next state, unless the obligation is cancelled.Observe
that, given the fulfillment and violation rules forO(Xl) the propa-
gation axiom forO(Xl) can be omitted. Unlike for the obligation
O(l1U l2), we can decide about the fulfillment or violation of the
obligationO(Xl) without propagating it to the next state.

For obligations of the formO(l), we only introduce the fulfill-
ment and violation rules:

fulfilledO(l) ← O(l), l
violatedO(l) ← O(l),¬l

Observe also that causal laws are essential to deal with the dy-
namic of obligations and to encode persistency, fulfillmentand vi-
olation of obligations.

6. SPECIFYING OBLIGATIONS
In this section we show that temporal deontic ASP is well suited

to formalize the different kinds of obligations introducedin [22,
21] where three main classes are identified, namely, achievement,
maintenance and punctual obligations. Achievement obligations
are further classified as persistent/non-persistent obligations, pre-
emptive/ non-preemptive obligations.

Achievement obligations. Achievement obligationsrequire a given
condition to occur at least once before a deadline. Considerthe ex-
ample from [21]: customers must pay before the delivery of the

goods, after receiving the invoice. The action of receivingthe in-
voice has the effect of generating an obligation to pay within a
deadline, i.e., before receiving the goods. This can be modeled
by the action law (with empty body):

[receive_invoice]O(¬goodsUpay)

According to the persistency, fulfillment and violation laws in
the previous section, the achievement obligationO(¬goodsUpay)
persists until it is fulfilled, cancelled or violated. If thecustomer
executes the action of canceling the order, the obligation is canceled
(and discharged):

[cancel_order]¬O(¬goodsUpay)
[cancel_order]cancelledO(¬goodsUpay)

This blocks the persistency of the obligation, and the cancellation
is, again, recorded explicitly as acancelledO(A) fluent. If not ful-
filled or canceled, the obligation persists until the deadline.

Observe that, in case the deadline does not occur (goods are
never sent) the obligationO(¬goodsUpay) requires, anyhow, that
the payment is eventually done. A weaker notion of obligation
could be defined by replacing the until operator with theweak until
one, or by modeling deadline obligations asO(¬(¬payU¬goods)).
Such alternative formulations are closer to the notion of deadline
obligation studied in [7]. Such obligations, however, cannot be en-
coded in the restricted syntax of our action language.

Nevertheless, according to the propagation properties, anobliga-
tionO(¬goodsUpay) which has neither been violated not fulfilled
(goods have not been sent and the payment has not been done), per-
sists and is not canceled. It can be considered as being "pending"
and its presence can be detected.

It is then a matter of choice, during compliance verification, to
consider the presence of such "pending" obligations as pointing out
a violation or not, according to a stronger or weaker notion of com-
pliance we want to verify (we refer to Section 7).

Contrary-to-duty obligations . In some cases, an achievement
obligation can persist even after the deadline (apersistent obliga-
tion in [21]). Actually, in a more complete version of the example
above, there is acontrary-to-duty obligation: the violation of the
obligation to pay before goods are sent causes a new obligation (to
pay with a fine) within the end of the business process execution to
be generated:

XO(¬endUpay_with_fine)← violatedO(¬goodsUpay)

meaning that, under the violation of the obligation to pay before
goods are sent, a new obligation is added (in the next state) to pay
with fine within the end of the business process execution. Ashere
we check for the compliance offinite business process executions,
we assume that all finite process executions reach anend state. The
fulfillment of the obligation to pay with finecompensatesthe earlier
violation, i.e.

compensatedO(¬goodsUpay)← fulfilledO(¬endUpay_fine)

Following [21], we want to identify those violations which are com-
pensated, to recognize sub-ideal situations in which the process is
not fully compliant, but all the violations have been compensated
(see again section 7). We consider the original obligation compen-
sated also in case the new obligation is itself (violated and) com-
pensated, or it is cancelled:

compensatedO(¬goodsUpay)← compensatedO(¬endUpay_fine)

compensatedO(¬goodsUpay)← cancelledO(¬endUpay_fine)

Note thatcancelledO(A) only holds as effect of some action
(like cancel_order above) cancelling the obligation, not in case
O(A) is discharged for other reasons (fulfillment or violation).

