Temporal Deontic Action Logic

for the Verification of Compliance to Norms in ASP

Laura Giordano
DISIT
Universita del
Piemonte Orientale
Italy
laura.giordano@mfn.unipmn.it

ABSTRACT

The verification of compliance of business processes to sioem
quires the representation of different kinds of obligasioimclud-
ing achievement obligations, maintenance obligationigations
with deadlines and contrary to duty obligations. In this grage
develop a deontic temporal extension of Answer Set Progiagim
(ASP) suitable for verifying compliance of a business psscto
norms involving such different types of obligations. Testehd, we
extend Dynamic Linear Time Temporal Logic (DLTL) with deimnt
modalities to define a Deontic DLTL. We then combine it withRAS
to define a deontic action language in which until formula raext
formulas are allowed to occur within deontic modalities. $tiew
that in the language we can model the different kinds of @lbidmns
which are useful in the verification of compliance to norwatie-
quirements. The verification can be performed by boundedeinod
checking techniques.

Categories and Subject Descriptors

1.2.4 [Artificial Intelligence]: Knowledge Representation
Formalisms and MethodsFemporal Logic

General Terms
Verification

Keywords

Reasoning about Actions, Temporal Logic, Deontic Logicmzo
pliance Verification

1. INTRODUCTION

The verification of compliance of business processes to siorm
requires the representation of different kinds of obligiasi, includ-
ing achievement obligations, maintenance obligationigations

>|<This work has been partially supported by Regione Piemdhgect “ICT4Law -
ICT Converging on Law: Next Generation Services for Citizéinterprises, Public
Administration and Policymakets

Permission to make digital or hard copies of all or part o§ thviork for

personal or classroom use is granted without fee providaticbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listgyuies prior specific
permission and/or a fee.

ICAIL'13, June 10-14, 2013, Rome, Italy.

Copyright 2013 ACM 978-1-4503-2080-1/13/06 ...$15.00.

Alberto Martelli
Dipartimento
di Informatica
Universita di Torino
Italy
mrt@di.unito.it

*

Daniele Theseider Dupré
DISIT
Universita del
Piemonte Orientale
Italy
dtd@di.unipmn.it

with deadlines and contrary-to-duty obligations. In [22¢lassi-
fication of obligations is proposed through a conceptualyaiga
of several kinds of deadlines. These types of obligatiorsrac-
ognized in [21] as the relevant onesdeontic for businessess
compliance.

In [9] an approach based on reasoning about actions was pro-
posed for the verification of compliance of business praessth
norms. The approach is based on the temporal extension of ASP
in [20], combining ASP with the dynamic linear time temporal
logic DLTL [27], an extension of LTL in which the temporal ape
ators are enriched with regular program expressions. Thiedss
process, its semantic annotation and the norms are encaitagl u
temporal ASP rules as well as temporal constraints. In qae,
defeasible causal laws are used for modeling norms, and @¢emm
ments [37] are used for representing achievement obliggtio

In this paper we aim at generalizing the approach in [9] td dea
with the different kinds of obligations mentioned above|inling
maintenance and punctual obligations. Our proposal ishas¢he
idea of extending Dynamic Linear Time Temporal Logic (DLTL)
[27] with Standard Deontic Logic (SDL) [40] to define a Deanti
DLTL (DDLTL) in which temporal formulas are allowed to occur
within the deontic operator. The proposed logic is simitaspirit
to the Dynamic Deontic and Temporal Logic proposed by Dignum
and Kuiper [13] to reason about obligations and deadlingss |
also related with the logic combining temporal and deortgids
in [6], where the product of LTL and SDL is the starting poiat t
study propagation properties of obligations. In [6] Bregrsand
Brunel show that the genuine product of LTL and SDL is not com-
patible with the propagation properties, and define anradtere
notion of temporal deontic frames based on levels of deadée
ality. They observe that propagation properties of obiayet “are
only valid if we assume that the ‘deontic realm’ is not chahgg
an explicit update of the norms”. In this paper, we do not nthie
assumption and we consider situations in which actions neay g
erate or cancel an obligation. For instance, the obligatopay
for goods can be cancelled by the action of withdrawing from t
contract. For this reason we do not include the propagatiopgs-
ties in the definition of the temporal deontic logic. The dyrmaof
propagation and cancellation of obligations, in our apphoés ad-
dressed in the action theory, where obligations can be dkfinee
persistent or not (according to the kind of obligation) andation
which cancels an obligation blocks its (default) persiséen

In the paper we combine DDLTL with Answer Set Programming
[15] to define a Temporal Deontic ASP, which is an extension of
Temporal ASP introduced in [20]. In Temporal Deontic ASR, de
ontic fluentsO(«) are allowed, where is restricted to until formu-
las or next formulas. Also, in a formul@(al/3) and iNnO(X «),

« and 8 must be non-temporal literals or “simple” temporal liter-

als. This restriction is introduced in order to allow for anpie As for LTL, DLTL models are infinite linear sequences of warld

treatment of deontic literals exploiting bounded modelakiireg (propositional interpretations), each one reachable fitwarinitial
techniques in the verification of temporal properties ofaactio- world by a finite sequence of actions in the alphabét. Here, to
mains, where the consistency of a set of deontic literalsi&san- define the Kripke semantics of DDLTL, we generalize the seman
teed through the verification of a set of constraints. Weireghe tics of DLTL as given in [27].

deontic operator to be serial, as usual in SDL [40]. We shaw th A state of a model is a paim, w), wheren represents a time

in Temporal Deontic ASP we can model the different kinds diFob ~ point andw a world. Informally, a model consists in a set of linear
gations mentioned above, including those involving deedliand sequences(i, w), (i + 1,w), ..., representing the evolution of a
violations, by dealing with the dynamics of obligations aspkecif- world in time. At timen, from a statgn, w), other stategn, w")
ically, with propagation properties of obligations exmed in the (with the same time point) can be reached through the deontic ac-
action theory as non-monotonic causal laws. cessibility relationR,. Each accessible state has a linear sequence

Given a specification of a business process and of a set of busi of worlds departing from it.
ness rules as an action domain in Temporal Deontic ASP, a tem-

poral answer set of the action domain corresponds to a ruineof t DEFINITION 1. LetTW be a non-empty set of worlds.témpo-

business process which includes all the obligations treegjduring ral deontic modebverX is a tupleM = (S, R, Rq, V'), where

the execution. Furthermore, it corresponds to a path in adeah

deontic model of the logic DDLTL. Compliance verificatiomdae e S C Nx Wis asetof states, such thét; = {w : (i,w) €

performed using Bounded Model Checking techniques [4]lcétxp S} is the set of worlds at time pointandWo € W1 C .. ;

ing the approach developed in [20] for the verification of pemnal

properties of action theories by bounded model checkingS®PA e R : S — ¥ x Sis atotaltemporal accessibility function

which extends the approach for bounded LTL model checkirly wi such thatR: (n, w) = (a, (n + 1, w)) for somea € %;

Stable Models in [26]. In fact, compliance requirementsitesd to)) o)

obligations can be expressed as temporal properties. e Ry C S x Sisadeontic accessibility relatioamong states,
Therefore, ASP provides a framework suitable for représgnt such that if((n, w), (n',w")) € Ra, thenn = n'; moreover,

the dynamics of obligations (and other fluents) in a processyell Rq is serial, i.e., for alls € S there iss’ € S such that

as for verifying compliance of the process to the obligatitimat (s,s") € Ra;

may be triggered in its execution. P])
e V:S8 — 2" is avaluation function.

