Authentication and Access Delegation
with User-Released Certificates

Lavinia Egidi
Dipartimento di Informatica
Univ. del Piemonte Orientale
Spalto Marengo 33
15100 Alessandria, Italy

lavinia@mfn.unipmn.it

ABSTRACT

We propose an authentication and access delegation system
based on an unconventional use of X.509 certificates. It al-
lows users to connect from any untrusted machine and to
define dynamically a group of trusted co-workers. It is low
cost, doesn’t need unusual software nor hardware on the
client’s side, and offers a good degree of security without
requiring that the user be too careful. The underlying idea
is to enable users to release their own certificates with very
short life span (or usable just once) to authenticate them-
selves to the server.

Keywords

Authentication, access delegation, user-released certificates,
short-lived and one-time certificates.

1. INTRODUCTION

We propose a short-lived password authentication system
based on public-key certificates that allows for user-defined
delegation of access. It permits a high degree of user mobil-
ity and is low-cost.

Our aim in designing the protocol was to offer flexible
authentication mechanisms, while preserving acceptable se-
curity levels, using off-the-shelf browsers and a commonly
used server. We specifically had in mind a highly mobile
user, not very security conscious, that should not be charged
with much responsibility, and that needs dynamical sharing
of data. In other words (a) our user can need to access
sensible information on a web-server from any (untrusted)
machine; (b) our user needs to share documents and in-
formation with selected co-workers; (c) the sharing groups
change in time and must be managed in a dynamical way;
(d) we cannot depend upon the user to follow a strict se-
curity protocol; (e) we do not wish to equip the user with
expensive hardware; (f) we must assume very ordinary hard-

Permission to make digital or hard copies of all or part of this work for

Maurizio Melato
NICE srl
Via Serra 33
14020 Camerano Casasco, Asti, Italy

maurizio@nice-italy.com

ware and software on the remote host; (g) we still wish to
maintain a reasonable level of security.

The prototypical user we initially had in mind is a stu-
dent at our University; most of our students live in their
own home towns, in an area of up to 30-50 km from the
University buildings. The University buildings are in three
different towns and not even grouped in campuses.

Although our situation is somewhat extreme, the system
we propose has features that can be interesting for low-
budget companies, for non critical or non educated staff
of large companies, for flexible access management in large
structures.

The underlying idea is to release to end-users certification
authorities (CA), in order to enable them to create their
own certificates and, in turn, CAs. The certificates signed
by user-CAs have very short time validity, thus allowing for
careless use in non trusted environments. Releasing a sub-
ordinate CA to another user, and properly setting a con-
figuration file on the web server, end-users can grant and
revoke access to areas of their own directories on the server
to share information with co-workers in a controlled and
dynamic way.

As a variant of the scheme, we also present a non con-
ventional implementation of a challenge-response authenti-
cation mechanism using public-key certificates that yields
the protection of a one-time password at the low cost of
a CD or floppy disk, with very ordinary hardware require-
ments on the end-host from which the roaming user logs in.
The higher security level is paid in terms of complexity on
the server side. In this setting, user released certificates in-
corporate random information obtained from the web server
and serve as one-time passwords.

We present our ideas in the framework of directory ac-
cess via a web interface, and web-server based access con-
trol, mainly because this was the problem we originally ad-
dressed. The stress, though, is on the mechanism and on
its features. Our ideas have wider application. The scheme
could have a major role in building a simple collaborative
infrastructure or it can be integrated with any authoriza-

personal or classroom use is granted without fee provided that copies aretion system for implementation of access control to services
not made or distributed for profit or commercial advantage and that copies offered by an Internet portal, as support for collaborative
bear this notice and the full citation on the first page. To copy otherwise, to epgineering architectures.

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.
SAC’'03 Melbourne, Florida USA
Copyright 2003 ACM 1-58113-624-2/03/0335.00.