The easiness to model the fact that “a violation causes a new
obligation” in a causal and temporal deontic framework, wasal-
ready observed in [38], where a temporal deontic logic basedon
causal theories was introduced.

To represent contrary-to-duty obligations, [23, 21] exploit obli-
gation chains of the formOA ⊗ OB ⊗ OC, (meaning that “OB

is the reparation of the violation ofOA andOC is the reparation
of the violation ofOB”) which may occur in the head of rules.
The causal rules above are well suited to represent such cascaded
obligations.

Maintenance obligations. Maintenance obligations require a con-
dition to obtain during all instants before a deadline. For instance,
(from [21]) after opening a bank account, customers must keep a
positive balance until bank charges are taken out. The effect of
actionopening_accountis modeled by the action law:

[opening_account]O(pos_balanceUcharges_taken_out)

A maintenance obligation persists until the deadline is reached or
the obligation is violated or cancelled. The dynamic of mainte-
nance obligations is ruled by persistency, fulfillment and violation
laws for until obligations in Section 5.

Punctual obligations. They can be modeled by obligations of
the form O(Xl). Suppose, e.g., that when a system receives a
given message, it must immediately acknowledge it:O(Xack)←
received_message. According to the rules in Section 5, if not
canceled, this obligation causes the obligationO(ack) to be added
to the next state.

Preemptive and nonpreemptive obligations. [21] distinguishes
preemptive and non-preemptive achievement obligations. Consider
the following example: after a contract has been signed, a copy has
to be sent within a given deadline. If the copy has been sent before
the contract has been signed, this does not fulfill the obligation. In
this case, the obligation is said to benon-preemptive. To capture
non-preemptive obligations, we introduce an obligation toexecute
an action as follows:O(¬deadlineU〈send_copy〉⊤). This obli-
gation is fulfilled if the actionsend_copy is executed within the
deadline (and after the obligation has been generated).

Observe thatdefeasibilityhas been identified in [35] as one of the
crucial aspects in the formalization of business rules. Business
rules are inherently defeasible, due to the presence of exceptions. In
the context of an ASP language, defeasibility is captured bydefault
negation, and several approaches to the definition of preferences
among ASP rules have been proposed in the literature. In partic-
ular, [10] introduces a general methodology for expressingpref-
erence information among rules by encoding prioritized programs
into standard ASP programs. The approach proposed in [10] can
be exploited in this setting to model defeasible norms as prioritized
defeasible causal laws.

7. COMPLIANCE VERIFICATION
The action theory introduced in Section 3 does not only allow

for the specification of the business rules (the norms), it isalso
well suited for the specification of the business process itself. In
particular, the temporal action language can be used both inthe
specification of the business process workflow (by exploiting its
capability to represent complex actions), as well as in the specifi-
cation of the atomic tasks occurring in it (see [9]). Observethat,

as DLTL is an extension of LTL, it is possible to provide an encod-
ing of all ConDec [34] constraints into our action language.The
additional expressivity which comes from the presence of program
expressions in DLTL, allows for a very compact encoding of certain
declarative properties of the domain dealing with finite iteration3.
Furthermore, following the approach in [17, 24, 41], in which an-
notationsare introduced to decorate the business process, we can
exploit the temporal action language as an expressive formalism to
formulate properties annotations: the effects and, possibly, the pre-
conditions of the atomic tasks can be defined by introducing propo-
sitions representing the properties of the world that are affected by
the execution of the atomic tasks and are subject to the norms.

Given the specification of the business process (including atomic
tasks annotations) and of the business rules in the deontic temporal
action language above, several verification tasks can be addressed
within the proposed approach, including compliance verification.
However, as a preliminary step before compliance verification, the
consistency of the rules encoding the norms (and of the annotations
describing the effects of atomic tasks) must be verified against the
consistency conditions in Section 4. More precisely, we want to
exclude that a state is reachable in which not all the conditions in
Proposition 3 are satisfied, to avoid, for instance, that contradictory
obligations are generated.