2. DEONTIC DYNAMIC LINEAR TIME For eachn € N, W, is the set of of worlds accessible at time

TEMPORAL LOGIC point n. The fact that the setd/,, are increasing, means that at
In this section we combine Dynamic Linear Time Temporal lcogi time n there may be a world which was not present at time 1.
(DLTL) [27], an extension of LTL in which temporal operators Time is linear and, when applied to a state S, the functionR;
are enriched with program expressions as in dynamic logiity w returns a pai(a, s’) wherea is the action executed if, ands’ is
a deontic logic to define a Deontic Dynamic Linear Time Tempo- the state obtained by executiagn s. As in standard deontic logic,

ral Logic (DDLTL). The idea of combining dynamic logic, de@m we have assumed the accessibility relationto be serial.
logic and temporal logic has been proposed in [13] for theifipe In the following, we denote by, 7/, ... the finite action se-
cation of deadlines. [13] first defines a dynamic deonticd@gid, quences in%* (including the empty one). For any program ex-

then, combines it with a temporal logic. Here we start fromTDL pressionr, we let[[n]] to be the set of finite sequences associated
[27], which already combines temporal and dynamic logicg] a with 7. For all finite action sequenceswe writes =7 s’ to mean
we add a deontic operat@, whose semantics is that of Standard thats’ is reachable frons through the action sequence We de-

Deontic Logic [40]. fines =" s’ by induction on the length af as follows: (i)s =° s

The Dynamic Linear Time Temporal Logic DLTL [27]is an ex- and (ii))s =7 s" iff s =7 " andR.(s") = (a, s’), for somes”.
tension of LTL in which temporal operators are enriched \pith- In the following, we denote by the usual prefix ordering ovet*
gram expressions. In particular, in DLTL the next state ntibda namely,r < 7’ (is a prefix ofr’) iff 37" such thatrv” = 7.
can be indexed by actions, and the until operatércan be in- Moreover, we letr < 7' iff 7 < 7" andr # 7'.
dexed by a program which, as in PDL, can be any regular expres- Given a modelM = (S, R, R4, V) overX, a states € S and a
sion built from atomic actions using sequengerfondeterministic formula«, thesatisfiability of a formulax in s, written M, s = «;
choice ¢+) and finite iteration). is defined as follows:

Let X be a finite non-empty alphabet representing actions. DLTL)
allows until formulas of the fornnz/™ 3, where the program e e M,sk=piff pe V(s);
Prg(X)is aregular expression built from a $&bf atomic actions.
More precisely, o M,s i~ L

Prg(X)i=a|m +me|m;me | 7" o M,s = —aiff M,s = «;

wherea € 3 and, 72, 7 range overPrg(%). o M,skaVaiff M,sl=aorM,s k= B

Let P = {p1,p2, ...} be a countable set of atomic propositions
containing T and L (standing fortrue andfalsg. We extend the o M,s = ald™ 3 iff there existsr € [[x]] such thats =7 s’
language of the logic of DLTL over by including in the language andM, s' = 3. Moreover, for every’ suchthat < 7/ < 7

the deontic operatdd as follows: and and for every” € S such thats =7 g M,s" E o

DDLTL(X) ::=p | — \ U3 | O
(B):=p|afavpat5]O(a) o M,s = O(a) iff for all s € W such that(s,s') € Ru,
wherep € P anda, 3 range over DDLTLE). M,s' Ea

A formula o/™ 3 is true in a state if “ o until 5” is true on a
finite stretch of behavior which is in the linear time behawibthe
program, starting froms. The operato© is read “it is obligatory
that” andO(«) is true in a states if o holds in all the states’
that are ideal with respect to The possibility operatoP, which
is read “it is permitted that”, can be defined as the duaDoi.e.,
P(a) = -0—-(a).

As in DLTL, from the until operator, the derived modalitiés),
[7], X (next), i, & and O can be defined as follows{m)a =
TU, [t]a = ~(T)~a, Xa = \/aez(a>a, ol = auz*ﬁ,
SOa = TUa, Do = =O-a, where, in{=", ¥ is taken to be a
shorthand for the programm + ... + a,. Informally, a formula
[w]a is true in a states of a linear temporal model i& holds in
all the states of the model which are reachable frotimrough any
execution of the program. A formula(r)« is true in a state of a
linear temporal model if there exists a state of the moderable
from s through an execution of the programin which « holds.

Observe that for obligations of the for@ (X ¢) the semantics
in [6] satisfies the “perfect recall propertYD(X¢) — XO(¢),
stating that no obligation is ‘forgotten’ over time. This@x, how-
ever, is not a valid formula in DDLTL. We assume that each-obli
gation can be cancelled by an explicit cancellation actldance,
the semantics above neither satisfies the perfect recaépyonor
the propagation property in [6]. However, in the following wwill
introduce weaker (non-monotonic) propagation propeftiesbli-
gations in the temporal deontic action language.

Observe also that DDLTL is a conservative extension of DLTL.

It can be shown that DDLTL is decidable.

PrROPOSITION 1. Satisfiability of a formula in DDLTL can be
solved inEXPTIME.

PROOF. Satisfiability in DDLTL can be polinomially reduced to
concept satisfiability in the description logieLCF g4, Which ex-
tends. ALC with functional roles and role operators from Proposi-
tional Dynamic Logic [25], namely, composition, union, exdive-
transitive closure and test. Satisfiability iCCF,..4 is known to
be in EXPTIME [18]. The reduction proof is similar to the one in
[36] and, more specifically, to the proof of Lemma 1 in [31] for
LTL 4,c with expanding domains. []

The reduction of satisfiability in DDLTL to satisfiability ithe
description logicALCF ., makes it possible to explad LCF ey
inference procedures for the verification of the satisfigtéind va-
lidity of formulas in DDLTL. However, this would require a mo-
tonic solution to model persistence of the effects of actiamclud-
ing obligations. In the following we develop a clausal nonnoo
tonic fragment of DDLTL, adopting the ASP paradigm and egdten
ing both ASP rules and the notion of answer set to deontic teahp
formulas in the line of the temporal answer set programmang |
guage in [20]. In this approach we adopt a nhonmonotonic isolut
for the frame problem where default negation in ASP is exptbio
deal with persistency of fluents and with the propagatioperies
of obligations in a flexible way, as well as to capture the deifele
nature of norms. To reason about properties of action taspwe
exploit bounded model checking techniques in ASP follow2
20].