Next section discusses our scheme in the context of related
research. In Section 3 we review some concepts about cer-
tificates and certificate based access control, that we need

in the following. Then, in Section 4 we outline the scheme
based on short-lived certificates. Section 5 describes the
challenge-response variant. The implementation is discussed
in Section 6. We analyze in Section 7 the security of our sys-
tem. We conclude with some additional remarks and future
work.

2. RELATED WORK

Secure access for a mobile user is certainly possible us-
ing specialized hardware (challenge response devices, smart-
cards, etc.). But we rule out this possibility since we don’t
want to give costly hardware to our users and we want to
enable them to connect to our web-server even from a com-
puter in an Internet Café. Authentication with certificates
via a web-server would be fine, except that the certificate
(along with the corresponding private key) is bound to re-
main in the browser’s database, unless explicitly deleted by
the user. But, as we said, we can’t assume that our users
are too careful in deploying a security protocol.

Therefore we must work with ordinary hardware and soft-
ware on the client side, and still protect the user from ac-
cidental misusage of the cryptographic tools on which au-
thentication is based.

The non-conventional use of certificates makes it possi-
ble to base authentication on X.509 certificates (and to use
off-the-shelf software and no expensive hardware to do this)
from any untrusted host, eliminating the risk of leaving sen-
sible data on untrusted machines. There are access control
systems based on public key authentication mechanisms and
certificates, like for instance Akenti [17], [1]. Akenti provides
means to implement security policies in a flexible way, but
it doesn’t solve our problem of a non security conscious user
in an untrusted environment.

In addition, access delegation is of great interest in the
domain of collaborative engineering [14]. A large amount of
work is being done both in the industrial and in the academic
world (see for instance [15],[4]), to provide tools for sharing
information and services, and the security aspects are still
under investigation [5].

The LAXCP project of the CIC Research Projects Group
(the CIC is the academic consortium of twelve US Univer-
sities) has specifically addressed the issue of authentication
of students on and off campus, using X.509 certificates. In
their final report [3], they highlight, among other things,
the usefulness of short-lived certificates. Authentication is
carried out in a Kerberos based manner and certificates are
used to implement authorization policies (see also further
developments in [11]).

The LAXCP project is not an isolated case of use of certifi-
cates with a short validity period for authorization purposes.
In [12], the authors present a framework for secure access to
information servers based on temporary certificates. In their
setting, users hold a secret key in a hardware token. The
corresponding certificate is kept in a database on the server
side. Users authenticate themselves signing a random string
sent by the server; the server checks the signature using the
certificate stored in the database. It then releases tempo-
rary certificates that allow for access to information servers
(a public-key version of Kerberos’ tickets [10]).

Short-lived certificates are also discussed in [8] for autho-
rization in an intranet context, where user mobility is an
issue. The short validity period of certificates protects the

user from leaving behind sensible information.

“Personal CAs” have been introduced in [6] for authenti-
cation of components in a P.A.N., a wireless network con-
sisting of several units located close to the user. Since the
personal CA is a root CA and the trust domain is limited to
the user’s P.A.N., the concept only rescales the usual model
of Public Key Infrastructure to a restricted environment.

3. OVERVIEW ON CERTIFICATES

We briefly review the main concepts about digital certifi-
cates that will be useful in the following.

A public key certificate is a (digital) document signed by
an authority that binds a public key to a certain identity. It
is also known as “digital ID”.

An authority that releases certificates is called Certifica-
tion Authority (CA). It consists of a (cryptographically se-
cure) key-pair for signature and a certificate that binds its
public key to its identity and states that the key-pair can be
used for releasing public-key certificates. The CA certificate
can be released by another CA or can be self-released. A
company that needs certificates for internal use, will typi-
cally have a self-appointed CA. A self-appointed CA is also
called “root CA”. Any CA can release public-key certifi-
cates, but also enable somebody else to sign certificates, i.e.
release a CA certificate. Finally CAs can sign Java™ applets
to guarantee that they can be trusted. Signed applets can
be granted privileges to write to the client’s disk.