For consistency verification, we can introduce a new proposition
d_i, representing adeontic inconsistencyand, for each set of con-
flicting deontic literals in Proposition 3, we introduce a rule, for
instance:

d_i← O(l),O(¬l)

Then, we can check if there is a possible action sequence start-
ing from an initial state in which¬d_i holds and leading to a
state in whichd_i holds, i.e., an execution satisfying the formula
¬di ∧3di. A reachable state in whichd_i holds is a state in which
there are conflicting obligations, which may have been generated
by conflicting rules. Inconsistencies in the definition of business
rules have then to be resolved, by modifying the business rules
themselves and, possibly, by introducing preferences among them.

The verification that a business process is compliant with a set of
business rules [17, 24, 41] consists in verifying that all the norms
or business rules are satisfied in all the execution of the process.
Here, we distinguish among business rules which can be encoded
as temporal formulas not including obligations and business rules
whose modeling involves the obligations.

The specification of the norms, the annotations and the business
process together define the domain description on which verifica-
tion is performed. For the rules which can be encoded as tempo-
ral formulas, the validity of the formulas has to be checked.As
an example, consider, in the order-production-delivery process in
[29], the rule “Premium customer status shall only be offered after
a prior solvency check”. It can be verified by checking validity of
the temporal formula

2(solvency_check_done∨ ¬〈offer_prem_status〉⊤)

in all possible states of the business process, if the action
offer_prem_statusis executable, thensolvency_check_donemust
be true. As in the verification we want to check only the run of
the process reaching theend, we assume the program specification
contains the constraint3end, which cuts out all the other unwanted
executions (for instance, infinite iterations in internal loops).
3For instance, the property “action b must be executed immediately
after any even occurrence of action a in a run” can be expressed by
the temporal constraint:2[(a; Σ∗; a)∗]〈b〉⊤), whereΣ∗ represents
any finite action sequence.

In the verification of compliance involving obligations,full com-
pliance amounts to check that the obligations which have been
generated during the business process execution have not been vio-
lated, i.e., that, for all obligationsO(A) occurring in the specifica-
tion, the formula

2¬violatedO(A)

is valid. The existence of a run satisfying the negation of this for-
mula, for someA, proves that the process is not fully compliant.

In this respect, we have also to consider the fact that there may
be obligations of the formO(l1U l2) which have neither been vio-
lated nor fulfilled, and they are still pending in theendstate. The
possibility that an obligation with a deadline is triggered, but the
end is reached without the deadline having occurred, nor theobli-
gation being fulfilled or cancelled, may be evidence of a flaw in the
model, therefore we may add to our notion of full compliance the
requirement that there are no pending obligations in theendstate,
i.e., that for all obligationsO(A) occurring in the specification, the
formula

¬3(end ∧O(A))

is valid. We can instead define a somewhat weaker notion of com-
pliance by stipulating that the presence of obligations with deadline
of the formO(¬goodsUpay) in the end state can be accepted and
does not affect the compliance.

The notion ofweak compliancedefined in [21] requires that all
the violated obligations have been compensated. In our framework
its verification requires to check that, for each obligationO(A)
occurring in the specification, the formula

2(violatedO(A) → 3compensatedO(A))

is valid, i.e., if an obligation is violated at some stage, itis compen-
sated later.

The verification task considered in [12], namely the verification
of properties of a business process under the assumption that the
process satisfies some given business rules, can also be addressed
in our approach: the specification of the business rules and their
fulfillment condition can be added to the domain specification. The
executions of the resulting domain specification can then beverified
against other temporal properties. Unlike [12], here we do not deal
with data properties and with the verification of first order temporal
properties.

In [20] Bounded Model Checking techniques are developed for
the verification of DLTL properties of a temporal action theory. The
approach in [20] extends the one developed in [26] for bounded
LTL model checking with Stable Models. The approach can be
used for checking satisfiability of temporal formulas over atem-
poral action domain, by providing an encoding of both the action
domain (action, causal, precondition laws) and of the temporal for-
mula in ASP. Satisfiability can then be checked by running an ASP
solver, which computes the temporal answer sets of the action do-
main satisfying the temporal formula. To prove the validityof a
formula, its negation is checked for satisfiability and, in case the
formula is not valid, a counterexample is provided.