3. ATEMPORAL DEONTIC ACTION
LANGUAGE

In this section, we introduce a temporal deontic extensfakne
swer Set Programming (ASP) which combines ASP with DDLTL,
as a language for defining temporal deontic action theofiegon

theories will consist of two components: a set of deonticperal
rules (namely ASP rules which may contain deontic and tempo-
ral literals), and a set of DDLTL formulas constraining thehin
description. While ASP rules are used in the definition ofcarct
effects and preconditions and, in particular, in the speation of
business rules, the DDLTL component can be used to define tem-
poral constraints on the action domain as well as to encodpde
ral/deontic properties to be checked.

Both in ASP rules and in the set of constraints, we restriet th
language of DDLTL by limiting the nesting of temporal and de-
ontic operator to allow only a restricted choice of tempduoat
mulas to occur within the deontic operators. As we will seghw
this restriction, the verification techniques based on LTduBded
Model Checking [4] and their ASP encoding [26] can be adafued
deal with temporal deontic formulas without the need tooaam
temporal deontic Kripke structures. In this respect, oyregach
is related with the proposals in reasoning about actionspsent
ning, which deal with epistemic knowledge by explicitlyrioduc-
ing knowledge literals within the states of the action damfail,

3, 33]. However, here we allow deontic literals (includirgre
restricted kinds of temporal formulas) to occur in the statkbthe
action domain.

Let £ be a first order language which includes a finite number
of constants and variables, but no function symbol. Pdbe the
set of predicate symbol¥]ar the set of variables and the set of
constant symbols. We cdlluentsthe atomic literals of the form
p(t1,...,tn), where, for each, t; € Var U C.

A simple fluent literal is an atomic literap(t1,...,t,) or its
negation—p(t1,...,t,). We denote byLits the set of all simple
fluent literals, and we assume that the flugntrepresenting the
inconsistency, and the fluerit (true) are included itits.

A deontic fluent literahas the formO(a) or -O(«), wherea
is a restricted temporal formula defined as follows:

o=l X1 Wil | LU {a) T

wherel,l1,l2 € Lits, l2 # 1L anda € X. The meaning of
the formulal,14/(a) T is thatl; holds until eventually actiom is
executed. As we will see we allow this kind of temporal forasul
in deontic literals to model the obligation to execute aroact:
within a certain deadline. We denote byt the set of all deontic
fluent literals.

A temporal fluent literalhas the form[a]l, (a)l or X1, where
l € Lits U Litp anda is an action name (an atomic proposition,
possibly containing variables).

Given a (simple, deontic or temporal) fluent litetahot [rep-
resents the default negation bf A (simple, deontic or temporal)
fluent literal possibly preceded by a default negation, béllcalled
anextended fluent literal

Observe that fluent literals do not contain nested deontécasp
tors and they contain very limited nesting of temporal ofEsg

The laws of a domain description are formulated as rules of a
temporally extended logic programming language havinddha

@)

where thel;’s are simple, deontic or temporal fluent literals, with
lo # (a)l. As usual in ASP, rules with variables are a shorthand for
the set of their ground instances; and wedldbe the set of ground
instances of atomic actions in the domain description.

A state informally, is a set of ground fluent simple and deontic
literals.

The execution of an action in a state may change the values of
fluents through its direct and indirect effects. In partécpan action
can generate or cancel obligations.

lo<—1l1,...,lm,n0t lm+1,...,n0t Iy

We assume that a law as (1) can be applied in all states while,
when prefixed withnit , it only applies to the initial state.

A domain descriptiorD is a pair(II, C), wherell is a set of laws
describing the effects and executability preconditionaations (as
described below), and is a set oftemporal deontic constraints
namely DDLTL formulas, built on the set of ground fluents, in
which deontic formulas are restricted to deontic fluentdite

IT is a set of laws such as action laws, causal laws, preconditio
laws, persistency laws, initial state laws, that are nolymaded in
action theories, and can all be defined as instances of (1).

Action lawsdescribe the effects of atomic actions. The meaning
of an action law

[allo < l1,. .., lm,n0Ot lm+1,...,n0t ln,

(wherely € Lits U Lp andly,...,I, are either simple or deontic
fluent literals or temporal fluent literals of the forfnj!) is that exe-
cuting actiorz in a state in which, . . ., I,,, hold andl .41, . . ., l»
do not hold makes the effeéf to hold in the state obtained after
the action execution. For instance, in

[accept_price]O(T U (pay)T)
[cancel_payment]-O(T U (pay)T)

the actionaccept_price creates an obligation to pay, while the ac-
tion cancel_payment cancels that obligatidn As discussed in
[5], obligations should come with a deadline; we refer tdises 6
and 7 for our treatment of deadlines.

Precondition lawshave the form:

[a] L — Ui, ... lm,n0t Ly1,...,n0t Ly

(wherely, ..., are either simple or deontic fluent literals) mean-
ing thata cannot be executed (it has an inconsistent effect) in case
l1,...,ln hold andl,,+1, ..., I, do not hold. For instance

[send_contract] L— —confirmed

states that a contract cannot be sent if it has not been caufirm
Causal lawsdefine causal dependencies among propositions,

which are used to derive indirect effect of actions, catkdifica-

tionsin the literature of reasoning about actions and changeravhe

it is well known that causal dependencies among propositars

not suitably represented by material implication in cleakiogic.

Static causal lawsave the form:

lo<—1l1,. ., lm,n0t lypy1,...,n0t ly

where thel;'s are simple or deontic fluent literals. Their meaning
is: if l1,...,l hold andl,,+1,...,l, do not hold in a state, then
lo is caused to hold in that state. An example is

—order_con firmed < order_deleted

in a business process where a customer can delete her oreler af
confirmation by the provider.
Dynamic causal lawkave the form:

Xlo «— t1,...,tm,not tm+1,...,n0t ty

wherel is a simple or deontic fluent literal and thgs are either
simple or deontic fluent literals, or temporal fluent literaf the
form X1; (meaning that the fluent literd) holds in the next state).
Their meaning is: it1, . .., ¢t hold andl,,+1, . .., [, do not hold,
thenly is caused to hold in the next state. For instance, dynamic
causal laws can be used to define persistency:

YIn a richer modeling, obligations could have as additiorsabm-
eters, as in case @lommitmentg37], an agent as debtor and
another as areditor.

XF «— F,not X—F

(whereF is a fluent) while the rule:
X-O(TU(A)T)—O(TU(AT), (AT

cancels the obligation to execute action A after the exenudf A
(see Section 5).
The language also includes constraints of the form

L —1l,....lm,not lint1,...,n0t L,

where thd;’s are simple, deontic or temporal fluent literals.

Although in the language we have only introduced the deontic
modality O, the other deontic modalities, suchBsandF, can be
defined fromO using static causal laws.

4. TEMPORAL DEONTIC ANSWER SETS

In [20], the semantics of a domain description is defined by ex
tending the notion ofinswer se{15] to definetemporal answer
sets which capture the linear structure of temporal modelshis t
section we adapt the notion tdmporal answer set® temporal
deontic domain descriptions. The main concern we need t@asld
is that of consistency of deontic formulas in each state afha-t
poral deontic answer set. In fact, by the seriality requaetron
the deontic accessibility relatioR, in Kripke frames, it cannot be
the case that an unsatisfiable set of deontic fluents may dpé&boam
state.