The proposed standard (and widely used) format for cer-
tificates is the X.509, described in [7]. Typical fields of X.509
certificates are: version, serial number, signature algorithm
ID, issuer name, validity period, subject (user) name, sub-
ject public key information, issuer unique identifier (version
2 and 3 only), subject unique identifier (version 2 and 3
only), extensions (version 3 only), signature on the above
fields. The subject’s name field (DN which stands for “Dis-
tinguished Name”) consists of a number of subfields: in the
following we refer to CN (“Common Name”) and 0U (“Or-
ganization Unit”). Among Version 3 Extension Fields, the
“Basic Constraint” extension, indicates whether the subject
is a CA or not.

A hierarchy of certificates (a certificate, and the certificate
of the CA that signed it, and so on up to the root CA) can
be compounded in a unique file, called certificate chain. A
certificate chain can be complete, to the root CA, or partial,
to some intermediate CA.

A CA periodically releases a Certificate Revocation List
(CRL) in which it publishes revoked certificates that have
not yet expired, but that are no longer valid because, say,
the corresponding secret key has been compromised, or the
user has changed status, etc.

Browsers are commonly capable of managing certificates.
They maintain per-user databases of personal certificates
and secret keys associated to them. The secret key database
is often encrypted and protected by a password, which is
needed in order to modify the database and to use its con-
tents (but not all browsers enforce the use of password pro-
tection for the secret keys).

In order to add a new user certificate and secret key pair
to the browser’s database, the user must request to “import”
the file containing both of them. File format PKCS#12 [16]
is accepted by Netscape and InternetExplorer.

On the server side, we refer to the Apache Web Server [2]
with the module mod_ssl [13].

Apache can be configured to work at various levels of se-
curity. Configuration directives can be given at server level
or even on a per-directory basis. This means that for each
single directory specific access permissions can be granted.
Per-directory directives are read by the server at each ac-
cess. Therefore they can be reconfigured at any time and
changes take effect immediately (as opposed to server level
configuration directives that are read only at start-up time).

An SSL-enabled Apache web server can be configured to
demand a certificate of the client that is requesting a secure
(https) connection. In order to verify the validity of the
client’s certificate, it also checks the CRLs of CAs in the
certificate chain in a specified directory (even CRLs of CAs
that are not explicitly listed as trusted by the server). Di-
rectory access can be granted based on data in any fields of
the user’s certificate (and/or on general parameters of the
connection).

The server looks for directory level directives in a file
called (by default) .htaccess, in each directory of the path
of the file that is being accessed, in descending order.

4. TEMPORARY CERTIFICATES

The whole functionality is based on the idea that users
are granted permission to release certificates.

The Organization, has a (maybe self-appointed) certifica-
tion authority; let us call it Main CA (MCA). It issues to
each authorized user a child CA (which we refer to as User
CA or UCA) with permission to release end-user certificates
and new CAs. The UCA’s private key is given to the user
on a hardware token (a CD or a floppy disk) encrypted us-
ing some symmetric cipher. The secret encryption key is
given separately to the user, in the form of a password. The
public-key certificate of the UCA signed by MCA is also
saved on the hardware token.

For privacy protection, each user and their UCAs are iden-
tified with numerical IDs, rather than their names.

4.1 Mobility

Briefly, the user Fred lets his personal CA sign a certificate
with very-short (two or three minutes) time validity, and
presents it to the server as he requests access.

The access authorization is given by the server after a
check on the validity of the certificate and on the identity of
the issuer. The .htaccess file might look like this:

SSLRequire (
%{SSL_CLIENT_CERT_CHAIN_1} == file("UCA.pem"))

The directive SSLRequire is used to allow access to a di-
rectory based on the truth value of a boolean expression.
The file UCA.pem contains the PEM encoded version of the
certificate of Fred’s UCA, and SSL_CLIENT_CERT_CHAIN_n is
a variable that takes as its value the PEM encoded certifi-
cate of the n-th certificate up the client’s certificate chain
(for n = 0 it is the client’s certificate). Therefore, the di-
rective above instructs the server to test that the client’s
certificate is issued by Fred’s UCA.