The same approach can be adopted for the verification of deon-
tic temporal formulas in which deontic formulas are restricted to
deontic fluent literals as in Section 3. In such a case, deontic liter-
als play the role of the simple literals in the encoding in [20]. In
addition, to guarantee the consistency of deontic fluent literals, a
set of constraints has to be added to the encoding of the action do-
main to exclude those answer sets containing states which are not
deontically consistent. The required constraints correspond to the
conditions given in Proposition 3.

8. CONCLUSIONS AND RELATED WORK
This paper enhances the approach to business processes com-

pliance verification in [9], where attention was limited to specific
kinds of achievement obligations. In [9], obligations are repre-
sented ascommitments(borrowed from the social approach to agent
communication [37]), and no temporal formulas may occur within
commitments. In this paper, we show that a deontic extensionof
the temporal ASP language in [20], with restricted kinds of tempo-
ral formulas occurring within deontic modalities, allows to model
several different kinds of obligations and to capture different no-
tions (full and weak) of compliance. The use of causal laws, both
static and dynamic ones, is crucial for the representation of norms,
and, in particular, for modeling the dynamics of obligations (such
as deadlines and contrary-to-duty obligations). The Deontic Tem-
poral ASP language can be encoded in standard ASP by extend-
ing the approach developed in [20] and bounded model checking
techniques, extending those in [26], can be used for verification
of temporal properties of the business process that go beyond the
verification of the fulfillment of the generated obligations.

In [13] a Dynamic Deontic and Temporal Logic has been pro-
posed to reason about obligations and deadlines. In particular,
[13] gives a formalization of achievement obligations as obliga-
tions with an until formulas as argument. We exploit this idea in a
simpler temporal dynamic deontic logic and show that the several
kinds of obligations which are relevant for business process verifi-
cation can be formulated.

In [7] Broersen et al. propose a semantics for deadline obliga-
tions in terms of CTL models and show that their operator obeys
intuitive properties and avoids some counterintuitive ones, such as
agglomeration. As we have observed in Section 6, while theiren-
coding does not fit the syntactic restrictions of our action theory,
our notion of deadline obligationO(¬deadlineUp) requires thatp
is eventually true, even in case the deadline does not occur.Never-
theless, from a practical point of view, when evaluating theactual
course of actions, we have to stipulate whether pending deadline
obligations have to be regarded as violations or not. A discussion
of this problem in a multiagent setting can be found in [5], where it
is shown that conditional temporal order obligations can bemade
into deadline obligations when agents do not control avoidance of
the deadline condition. In this paper, we do not address the problem
of compliance verification of agent strategies.

[39] exploits the temporal logic CTL in the specification of com-
mitment protocols. Temporal formulas can occur within commit-
ments and commitments can be nested (metacommitments). Unlike
our approach, [39] does not define an action theory for reasoning
about the effects of action executions, and commitments arenot
regarded as modalities with an associated Kripke semantics.

An approach to compliance based on a commitment semantics in
the context of multi-agent systems is proposed in [8]. The authors
formalize notions of conformance, coverage, and interoperability,
proving that they are orthogonal to each other. [8] does not address
the problem of business process compliance with norms.

Several proposals in the literature introduce annotationson busi-
ness processes for dealing with compliance verification [17, 24,
41]. In particular, [24] proposes a logical approach to business
process compliance based on the idea of annotating the business
process. Annotations and normative specifications are provided in
the same logical language, namely, the Formal Contract Language
(FCL), which combines defeasible logic [2] and deontic logic of
violations [23]. In [21] different deontic operators are introduced
in PCL for representing the different kinds obligations identified
in [22]. The process model is extended with a set of annotations
describing the effects of the atomic tasks and the rules describing

the obligations. Compliance is verified by traversing the process
graph and identifying the effects of tasks and the obligations trig-
gered by each task execution. Algorithms for propagating obliga-
tions through the process graph are defined. In our approach,the
dynamic of commitments and the propagation properties of obliga-
tions are declaratively modeled by a set of causal laws, and verifi-
cation related to obligations is performed by checking the validity
of temporal formulas, not differently from the verificationof other
requirements.

[22] presents a conceptual analysis of several kinds of dead-
lines in Temporal Modal Defeasible Logic (which combines deon-
tic modalities with temporal intervals), according to which different
obligations require distinct compliance conditions. In this paper we
have adopted the approach of defining different compliance condi-
tions for the obligationsO(αUβ) andO(Xα) and we have used
them to provide a characterization of the different kinds ofobli-
gations considered in [22]. [22] does not address the problem of
propagation of obligations.