In the following we shortly recall the definition of tempoah-
swer set from [20] and we modify it to deal with consistency of
deontic modalities. To this purpose, we Ieébe the ground instan-
tiation of the domain description, ark the set of all the ground
instances of the action nameslin

For conciseness, we call “simple (deontic, temporal)dit&rthe
“simple (deontic,temporal) fluent literals”. To define thetion
of extension, we need to introduce additional rules of thenfo
lai;...;ap](to < t1,.. . tm, N0t tms1,. .., not ty) that will be
used to define the reduct of a program, wherettfsare simple,
deontic or temporal literals. The modaliy; . . . ; ax] in front of
the rule says that the rule applies in the state obtained thiteex-
ecution of the sequence of actioms, . . ., a,. Conveniently, also
the notion of temporal literal used so far needs to be extbnade
include literals of the fornfai; . . . ; ax]l, meaning that the (simple
or deontic) literall holds after after the execution of the sequence
of actionsas, ..., an.

Generalizing the definition of temporal answer sets in [233,
define a temporal deontic answer set as a temporal deorgic int
pretation(o, S), whereo € £“ is a sequence of actions afstis
a consistent set of ground literals of the fofm; . . .; ax)l, where
a1 ...ax is a prefix ofc and! is a ground simple or deontic flu-
ent literal. Each prefix; ... ax of o corresponds to a state of the
interpretation, the state obtained by the execution of tt®ras
ai...ag, namelwa{ji“?flk ={l:[a1;...;ax)l € S}.

A temporal interpretatiofio, S), is propositionally consisteriff
itis not the case that botl;. . .; ax]l € S andlai;...; ax]-l €
S, for some simple or deontic fluent litergland it is not the case
that[ai;...;ax]L € S. A temporal interpretatioiio, S) is said
to betotal if either [a1;...;ax]p € S or [a1;...;ak]p € S,
for eacha; ... ay, prefix of o and for each simple or deontic fluent
atomp.

The notion of satisfiability of a rule in a temporal deontitein
pretation(c, S), as well as the notion aeductl1“*’ of (a domain
description)II relative to (o, S) can be defined as natural exten-
sions of Gelfond and Lifschitz’ ones [15]. With these notpa

temporal deontic answer sef 11 is defined as a consistent tem-
poral deontic interpretatiofw, S) such thatS is minimal (in the
sense of set inclusion) among tlé such that(o, S’) is a partial
interpretation satisfying the rules in the rediiéf">

The satisfiability of a simple, temporal or extended litetah a
partial deontic temporal interpretatio(v, S) in the statex: . . . ax
(written (0, S), a1 . .. ax = t) is defined as follows:

(O’,S),al LAk ': T

(0,5),a1...ar fE= L

(0,9),a1...a, =1iff [a1;...;ak]l €S,
for I simple literal

(0,5),a1...a, E [a]liff [a1;...;ak;a]l €S,
oras ...agais not a prefix ofr

(0,5),a1...ar E (a)liff [a1;...;ar;a]l €S,
anda; . ..axa is a prefix ofo

(0,5),a1...ar |E XUiff [ar;...;ak;b)l € S,
anda; ... axbis a prefix ofo

The satisfiability of rule bodies in a deontic temporal iptetation
is defined as usual. A rulél < Body is satisfied in a deontic
temporal interpretatiofo, S) if, for all action sequences; . .. ax
(including the empty action sequengg (o, S), a1 ... axr = Body
implies (0,5),a1...ax = H. AruleInit H «— Body is sat-
isfied in a deontic temporal interpretatidn, S) if, (¢, 5),c E
Body implies (0,S5),e = H, wheree is the empty action se-
quence. Arulda;...;an](H <« Body) is satisfied in a deontic
temporal interpretatiortio, S) if, (0,5),a1...ar = Body im-
plies(o,S5),a1...ar = H.

Let IT be a set of rules over an action alphabktnot contain-
ing default negation, and let € X*. The following definitions
generalize the corresponding definitions in [20].

DEFINITION 2. A deontic temporal interpretatiofo, S) is a
deontic temporal answer set Bf if S is minimal (in the sense of
set inclusion) among th8” such that(c, S) is a partial deontic
temporal interpretation satisfying the ruleslh

To define deontic temporal answer sets of a progfhoontain-
ing negation, given a deontic temporal interpretatiensS) over
o € ¥¥, we define theeduct, 11", of I1 relative to (o, S) ex-
tending Gelfond and Lifschitz’ transform [16] to computeified-
ent reduct oflI for each prefixas, ..., an of 0.

DEFINITION 3. Thereduct,I1$7 . , of II relative to(c, S)
and to the prefixii, . .., a, of o, is the set of all the rules

sap|(H «— 1, ... L)
such thatH «— Ii,...,ln, not lpt1,...,n0t Iy,
(U,S),al,...,ah béli,foralli:m+1,4..,n
ThereductII{“+*) of IT relative to(c, S) is the union of all reducts
19, for all prefixesas, . . .

,,,,,

[al;.“

is in II and

,ap ofo.

DEFINITION 4. A deontic temporal interpretatiofo, S) is a
deontic temporal answer set of if (o, .S) is a deontic temporal
answer set of the redugt(”).

The notion of propositional consistency introduced absvi®o
weak to guarantee that the set of obligations occurringersthtes
of a deontic temporal answer set are consistent with eadr, @tb-
cording to the notion of consistency in Section 2. We say ¢éat
temporal interpretatio(v S), isdeontically consisteriff for each
prefixas .. ak,wé‘j’ ", is satisfiable in the logic DDLTL. Domain
descriptiond1 such that all the answer setsléfare total and deon-
tically consistent are of special interest as their answes(s, .5)
corresponds to a path in a DDLTL model.

PrROPOSITION 2. Given a deontically consistent temporal in-
terpretation(o, S) with o = a1azas . . ., there is a DDLTL model
M, with valuation functiori/, such that:

e M contains the patlwy =" w1 =2 we = .. .;

o V(wy)={p : psimpleliteral andas,...,arlp € S}

e M,wi E O(a), for eachO(«) such thafas, ..., a;]O(«)
eSs.

Note that the deontic consistency of the answer set is éaktmnt
guarantee the existence of the modél

Given the restriction on the deontic literals admitted ia &lction
language, we can introduce a set of conditions on tempoaaitite
answer sets which guarantee its (deontic) consistency.