Notice that the check is on the certificate of the issuer
of the temporary certificate. The validity of the short-lived
certificate proves to the server that the user that is request-
ing access is in possession of the secret key of the UCA;

the temporary certificate does not convey other information,
since any UCA can sign whatever it chooses to. Moreover,
checking the issuer’s certificate against the file UCA.pen (as
opposed to checking just the issuer’s identity, say) serves to
counter impersonation attacks in which any other user of
the same company, who has a regular UCA released by the
MCA, releases a CA to the name of Fred, and signs with it
short-lived certificates to access Fred’s area on the server.

More in detail, a secure connection is a four step process:
1. Connection to the Web Server in order to:

(a) import into the browser the CA with which the
applet has been signed (see next item), so that
the applet will be trusted

(b) download the signed applet
2. Certificate Generation, that requires

(a) loading the UCA’s private key (a PKCS#12 file)
from the hardware token

(b) getting the user’s password and decrypting the
UCA'’s secret key

(¢) compiling and signing the certificate
(d) converting the certificate chain in PKCS#12 for-
mat

3. Certificate Importation
4. Connection

If the temporary certificates have very short time validity,
then synchronization is an issue. We feel that we cannot
assume that an untrusted host has accurate time. Therefore,
in order to set the proper validity interval for the certificate,
the applet must download date and time from the server.

We discuss in Section 6 how this can be realized and what
we have done.

We anticipate that the UCA’s private key is decrypted
and used only by the trusted (signed) applet from the Or-
ganization, that cares not to leave sensible data behind.

4.2 Access Delegation

But to use the full potentiality of being appointed Certifi-
cation Authority, Fred can also delegate to other people ac-
cess to areas in his directories, maintaining the same secure
authentication mechanisms and dynamically without having
to inform the system administrator. The idea is simply to
iterate the procedure: Fred releases a guest CA (GCA) to
Mary, and Mary will use it to generate short-lived certifi-
cates following the procedure outlined above.

Let’s analyze the details of how this works.

Fred releases to Mary a CA certificate to her (numerical)
name MMMMM, with the field OU set to FFFFF (the use of the
latter will be clear later), and a suitable life span.

Fred maintains in his home directory one shared directory
and one private directory. (The discussion can be general-
ized to more than one private and one shared directories.)
The .htaccess file in the home directory allows access to
any one who has a certificate released by Fred’s CA or by a
GCA released by Fred’s CA:

SSLRequire (
%{SSL_CLIENT_CERT_CHAIN_1} == file("UCA.pen")
OR %{SSL_CLIENT_CERT_CHAIN_2} == file("UCA.pem"))

Again, this counters impersonation attacks.

No one is allowed by the web server reads or writes in this
directory. Basically the directory is reserved for administra-
tive purposes.

Access to any subdirectory is conditioned to access to the
home one (see [2]). Therefore only Fred or any of his guests
are considered for access to the private or the shared direc-
tory.

The private directory is protected as follows:

SSLRequire (
%{SSL_CLIENT_CERT_CHAIN_1} == file("../UCA.pem")
AND %{SSL_CLIENT_S_DN_QU} != "FFFFF")

The first line tells the server to accept only certificates
released by Fred. The second line is to check that the client’s
certificate is not a GCA released by Fred.

Access to the shared directory needs not be limited since
the directory is shared among all users that are admitted to
the home directory.

A finer sharing policy is possible, and it requires that Fred
set up properly his account. Fred can share different direc-
tories with different groups of people. In order to do so, Fred
must customize the .htaccess file in each one of the shared
directories, to define who is admitted to share it. The file
will look for instance like this:

SSLRequire (%{SSL_CLIENT_I_DN_CN} == "MMMMM"
OR %{SSL_CLIENT_I_DN_CN} == "JJJJJ")

(i.e. the issuer must be either MMMMM or JJJJJ) in order to
admit Mary (MMMMM) and John (JJJJJ).