The idea of describing the effects of atomic tasks on data through
preconditions and effects is already present in [28], whereeffects
and preconditions are sets of atomic formulas, and the background
knowledge consists of a theory in clausal form; I-Propagation [41]
is exploited for computing annotations. In our approach thedomain
theory contains directional causal rules, building on workon rea-
soning about actions and change for adequately representing rami-
fications (i.e., sides effects of actions).

In [30] Lomuscio and Sergot explore a deontic extension of In-
terpreted Systems [14] to provide a grounded semantics to deontic
concepts. They apply the formal machinery to the analysis ofa
protocol and show that violations and correct functioning behavior
of parts of the system can be represented through normative and
epistemic properties.

In [32] the Abductive Logic Programming framework SCIFF is
exploited in the declarative specification of business processes as
well as in the verification of their properties. In [1] expectations
are used for modelling obligations and prohibitions and norms are
formalized by abductive integrity constraints.

The approach to business process verification we have presented
in this paper is also related with artifact-centric approach process
verification in [12]. The problem of capturing data awareness in
the approach to verification based on Temporal ASP has been ad-
dressed in [19].

9. ACKNOWLEDGEMENTS
We thank the anonymous reviewers for their helpful comments

and suggestions.

10. REFERENCES
[1] M. Alberti, M. Gavanelli, E. Lamma, P. Mello, P. Torroni,

and G. Sartor. Mapping of Deontic Operators to Abductive
Expectations.NORMAS, pages 126–136, 2005.

[2] G. Antoniou, D. Billington, G. Governatori, and M. J. Maher.
Representation results for defeasible logic.ACM Trans. on
Computational Logic, 2:255–287, 2001.

[3] M. Baldoni, A. Martelli, V. Patti, and L. Giordano.
Programming rational agents in a modal action logic.Ann.
Math. Artif. Intell., 41(2-4), 2004.

[4] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and
Y. Zhu. Bounded model checking.Advances in Computers,
58:118–149, 2003.

[5] J. Broersen. Strategic deontic temporal logic as a reduction
to atl, with an application to chisholm’s scenario. InDEON

06, LNCS 4048, pages 53–68, 2006.
[6] J. Broersen and J. Brunel. ’What I fail to do today, I have to

do tomorrow’: A logical study of the propagation of
obligations. InCLIMA, LNCS 5056, pages 82–99, 2007.

[7] J. Broersen, F. Dignum, V. Dignum, and J.-J. Ch. Meyer.
Designing a deontic logic of deadlines. InDEON 04, LNCS
3065, pages 43–56, 2004.

[8] A.K. Chopra and M.P. Singh. Producing compliant
interactions: Conformance, coverage and interoperability.
DALT IV, LNCS(LNAI) 4327, pages 1–15, 2006.

[9] D. D’Aprile, L. Giordano, V. Gliozzi, A. Martelli, G. L.
Pozzato, and D. Theseider Dupré. Verifying business process
compliance by reasoning about actions. InCLIMA XI, pages
99–116, 2010.

[10] J. P. Delgrande, T. Schaub, and H. Tompits. A framework for
compiling preferences in logic programs.Theory and
Practice of Logic Programming, 3(2):129–187, 2003.

[11] R. Demolombe and M. del Pilar Pozos Parra. A simple and
tractable extension of situation calculus to epistemic logic. In
ISMIS, pages 515–524, 2000.

[12] A. Deutsch, R. Hull, F. Patrizi, and V. Vianu. Automatic
verification of data-centric business processes. InICDT,
pages 252–267, 2009.

[13] F. Dignum and R. Kuiper. Combining dynamic deontic logic
and temporal logic for the specification of deadlines. In
HICSS (5), pages 336–346, 1997.

[14] R. Fagin, J.Y. Halpern, Y. Moses, and M.Y. Vardi.Reasoning
about Knowledge. MIT Press, 1995.

[15] M. Gelfond. Answer Sets.Handbook of Knowledge
Representation, chapter 7, Elsevier, 2007.