PrROPOSITION 3. A temporal deontic interpretatiofo, S) is
deontically consistent iff it is propositionally consisteand, for
each prefixa; . ..ay of o, the statew“’) . does not contain any
of the following sets of deontic Ilterals for all simple fhtgp, sim-
ple literalsiy, I and distinct action names; , a2, as, aa:

-{O(p), O(-p)}

-{O(Xp),O(X—p)}

-{O(lL1iUl3), 0(—l2), O(=ly)}

-{0(hUlz), O(~l2), O(X—l2),O(X~l1)}

-{O(lL1iUlz), 0(—l2), O(=l:iUl2)}

-{0(lLlUlz), O(=l2), O(=l1UU(a1)T), O(=l1U{a2) T)}

{O(l1u<a1>T),O(l1u<a2>—r),0(—‘l1)}

{O(l1u<a1>T),O(l1u<a2>),O(l1u<a3>)O(X—'ll)}

-{O(LU{a1)T), O(Litd{a2) T), O(=lhild{as) T)
O(—-liU(as)T)}

The (Only if) part is obvious. The (If) part of this propositi can
be proved by showing that a stalxé" 5) . satisfying the above con-
dition is satisfiable ina DDLTL model We omit the proof. Obse
that, although the obligatio® ({12{I2) is inconsistent with the obli-
gationO(—loU— (11 Alz2)) (@s—laU (=l A —l2) entails—(11U12)),
the second obligation is not admitted in our action language

The conditions above can be formulated by introducing in the
domain description causal laws to identify the answer sa¢sfy-
ing these conditions (see section 7). The violation of thevab
consistency conditions discloses an inconsistency in dfi@ition
of the rules describing the obligations, which has to belvesioby
modifying the rules (and possibly introducing preferenassng
them).

5. PROPAGATION PROPERTIES FOR
OBLIGATIONS

In the definition of DDLTL we have not assumed any propaga-
tion property for obligations, to admit situations in whiahtions
may cancel an obligation. However, some kind of propagaton
needed. If we have an obligation to pay within a deadlinepdad
as O(—deadlineldpaid)?, then we expect that, if the obligation
has not been fulfilled in a given state and the deadline hageatot
occurred, the obligation is still valid in the next state. wéwer,
we do not want the obligation to be propagated in case thgabli
tion itself is canceled. We then define for an obligat®(il{i.) a
defeasible propagation property as follows:

XO(lﬂ/lg) — O(lll/{lg),ll,not X—‘O(l1ul2)

2We discuss in the next section the representation of oigst
with deadlines.

meaning that, in any state, if there is an obliga®(i. /I), which
is not fulfilled in that state and it is still possible to fulfit ({1
is true), then the obligation persists to the next stateessthe
obligation is cancelled. An action which cancels an obla@ahas
the effect of making its negationO(l1U/i2) hold. Note that-i,
is not included in the body of the propagation property. lct,fa
propagation is blocked when the obligation is fulfilled: éedl, we
assume that both the fulfillment and the violation of a commeitt
discharge the obligation, thus blocking its persistency:

X—=O(lLiUls) — O(LiUlz), Iz (fulfillment)
X—‘O(l1ul2) — O(l1UZ2), —‘l17 —ls (violation)

The fulfillment rule says that, tHalfillmentof the obligation causes
the obligation to be discharged. The violation rule says tthevi-
olation of the obligation causes the obligation to be discharged.
In order to keep track of the fulfillment or violation of obéitions
during the execution of a business process, and to expressrii
form way the formulae to be verified (see section 7) we intoegu
for each obligatiorO(A), the simple fluentsful filledo () and
violatedo). For the obligatiorO({12412), we add the rules:

fulfilledo(llwz) — O(llulg), lg
’U’L'Olatedo(llub) — O(llulz), —|l1, —‘lz

Similar rules are introduced for obligations of the fofl,1 L/ (a)l2),
replacinglz in the rules above withia)ls.

The persistency, fulfillment and violation rules for obligas of
the formO(X1) are the following:

XO(l) «— O(X1), not ~XO(I)
X fulfilledo(xy «— O(X1), X1, not ~XO(l)
Xviolatedo(xi) < O(X1), X1, not ~XO(1)

wherel is the complement of. The first rule is a defeasible ver-
sion of the perfect recall property in [6]: if the obligati@(X1)
occurs in a state, the obligatidd(/) is added to the next state, un-
less cancelled. According to the 2nd and 3rd rules, an dizhiga
O(X1) is fulfilled if { holds in the next state, and is violated-f
holds in the next state, unless the obligation is cancellaserve
that, given the fulfillment and violation rules f@(X1) the propa-
gation axiom forO(X1) can be omitted. Unlike for the obligation
O(l1Ul2), we can decide about the fulfillment or violation of the
obligationO(X1) without propagating it to the next state.

For obligations of the fornO(l), we only introduce the fulfill-
ment and violation rules:

ful filledoqy <+ O(1),1
violatedoy < O(1), -l

Observe also that causal laws are essential to deal withythe d
namic of obligations and to encode persistency, fulfillmeemd vi-
olation of obligations.

6. SPECIFYING OBLIGATIONS

In this section we show that temporal deontic ASP is wellexlit
to formalize the different kinds of obligations introduced[22,
21] where three main classes are identified, namely, adahient
maintenance and punctual obligations. Achievement otitiga
are further classified as persistent/non-persistent afidigs, pre-
emptive/ non-preemptive obligations.

Achievement obligations Achievement obligatiorrequire a given
condition to occur at least once before a deadline. Contidesx-
ample from [21]: customers must pay before the delivery ef th

goods, after receiving the invoice. The action of receidimg in-
voice has the effect of generating an obligation to pay withi
deadline, i.e., before receiving the goods. This can be fadde
by the action law (with empty body):

[receive_invoice] O (—goodsUpay)

According to the persistency, fulfillment and violation &
the previous section, the achievement obligat®~goodsipay)
persists until it is fulfilled, cancelled or violated. If tleeistomer
executes the action of canceling the order, the obligaticanceled
(and discharged):

[cancel_order]|~O(—goodstpay)
[cancel_order]cancelledo (- goodsupay)

This blocks the persistency of the obligation, and the déatoen
is, again, recorded explicitly ascancelledo 4 fluent. If not ful-
filled or canceled, the obligation persists until the desalli

Observe that, in case the deadline does not occur (goods are
never sent) the obligatio® (—goodsltpay) requires, anyhow, that
the payment is eventually done. A weaker notion of obligatio
could be defined by replacing the until operator withwreak until
one, or by modeling deadline obligations@6-(—payld—goods)).
Such alternative formulations are closer to the notion afdiiae
obligation studied in [7]. Such obligations, however, catrive en-
coded in the restricted syntax of our action language.

Nevertheless, according to the propagation propertieshbbga-
tion O (—goodsUpay) which has neither been violated not fulfilled
(goods have not been sent and the payment has not been demre), p
sists and is not canceled. It can be considered as beingifgnd
and its presence can be detected.

It is then a matter of choice, during compliance verificatitm
consider the presence of such "pending” obligations agipgiout
a violation or not, according to a stronger or weaker notibcom-
pliance we want to verify (we refer to Section 7).

Contrary-to-duty obligations. In some cases, an achievement
obligation can persist even after the deadling@éesistent obliga-
tion in [21]). Actually, in a more complete version of the example
above, there is aontrary-to-duty obligation the violation of the
obligation to pay before goods are sent causes a new ololig¢it
pay with a fine) within the end of the business process exattbi

be generated:

XO(—endUpay_with_fine) «— violatedo(-goodsttpay)

meaning that, under the violation of the obligation to pajobe
goods are sent, a new obligation is added (in the next stamgyt
with fine within the end of the business process executiorheks
we check for the compliance dihite business process executions,
we assume that all finite process executions reaehdrstate. The
fulfillment of the obligation to pay with fineompensatethe earlier
violation, i.e.

