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1 Lecture 1: Quantum bits (qubits)

1.1 Moore’s law

e Gordon Moore’s law: since 1950’s computer speed doubles and chip dimensions
are halved every 2 years approximately. From centimeters of vacuum tubes to
micrometers. More precisely number of transistors on integrated circuits doubles
approximately every two years. Single electron transistor ~ 30 nm. Around year
2020 — atomic dimensions. The end of progress?

Moore’s Law — The number of transistors on integrated circuit chips (1971-2016)
Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. InData
This advancement is important as other aspects of technological progress — such as processing speed or the price of electronic products — are
strongly linked to Moore's law.
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Data source: Wikipedia (https://en.wikipedia.org/wiki/Transistor_count)

The data visualization is available at OQurWorldinData.org. There you find more visualizations and research on this topic.

Licensed under CC-BY-SA by the author Max Roser.
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1.2 Feynman’s 1981 paper

e R. P. Feynman, “Simulating Physics with computers,” Int. Jou. Theor. Phys.
21 (1982) 6.

| Simulating Physics with Computers
\ Richard P. Feynman
Depurimint of Physies, Califernia [nstinit of Technilogy, Pasaidenn. California W07

Revermd My 7, 1931

1. INTRODUCTION

O the program it says this is a keynote speeeh—ind 1 don't know
what a keynote speech is. 1 do not mtend in any way to suggest what should
be in this meeting s 3 keynote of the subjects or anything like that. T have
my, own things to say and to tudk about and there’s no fmpliention thil
anvhody needs to talk about the same thing or anything Hke it So what |
want o talk about is what Mike Dertonzos suggested that nobody would
talk about. I want w wlk about the problem of sunulating physics with
computers and T mean that in a specific way which T.am going to explun.
The reason for doing this is something that [ learned about from Ed
Fredkin, and my entire interest in the subject lias been inspired by him. 1t
hay 1o do with learning something about the possibilities of computers; and
alsy something about possibilities in phiysics. If we suppose that we know ull
the physical laws perfectly, of course we don't have 1o pay any sttention o
computers. s interesting anyway (o entertain oneself with (he idea hat
we've got something to learn about physical Taws: and il 1 take a relaxed
view here (after all 'm here and not at home) I'll admit that we don't
anderstand everything,

The first question is, What kind of computer are we going (© use (0
simulate physics? Computer theory has been developed to a point where it
reatizes that il doesa’s make any differsnce; when you get o a watversal
computer, it deesn't matter how it's manufactured, how it's actually made,
Therefore my question is, Can physics be simulated by a vniversal com-
puter? | would Jike to have the clernents of this computer Jocully iniercon-
pected, und therefore sort of think about cellular automita as an example
{hut T don’t want  force it). But I do want something involved with the

doT

Fig. 1.2 Feynman’s paper 1981



Classical equations of motion (Newton’s):

d2

require ~ 2N operations at each time step for their numerical integration:
dz; dz; 1
S+ At) = = (t) + — Fy(ay, ..oy, t) AL 1.2
Tt A = T + R, a1 (12
d!L‘Z‘
zi(t + At) = x;(t) + o (t)At (1.3)
Schrodinger equation:
. d
ih—(z1,...xn, t) = H(z1,...2N, 1) (1.4)

dt

requires instead ~ P operations at each time step for its numerical integration,
where each degree of freedom z; (i = 1,...IV) has been discretized in P points:

aii)iﬁ(xl,...xN,t)At (1.5)

Indeed the discretized support of the wave function 1 has PV points, and it is
necessary to compute 1 in each of these points.

1
(xq, ..oy, t+ A) = P(xq, ... xn, t) + EH(I’Z’, —ih

1.3 Quantum bits (qubits)

e Quantum bits, or qubits, are quantum systems with a 2-dimensional vector space
of physical states. Choosing an orthonormal basis |0), |1), the generic state of a
qubit is:

[¥) = al0) + 4]1) (1.6)
The basis vectors |0) and |1) can be thought of as eigenvectors of some observable
acting on qubits. According to the basic rules of quantum mechanics, a measure-
ment of this observable yields the result “0” (i.e. the eigenvalue corresponding to
the eigenvector |0)) with probability p(0) = |a|?, and the result “1” with probability
p(1) = |B]?. The state after the measurement collapses into one of the basis states
|0) or |1) , depending on the result “0” or “1”.