[16] M. Gelfond and V. Lifschitz. Action languages.Electron.
Trans. Artif. Intell., 2:193–210, 1998.

[17] A. Ghose and G. Koliadis. Auditing business process
compliance.ICSOC, LNCS 4749, pages 169–180, 2007.

[18] G. De Giacomo and M. Lenzerini. Tbox and abox reasoning
in expressive description logics. InKR, pages 316–327, 1996.

[19] L. Giordano, A. Martelli, M. Spiotta, and D. Theseider
Dupré. Business processes verification with temporal ASP:
from process annotations to data awareness. InProc. KIBP
2012.

[20] L. Giordano, A. Martelli, and D. Theseider Dupré.
Reasoning about actions with temporal answer sets.Theory
and Practice of Logic Programming, 13:201–225, 2013.

[21] G. Governatori. Law, logic and business processes. InThird
International Workshop on Requirements Engineering and
Law. IEEE, 2010.

[22] G. Governatori, J. Hulstijn, R. Riveret, and A. Rotolo.
Characterising deadlines in temporal modal defeasible logic.
In Australian Conference on Artificial Intelligence, LNCS
4830, pages 486–496, 2007.

[23] G. Governatori and A. Rotolo. Logic of Violations: A
Gentzen System for Reasoning with Contrary-To-Duty
Obligations.Australasian Journal of Logic, 4:193–215,
2006.

[24] G. Governatori and S. Sadiq. The journey to business process
compliance.Handbook of Research on BPM, IGI Global,
pages 426–454, 2009.

[25] D. Harel. Dynamic logic. InHandbook of Philosophical
Logic, vol. 2, pages 497–604, 1984.

[26] K. Heljanko and I. Niemelä. Bounded LTL model checking
with stable models.Theory and Practice of Logic

Programming, 3(4-5):519–550, 2003.
[27] J.G. Henriksen and P.S. Thiagarajan. Dynamic Linear Time

Temporal Logic.Annals of Pure and Applied logic,
96(1-3):187–207, 1999.

[28] J. Hoffmann, I. Weber, and G. Governatori. On compliance
checking for clausal constraints in annotated process models.
Information Systems Frontieres, 2009.

[29] D. Knuplesch, L. T. Ly, S. Rinderle-Ma, H. Pfeifer, and
P. Dadam. On enabling data-aware compliance checking of
business process models. InProc. ER 2010, 29th
International Conference on Conceptual Modeling, pages
332–346, 2010.

[30] A. Lomuscio and M. J. Sergot. Deontic interpreted systems.
Studia Logica, 75(1):63–92, 2003.

[31] C. Lutz, F. Wolter, and Michael Zakharyaschev. Temporal
description logics: A survey. InTIME, pages 3–14, 2008.

[32] M. Montali, P. Torroni, F. Chesani, P. Mello, M. Alberti, and
E. Lamma. Abductive logic programming as an effective
technology for the static verification of declarative business
processes.Fundamenta Informaticae, 102(3-4):325–361,
2010.

[33] H. Palacios and H. Geffner. Compiling uncertainty away:
Solving conformant planning problems using a classical
planner (sometimes). InAAAI, pages 900–905, 2006.

[34] M. Pesic and W. M. P. van der Aalst. A declarative approach
for flexible business processes management. InBusiness
Process Management Workshops, LNCS 4103, pages
169–180. Springer, 2006.

[35] H. Prakken.Logical Tools for Modelling Legal Argument.
1997.

[36] Klaus Schild. Combining terminological logics with tense
logic. In EPIA, pages 105–120, 1993.

[37] M. P. Singh. A social semantics for Agent Communication
Languages.Issues in Agent Communication, LNCS(LNAI)
1916, pages 31–45, 2000.

[38] L. van der Torre. Causal deontic logic. InDeon’2000, 2000.
[39] M. Venkatraman and M. P. Singh. Verifying compliance with

commitment protocols.Autonomous Agents and Multi-Agent
Systems, 2(3), 1999.

[40] G. von Wright. Deontic logic.Mind, 60:1–15, 1951.
[41] I. Weber, J. Hoffmann, and J. Mendling. Beyond soundness:

On the verification of semantic business process models.
Distributed and Parallel Databases (DAPD), 2010.