Compensatedo(—‘goodsupay) — fuzfilledo(—‘endlz{payjine)

Following [21], we want to identify those violations whichescom-
pensated, to recognize sub-ideal situations in which tbegss is
not fully compliant, but all the violations have been comgeeed
(see again section 7). We consider the original obligatampuen-
sated also in case the new obligation is itself (violated) axan-
pensated, or it is cancelled:

compensatedo(ﬁgoodsumy) — compensatedo(ﬂe"dupayjim)
Compensatedo(—‘goodsupay) — Cance”edo(ﬂendL{payjine)

Note thatcancelledoay only holds as effect of some action
(like cancel_order above) cancelling the obligation, not in case
O(A) is discharged for other reasons (fulfillment or violation).

as DLTL is an extension of LTL, it is possible to provide an@ahc
ing of all ConDec [34] constraints into our action languadée
additional expressivity which comes from the presence of@m

The easiness to model the fact that “a violation causes a new expressions in DLTL, allows for a very compact encoding ofaia

obligation” in a causal and temporal deontic framework, \&hs
ready observed in [38], where a temporal deontic logic based
causal theories was introduced.

To represent contrary-to-duty obligations, [23, 21] expddli-
gation chains of the formdA ® OB ® OC, (meaning that OB
is the reparation of the violation @A andOC is the reparation
of the violation of OB”) which may occur in the head of rules.
The causal rules above are well suited to represent suchdec
obligations.

Maintenance obligations Maintenance obligations require a con-
dition to obtain during all instants before a deadline. Fstance,
(from [21]) after opening a bank account, customers musp kee
positive balance until bank charges are taken out. Theteffec
actionopening_accounis modeled by the action law:

[opening_account]O(pos_balanceldcharges_taken_out)

A maintenance obligation persists until the deadline ished or
the obligation is violated or cancelled. The dynamic of rtexin
nance obligations is ruled by persistency, fulfilment araation
laws for until obligations in Section 5.

Punctual obligations They can be modeled by obligations of
the form O(X1). Suppose, e.g., that when a system receives a
given message, it must immediately acknowledg®itX ack) «—
received_message. According to the rules in Section 5, if not
canceled, this obligation causes the obligat®fuck) to be added

to the next state.

Preemptive and nonpreemptive obligations [21] distinguishes
preemptive and non-preemptive achievement obligationasider
the following example: after a contract has been signedpg bas
to be sent within a given deadline. If the copy has been sdotde
the contract has been signed, this does not fulfill the ofitigaln
this case, the obligation is said to hen-preemptive To capture
non-preemptive obligations, we introduce an obligatioexecute
an action as followsO (—deadlineld (send_copy)T). This obli-
gation is fulfilled if the actionsend_copy is executed within the
deadline (and after the obligation has been generated).

Observe thatlefeasibilityhas been identified in [35] as one of the
crucial aspects in the formalization of business rules. if&ss
rules are inherently defeasible, due to the presence opéros. In
the context of an ASP language, defeasibility is captureddigult
negation, and several approaches to the definition of pmedes
among ASP rules have been proposed in the literature. licpart
ular, [10] introduces a general methodology for expresgireg-
erence information among rules by encoding prioritizedypams
into standard ASP programs. The approach proposed in [10] ca
be exploited in this setting to model defeasible norms awitided
defeasible causal laws.

7. COMPLIANCE VERIFICATION

The action theory introduced in Section 3 does not only allow
for the specification of the business rules (the norms), #ls®
well suited for the specification of the business procesdfitdn
particular, the temporal action language can be used bothein
specification of the business process workflow (by explogiiis
capability to represent complex actions), as well as in frexiéi-
cation of the atomic tasks occurring in it (see [9]). Obsedha,

declarative properties of the domain dealing with finiteat®rr.
Furthermore, following the approach in [17, 24, 41], in whan-
notationsare introduced to decorate the business process, we can
exploit the temporal action language as an expressive fam&o
formulate properties annotations: the effects and, phssite pre-
conditions of the atomic tasks can be defined by introducingg
sitions representing the properties of the world that afectdd by

the execution of the atomic tasks and are subject to the norms

Given the specification of the business process (includingiz
tasks annotations) and of the business rules in the deentipdral
action language above, several verification tasks can besskt
within the proposed approach, including compliance vexiitm.
However, as a preliminary step before compliance verificatihe
consistency of the rules encoding the norms (and of the ations
describing the effects of atomic tasks) must be verifiedresgahe
consistency conditions in Section 4. More precisely, wetwan
exclude that a state is reachable in which not all the camitin
Proposition 3 are satisfied, to avoid, for instance, thatregiictory
obligations are generated.

For consistency verification, we can introduce a new prajoosi
d_i, representing deontic inconsistencgnd, for each set of con-
flicting deontic literals in Proposition 3, we introduce desufor
instance:

d_i — O(l), 0(1)

Then, we can check if there is a possible action sequence star
ing from an initial state in which~d_i holds and leading to a
state in whichd_: holds, i.e., an execution satisfying the formula
—d; A <d;. Areachable state in which ¢ holds is a state in which
there are conflicting obligations, which may have been geadr
by conflicting rules. Inconsistencies in the definition obimess
rules have then to be resolved, by modifying the businesssrul
themselves and, possibly, by introducing preferences grtim.

The verification that a business process is compliant wigt afs
business rules [17, 24, 41] consists in verifying that adf tlorms
or business rules are satisfied in all the execution of thega®
Here, we distinguish among business rules which can be edcod
as temporal formulas not including obligations and businetes
whose modeling involves the obligations.

The specification of the norms, the annotations and the bssin
process together define the domain description on whiclficeeri
tion is performed. For the rules which can be encoded as tempo
ral formulas, the validity of the formulas has to be checkéd
an example, consider, in the order-production-deliveiycpss in
[29], the rule “Premium customer status shall only be offeaéter
a prior solvency check”. It can be verified by checking vajidif
the temporal formula

O(solvency_check_done—(offer_prem_statusl)

in all possible states of the business process, if the action
offer_prem_statuss executable, thesolvency_check_dormaust

be true. As in the verification we want to check only the run of
the process reaching tleed we assume the program specification
contains the constraidtend, which cuts out all the other unwanted
executions (for instance, infinite iterations in interradps).

3For instance, the property “action b must be executed imateli
after any even occurrence of action a in a run” can be expldsse
the temporal constraintl[(a; X*; a)*]{(b) T), whereX* represents
any finite action sequence.

In the verification of compliance involving obligatiorfs)l com-
pliance amounts to check that the obligations which have been
generated during the business process execution haveerottoe
lated, i.e., that, for all obligation®(A) occurring in the specifica-
tion, the formula

O-wiolatedoa)

is valid. The existence of a run satisfying the negation &f tbr-
mula, for some4, proves that the process is not fully compliant.