Notice that the general admittance (i.e. to Fred’s home
directory) is granted based on Fred’s permission (his UCA
must be the last or second-last issuer in the chain), that is,
the server protects Fred’s data against intruders. But Fred
manages the sharing of his subdirectories.

In the directory specified by the SSLCARevocationPath
variable in the server’s httpd.conf file, users keep the re-
vocation lists of their CAs. When Fred’s cooperation with
Mary is finished, Fred revokes Mary’s GCA certificate, and
releases an updated revocation list. Fred uploads the revo-
cation list to the server and the server updates the symbolic
links in the directory. Mary’s certificates will no longer be
accepted by the server.

5. ONE-TIME CERTIFICATES

The same ideas can be used to implement a challenge-
response system. The advantage over temporary certificates
is that whereas an adversary can take his time working off-
line in order to falsify a short-lived certificate, he can’t do
so in a challenge-response system.

As above, Fred connects to the access point of the web
server, and fills in his own personal ID in a form. He retrieves
from the server a random number computed by the server,
along with the correct date and time and a signed Java™
applet. Then he proceeds as above. The only difference is
that the applet writes the random number to the field CN of
the subject of the certificate before signing it.

The server updates the .htaccess file in Fred’s home di-
rectory to take into account the random number:

SSLRequire (
%{SSL_CLIENT_CERT_CHAIN_1} == file("UCA.pem")
AND %{SSL_CLIENT_S_DN_CN} == "RRRRR")

where RRRRR is the random number. Here the issuer’s certifi-
cate must match the one saved in Fred’s home directory, and
the “Common Name” of the subject of the client’s certificate
must match the random number RRRRR.

In this case it is necessary to define on the server side a
connection session. The end of the connection is either ex-
plicitly declared by the user, or implied by a request of ac-
cess to some location with a different authentication policy,
or caused by a time-out. At the end of a session the server
sets the .htaccess file to SSLRequire (false) to make
sure that nobody is granted access to the directory.

Access delegation is obtained very similarly.

The .htaccess file in Fred’s home directory is updated
at each connection with a constraint that takes into account
the random number:

SSLRequire (
(%{SSL_CLIENT_CERT_CHAIN_1} == file("UCA.pem")
OR %{SSL_CLIENT_CERT_CHAIN_2} == file("UCA.pem"))
AND %{SSL_CLIENT_S_DN_CN} == "RRRRR")

Access to the private and shared directories can be pro-
tected as in the previous section, except that it is no longer
necessary to recognize a GCA as such, since GCA certifi-
cates don’t incorporate the server’s challenge.

6. THE IMPLEMENTATION

The connection procedure we detailed in Subsection 4.1 is
thought as implemented using Java™ servlets and applets,
for platform independency. In order to use the security and
cryptography services, Java™2 [9] is necessary. For that the
Java™2 plug-in has to be installed on the browser and dif-
ferent browsers require different but well documented con-
figurations of the HTML page that loads the applet.

We installed an experimental web server, using Apache
with mod_ssl. We tried various access configurations for
the different settings. We wrote a signed applet to sign cer-
tificate requests and executed it, granting to it the necessary
writing permissions. We successfully used our certificates for
access.

In its more rudimentary form, the deployment of the log-
on procedure is rather cumbersome on the part of the user.
Yet, most of the procedure can be automatized. The user
must initiate the connection, import the certificate of the
applet signing CA to the browser, grant the proper creden-
tials to the signed applet, and provide the password that
protects his private UCA key, when prompted to do so.

Specifically this implies that the applet must take care
of downloading date and time, compiling and signing the
certificate, importing it into the browser and proceeding to
the final connection step.

Besides connection, other management services are vital
to the system. They are all quite standard and should offer
no real challenge. We summarize the functionalities that the
system should have:

e software for preparation and signature of temporary
(or challenge-response) certificates, as discussed above;

e cryptographic software for releasing GCAs, as well as
support for configuration of user-defined access per-
missions;

e cryptographic software for revocation of GCA certifi-
cates and release of CRLs;

e software for management of CRLs, i.e for their upload
to the server and for the proper update of the CRLs
directory on the server;

e some user-friendly interface for general management of
access delegation (including the previous three items).