In this respect, we have also to consider the fact that these m
be obligations of the forn®(/1¢/12) which have neither been vio-
lated nor fulfilled, and they are still pending in thadstate. The
possibility that an obligation with a deadline is triggerédt the
end is reached without the deadline having occurred, noolblie
gation being fulfilled or cancelled, may be evidence of a flathie
model, therefore we may add to our notion of full compliantee t
requirement that there are no pending obligations iretiestate,
i.e., that for all obligation® (A) occurring in the specification, the
formula

—O(end A O(A))

is valid. We can instead define a somewhat weaker notion of com
pliance by stipulating that the presence of obligationswéadline
of the formO(—goodsUpay) in the end state can be accepted and
does not affect the compliance.

The notion ofweak compliancedefined in [21] requires that all
the violated obligations have been compensated. In ourefnaork
its verification requires to check that, for each obligati®A)
occurring in the specification, the formula

O(violatedo(ay — Ocompensatedo(ay)

is valid, i.e., if an obligation is violated at some stagés itompen-
sated later.

The verification task considered in [12], namely the verifaa
of properties of a business process under the assumptibththa
process satisfies some given business rules, can also tessedr
in our approach: the specification of the business rules lagid t
fulfillment condition can be added to the domain specificatithe
executions of the resulting domain specification can therebiéed
against other temporal properties. Unlike [12], here we atodeal
with data properties and with the verification of first ordenporal
properties.

In [20] Bounded Model Checking techniques are developed for
the verification of DLTL properties of a temporal action thedl'he
approach in [20] extends the one developed in [26] for bodnde
LTL model checking with Stable Models. The approach can be
used for checking satisfiability of temporal formulas ovetem-
poral action domain, by providing an encoding of both théoact
domain (action, causal, precondition laws) and of the tealgor-
mula in ASP. Satisfiability can then be checked by running 8P A
solver, which computes the temporal answer sets of theradte
main satisfying the temporal formula. To prove the validifya
formula, its negation is checked for satisfiability and, ase the
formula is not valid, a counterexample is provided.

8. CONCLUSIONS AND RELATED WORK

This paper enhances the approach to business processes com-
pliance verification in [9], where attention was limited fzesific
kinds of achievement obligations. In [9], obligations aepne-
sented asommitmentgborrowed from the social approach to agent
communication [37]), and no temporal formulas may occuhimit
commitments. In this paper, we show that a deontic extension
the temporal ASP language in [20], with restricted kindseoiipo-
ral formulas occurring within deontic modalities, allovssrhodel
several different kinds of obligations and to capture défe no-
tions (full and weak) of compliance. The use of causal lavesh b
static and dynamic ones, is crucial for the representatioroons,
and, in particular, for modeling the dynamics of obligadsuch
as deadlines and contrary-to-duty obligations). The Dedrém-
poral ASP language can be encoded in standard ASP by extend-
ing the approach developed in [20] and bounded model chgckin
techniques, extending those in [26], can be used for vetiifica
of temporal properties of the business process that go letjmn
verification of the fulfillment of the generated obligations

In [13] a Dynamic Deontic and Temporal Logic has been pro-
posed to reason about obligations and deadlines. In pkaticu
[13] gives a formalization of achievement obligations a$igab
tions with an until formulas as argument. We exploit thisaidie a
simpler temporal dynamic deontic logic and show that thesdv
kinds of obligations which are relevant for business precesifi-
cation can be formulated.

In [7] Broersen et al. propose a semantics for deadline ablig
tions in terms of CTL models and show that their operator sbey
intuitive properties and avoids some counterintuitiveprseich as
agglomeration. As we have observed in Section 6, while #mir
coding does not fit the syntactic restrictions of our actiogory,
our notion of deadline obligatio® (—deadlineldp) requires thap
is eventually true, even in case the deadline does not oaver-
theless, from a practical point of view, when evaluating ahtaial
course of actions, we have to stipulate whether pendinglidead
obligations have to be regarded as violations or not. A disicun
of this problem in a multiagent setting can be found in [5]enit
is shown that conditional temporal order obligations camiagle
into deadline obligations when agents do not control avaidaof
the deadline condition. In this paper, we do not addressritagm
of compliance verification of agent strategies.

[39] exploits the temporal logic CTL in the specification ofha-
mitment protocols. Temporal formulas can occur within cdthm
ments and commitments can be nested (metacommitmentsieUnl
our approach, [39] does not define an action theory for reagon
about the effects of action executions, and commitmentsare
regarded as modalities with an associated Kripke semantics

An approach to compliance based on a commitment semantics in
the context of multi-agent systems is proposed in [8]. THa@s
formalize notions of conformance, coverage, and interipéty,
proving that they are orthogonal to each other. [8] does ddtess
the problem of business process compliance with norms.

Several proposals in the literature introduce annotatonisusi-
ness processes for dealing with compliance verification P47

The same approach can be adopted for the verification of deon-41]- In particular, [24] proposes a logical approach to hess

tic temporal formulas in which deontic formulas are resttcto
deontic fluent literals as in Section 3. In such a case, debtsi-
als play the role of the simple literals in the encoding in][2(
addition, to guarantee the consistency of deontic flueatdis, a
set of constraints has to be added to the encoding of thenadto
main to exclude those answer sets containing states whéchcr
deontically consistent. The required constraints coordpo the
conditions given in Proposition 3.

process compliance based on the idea of annotating thedsssin
process. Annotations and normative specifications aragedvn
the same logical language, namely, the Formal Contract Wz
(FCL), which combines defeasible logic [2] and deontic togf
violations [23]. In [21] different deontic operators aréroduced
in PCL for representing the different kinds obligationsritifted
in [22]. The process model is extended with a set of annatstio
describing the effects of the atomic tasks and the rulesrithésg

the obligations. Compliance is verified by traversing thecpss
graph and identifying the effects of tasks and the obligetiig-
gered by each task execution. Algorithms for propagatiriggab
tions through the process graph are defined. In our approaeh,
dynamic of commitments and the propagation properties ligab
tions are declaratively modeled by a set of causal laws, anfl-v
cation related to obligations is performed by checking thiédity
of temporal formulas, not differently from the verificatiohother
requirements.

[22] presents a conceptual analysis of several kinds of -dead

lines in Temporal Modal Defeasible Logic (which combinesme
tic modalities with temporal intervals), according to whifferent
obligations require distinct compliance conditions. lis{maper we
have adopted the approach of defining different complianoelie
tions for the obligation®© (a/3) and O(X«) and we have used
them to provide a characterization of the different kindsobfi-
gations considered in [22]. [22] does not address the pnolie
propagation of obligations.

The idea of describing the effects of atomic tasks on datautiir
preconditions and effects is already present in [28], wiediects
and preconditions are sets of atomic formulas, and the baakd
knowledge consists of a theory in clausal form; I-Propagefi1]
is exploited for computing annotations. In our approactdibh@ain
theory contains directional causal rules, building on wonkrea-
soning about actions and change for adequately repregematini-
fications (i.e., sides effects of actions).

In [30] Lomuscio and Sergot explore a deontic extension ef In
terpreted Systems [14] to provide a grounded semanticsditide
concepts. They apply the formal machinery to the analysia of
protocol and show that violations and correct functionie@dvior

of parts of the system can be represented through normaine a

epistemic properties.

In [32] the Abductive Logic Programming framework SCIFF is
exploited in the declarative specification of business gsses as
well as in the verification of their properties. In [1] expatdns
are used for modelling obligations and prohibitions andmoare
formalized by abductive integrity constraints.

The approach to business process verification we have peesen
in this paper is also related with artifact-centric apptopcocess
verification in [12]. The problem of capturing data awarenes

the approach to verification based on Temporal ASP has been ad

dressed in [19].

9. ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their helpful comments [21]

and suggestions.

10. REFERENCES

[1] M. Alberti, M. Gavanelli, E. Lamma, P. Mello, P. Torroni,
and G. Sartor. Mapping of Deontic Operators to Abductive
ExpectationsNORMAS pages 126-136, 2005.

[2] G. Antoniou, D. Billington, G. Governatori, and M. J. Mah
Representation results for defeasible logi€M Trans. on
Computational Logic2:255-287, 2001.

[3] M. Baldoni, A. Martelli, V. Patti, and L. Giordano.
Programming rational agents in a modal action logien.
Math. Artif. Intell, 41(2-4), 2004.

[4] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and
Y. Zhu. Bounded model checking.dvances in Computers
58:118-149, 2003.

[5] J. Broersen. Strategic deontic temporal logic as a recic
to atl, with an application to chisholm’s scenario.DEON

06, LNCS 4048pages 53—-68, 2006.

[6] J. Broersen and J. Brunel. 'What | fail to do today, | hawe t
do tomorrow’: A logical study of the propagation of
obligations. INCLIMA, LNCS 5056pages 82-99, 2007.

[7] J. Broersen, F. Dignum, V. Dignum, and J.-J. Ch. Meyer.
Designing a deontic logic of deadlines.MEON 04, LNCS
3065 pages 43-56, 2004.

[8] A.K. Chopra and M.P. Singh. Producing compliant
interactions: Conformance, coverage and interopergbilit
DALT IV, LNCS(LNAI) 4327pages 1-15, 2006.

[9] D. D'Aprile, L. Giordano, V. Gliozzi, A. Martelli, G. L.

Pozzato, and D. Theseider Dupré. Verifying business psoces

compliance by reasoning about actionsCinlIMA XI, pages

99-116, 2010.

J. P. Delgrande, T. Schaub, and H. Tompits. A framework f

compiling preferences in logic prograniheory and

Practice of Logic Programming(2):129-187, 2003.

R. Demolombe and M. del Pilar Pozos Parra. A simple and

tractable extension of situation calculus to epistemiaclog

ISMIS pages 515-524, 2000.

A. Deutsch, R. Hull, F. Patrizi, and V. Vianu. Automatic

verification of data-centric business processe$CDT,

pages 252-267, 2009.

[13] F. Dignum and R. Kuiper. Combining dynamic deontic ogi
and temporal logic for the specification of deadlines. In
HICSS (5) pages 336-346, 1997.

[14] R. Fagin, J.Y. Halpern, Y. Moses, and M.Y. VarBieasoning
about KnowledgeMIT Press, 1995.

[15] M. Gelfond. Answer Setddandbook of Knowledge
Representation, chapter 7, Elsevig007.

[16] M. Gelfond and V. Lifschitz. Action languageBlectron.
Trans. Artif. Intell, 2:193-210, 1998.

[17] A. Ghose and G. Koliadis. Auditing business process
compliancelCSOC, LNCS 474%ages 169-180, 2007.

[18] G. De Giacomo and M. Lenzerini. Tbox and abox reasoning

in expressive description logics. KR, pages 316-327, 1996.

L. Giordano, A. Martelli, M. Spiotta, and D. Theseider

Dupré. Business processes verification with temporal ASP:

from process annotations to data awarenesBrdc. KIBP

2012

L. Giordano, A. Martelli, and D. Theseider Dupré.

Reasoning about actions with temporal answer Jétsory

and Practice of Logic Programming3:201-225, 2013.

G. Governatori. Law, logic and business processe$hird

International Workshop on Requirements Engineering and

Law. IEEE, 2010.

G. Governatori, J. Hulstijn, R. Riveret, and A. Rotolo.

Characterising deadlines in temporal modal defeasiblie.log

In Australian Conference on Artificial Intelligence, LNCS

483Q pages 486-496, 2007.

G. Governatori and A. Rotolo. Logic of Violations: A

Gentzen System for Reasoning with Contrary-To-Duty

Obligations.Australasian Journal of Logic4:193-215,

2006.

G. Governatori and S. Sadiq. The journey to businessga®

complianceHandbook of Research on BPM, IGI Global

pages 426-454, 2009.

D. Harel. Dynamic logic. IlrHandbook of Philosophical

Logic, vol. 2 pages 497-604, 1984.

K. Heljanko and I. Niemel&. Bounded LTL model checking

with stable modelsTheory and Practice of Logic

[10]

[11]

[12]

[19]

[20]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]
[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]
[39]

[40]
[41]

Programming 3(4-5):519-550, 2003.

J.G. Henriksen and P.S. Thiagarajan. Dynamic LineareTi
Temporal LogicAnnals of Pure and Applied logic
96(1-3):187-207, 1999.

J. Hoffmann, I. Weber, and G. Governatori. On compl@&anc
checking for clausal constraints in annotated process ls.ode
Information Systems Frontiere2009.

D. Knuplesch, L. T. Ly, S. Rinderle-Ma, H. Pfeifer, and

P. Dadam. On enabling data-aware compliance checking of
business process models.Rroc. ER 2010, 29th
International Conference on Conceptual Modelipgges
332-346, 2010.

A. Lomuscio and M. J. Sergot. Deontic interpreted syste
Studia Logica75(1):63-92, 2003.

C. Lutz, F. Wolter, and Michael Zakharyaschev. Tempora
description logics: A survey. INIME, pages 3—14, 2008.

M. Montali, P. Torroni, F. Chesani, P. Mello, M. Alberéind
E. Lamma. Abductive logic programming as an effective
technology for the static verification of declarative besis
processed-undamenta Informaticae02(3-4):325-361,
2010.

H. Palacios and H. Geffner. Compiling uncertainty away
Solving conformant planning problems using a classical
planner (sometimes). lAAAI, pages 900-905, 2006.

M. Pesic and W. M. P. van der Aalst. A declarative apphoac
for flexible business processes managemerBusiness
Process Management Workshops, LNCS 4pages
169-180. Springer, 2006.

H. PrakkenLogical Tools for Modelling Legal Argument
1997.

Klaus Schild. Combining terminological logics withnige
logic. InEPIA, pages 105-120, 1993.

M. P. Singh. A social semantics for Agent Communication
Languageslssues in Agent Communication, LNCS(LNAI)
1916 pages 31-45, 2000.

L. van der Torre. Causal deontic logic. Deon’2000 2000.
M. Venkatraman and M. P. Singh. Verifying compliancetwi
commitment protocolsAutonomous Agents and Multi-Agent
Systems2(3), 1999.

G. von Wright. Deontic logicMind, 60:1-15, 1951.

I. Weber, J. Hoffmann, and J. Mendling. Beyond soundnes
On the verification of semantic business process models.
Distributed and Parallel Databases (DAP¥010.