Since the client is submitting a certificate chain each time
it connects, it is not necessary that the server maintains a
database of the UCA certificates that the MCA has released,
nor of the GCAs. On the other hand, if directory sharing is
supported, then CRLs of UCAs can be present on the server,
maintained by the users via the software provided.

Access control can also be implemented in a server-side
script (php, asp,...), which would allow for a more flexible
analysis of the certificates. The Basic Constraint field, for
instance would be readily available for use, which would
permit a more elegant usage of certificates.

7. SECURITY

We distinguish among different types of potential adver-
saries, to analyze the security of the system:

Protection from a Generic Adversary.

The authentication protection is based on possession of the
encrypted UCA key and knowledge of the encryption pass-
word.

As opposed to a system based on smart-cards or challenge-
response password computing devices, the requirement of
possession of the UCA private key is weaker than the re-
quirement of physical possession of the hard-ware token. In-
deed the contents of a floppy or a CD can be easily copied
and the user might not be aware that this happened.

The UCA key, though, is also protected by a password
with an arbitrarily high security level. The level of protec-
tion depends on the secret key algorithm chosen and on the
length and unpredictability of the key.

The existence of end-user certificates entails the presence
of end-user key pairs, but the latter are never really used.
The identity proof is given by means of the UCA or GCA
signature on the certificate, no matter what key pair is being
certified. Therefore key-pair generation at each connection
is not a hot issue.

The short life span of final certificates (or their one-time
validity) protects users from replay attacks, in which cer-
tificates are seized by an adversary and their use for later
(unauthorized) access is attempted.

Protection from Other UCA Owners.

Any user that has a UCA released by the same MCA is ca-
pable of releasing certificates or GCAs, to any name, gener-
ating authentication tokens that are accepted as valid by the
server. The specific checks on the certificate of the issuer of
the GCA or of the end-certificate (against a certificate stored
in the user’s home directory) protect from adversaries inter-
nal to the company.

Protection from Guests.

Malevolent guests have yet another advantage over other
users, since they own a valid certificate released by their

host’s UCA. Indeed we had to add specific information on
GCA certificates in order to distinguish them from tempo-
rary certificates issued by the same UCA. The problem is
not encountered in the challenge-response version since GCA
certificates can’t incorporate the right random string.

Protection from Accidental Misuse.

The applet downloaded from the server automatically gener-
ates the certificate. Only a temporary certificate is imported
into the browser. The certificate doesn’t contain relevant
data and after its expiry is useless.

The user is only requested not to keep password and hard-
ware token together, and not to entrust them to anyone,
and to inform promptly the MCA if the password is com-
promised and/or the hardware token is lost or stolen. This
is the minimum requirement for any authentication system
based on “something the user knows” and “something the
user owns”.

All users who regularly carry out certificate operations
using the software provided by the company don’t have to
worry about clean-up procedures, or extra security mea-
sures.

The possibility is still left open that alternative software
is made available (and indeed the skilled user has a wide
choice of cryptographic tools) for signing certificates with
longer validity, or guest CAs that don’t have the CN_DN_QU
field properly set, etc. This kind of misuse can be prevented
only to a certain extent, but we feel that it can be considered
equivalent to lending the hardware token or disclosing the
password to unauthorized users.

8. CONCLUSIONS AND FUTURE WORK

In all certificate related applications we have seen in liter-
ature, user and CA domains are clearly distinct. Our scheme
proposes an unconventional way to look at certificates. An
analogy could be a debit-card system that enables debit-card
owners to release their own short-lived or one-time debit-
cards (tokens). Users would carry only the tokens in their
wallets and wouldn’t need to worry much about forgetting
the token in the cash-machine or about losing it. The ex-
ample can be carried over to delegation too.

The natural evolution of our research will bring us to an
in-depth analysis of the potentiality of our system as a basis
for authentication in collaborative infrastructures.

Besides, we intend to complete the current project with
the implementation of all the services mentioned in Sec-
tion 6, automatizing the procedure as much as possible, for
user-friendliness.

At the same time, we must address some pending issues.
For instance, expired temporary certificates are bound to
pile up in browsers unless users remember to delete them
every now and then. In our hypotheses, we can’t depend on
users for such garbage collection tasks.

On machines from which the server is accessed often, one
might think of simplifying the procedure by implementing
the client-side software as a browser plug-in. Although the
plug-in solution limits the mobility, it can be useful as an
alternative approach for users or for moments in which mo-
bility is not an issue.

Also, we don’t like the non-conventional use of the field 0U
in the Distinguished Name of the certificate’s subject, espe-
cially since the information we need is already contained in

the X.509v3 extension field Basic Constraints. To the best of
our knowledge, there is no environment variable in Apache
with mod_ssl whose value is that field (we also posed the
question to the mailing list modssl-users@modssl.org, but
to no avail). It should be possible to add an environment
variable, if the one we need doesn’t exist, since the infor-
mation is clearly available. The other solution is to process
certificate information with a server-side script that controls
access, as suggested at the end of Section 6.

Acknowledgements

We would like to thank Giovanni Porcelli for having brought
the original problem to our attention and for many useful
discussions.

9. REFERENCES

[1] Akenti: Distributed Access Control,
http://wuw-itg.1bl.gov/security/Akenti

[2] The Apache Software Foundation,
http://www.apache.org

[3] Committee on Institutional Cooperation, Research
Projects Group: Local Authentication with X.509
Certificates Project (LAXCP).
http://www-snap.it-services.nwu.edu/CICRPG
(1999)

[4] M.R. Cutkosky, J.M. Tenenbaum, J. Glicksman.
Madefast: an Exercise in Collaborative Engineering
over the Internet. Communications of the ACM (to
appear)
http://madefastr._stanford.edu/ACM_paper.html

[5] C. Eliopoulis. Balancing the Requirements:
Collaborative Security. The Edge Perspectives, 1,
http://www.mitre.org/pubs/edge_perspectives,
2000.

[6] C. Gehrmann, K. Nyberg, C.J. Mitchell. The personal

CA-PKI for Personal Area Network, IST Mobile &

Wireless Telecommunications Summit 2002,

http://newton.ee.auth.gr/summit2002, 2002.

R. Housley, W. Polk, W. Ford, D. Solo. Internet X.509

Public Key Infrastructure Certificate and Certificate

Revocation List (CRL) profile. RF'C' 3280, 2002.

[8] Y-K. Hsu, S.P. Seymour. An Intranet Security
Framework Based on Short-Lived Certificates. [EEE
Internet Computing, 2: 73-79, 1998.

[9] Java™2 Software. http://java.sun.com/java2

[10] Kerberos: the Network Authentication Protocol.
http://web.mit.edu/kerberos/www

[11] O. Kornjevskaia, P. Honeyman, B. Doster, K.
Coffman. Kerberized Credential Translation: A
Solution to Web Access Control. Proceedings of the
10th USENIX Security Symposium, 2001.

[12] Lépez,D., Reina, M.: Providing Secure Mobile Access
to Information Servers with Temporary Certificates.
Computer Networks, 31:2287-2292, 1999.

[13] Mod_SSL, The Apache Interface to OpenSSL.
http://www.modssl.org

[14] L. Monplaisir, N. Singh (eds.). Collaborative
Engineering for Product Design and Development.
American Scientific Publishers, 2002.

[15] A. Pawlak. Collaborative Engineering — A New,
Emerging Paradigm of Engineering Work Based on

7

Internet.
http://www.man.poznan.pl/ist/isthmus/programme

[16] RSA Security: Public-Key Cryptography Standards.
http://www.rsasecurity.com/rsalabs/pkcs

[17] M. Thompson,W. Johnson, S. Mudumbai, G. Hoo, K.
Jackson, A. Essiari. Certificate Based Access Control
for Widely Distributed Resources. Proceedings of the
8th USENIX Security Symposium, 1999.