Qubits encode information in the complex constants a and 8. Note however
that we cannot extract this information by a single measurement on [¢)). For this
purpose, it will be necessary to have many copies of the same qubit, or to manipulate
and transform qubits so that results of measurements do depend on «, 3.

e The basis vectors |0), |1) are orthonormal, i.e. their scalar products are given by
(0]0) = (1]1) =1, (0|1) = 0. This basis is called the computational basis. Infinitely
many other orthonormal basis exist. For example

)= =0+ 1), 1) ==

(10) = 1)) (1.7)

Sl
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1.4 The Bloch sphere

<y

Fig. 1.3 Bloch sphere

e The Bloch sphere provides a geometrical representation of a qubit
) = al0) + BI1), o +]8] =1 (1.8)
Writing the complex numbers a and /3 in the exponential form
o = pact®, = paei®s (1.9

we have
patri=1 pa>0, ps>0 (1.10)

so that the moduli p, and pg can be parametrized by an angle x:
Po =cosX, pg=siny, 0<x< g (1.11)
Then the qubit (1.8) takes the form
[9) = pa€'??|0) + pae??|1) = e (cos x |0) 4 €'#7 ¥ sin x |1)) (1.12)

We can neglect the overall phase e~ (since quantum states are defined up to an
overall phase), define ¢ = 3 — ¢, and 6 = 2y (so that 6 varies from 0 to 7). Then
the qubit

0 , 0
|¢) = cos 5 |0) + €'? sin 3 1) (1.13)
can be represented faithfully on the Bloch sphere, in the sense that there is a 1-1

mapping between qubits and points on the surface of the sphere, labelled by their
latitude # and longitude .



1.5 Single qubit gates: U(2)

e To use classical or quantum bits for computation, we must be able to transform
them. This we can do by acting with classical or quantum logical gates. For
example the classical NOT gate negates the bit it acts on, transforming 0 into 1
and viceversa. It is representaed by the symbol

a >o NOT(a)
Fig. 1.4 Classical NOT gate

Thus NOT(0) =1, NOT(1) = 0.
The quantum analogue is the (linear) operator X, defined by its action on the
basis vectors:
X[0) = 1), X[1) = 0) (1.14)

By linearity, its action on a generic superposition [¢)) = a|0) + §|1) is given by

X(a]0) + 8I1)) = l1) + 5/0) (1.15)

e Any quantum gate U must transform a physical state |1)) in another physical
state [¢"). Thus the transformed qubit |¢)') = Ul|y) must have the same unit norm
as the original |¢):

Wl = @IUTU) = (l¢) =1 (1.16)
and this requires
Ul =1 (1.17)

As we know from linear algebra (for a summary of linear algebra tools and notations
see Lecture 6), this condition defines unitary operators. After choosing a basis,
unitary operators acting on qubits can be represented by unitary 2 x 2 matrices.

e Examples of single qubit gates are the unitary operators X,Y, Z, H, represented
(on the computational basis |0), |1)) by the matrices:

(2= (3) (3 8) (3 4 e

Recalling that the adjoint of a matrix is its transpose complex-conjugated, it is
immediate to verify that these matrices are indeed unitary.

e Unitary N x N matrices form a group, denoted by U(N). A group is defined as
a set satisfying three properties:

i) existence of a composition law o that associates to two elements a, b of the set
another element ¢ of the set: aob=c
ii) existence of an identity element I such that ao I = [ o a = a for any a.

9



iii) existence of an inverse a~! for every element a, such that a™'a = aa™' =TI

and it is straightforward to check that U(N) is a group with composition law given
by matrix multiplication. An important subgroup of U(N) is SU(N), the subset
of U(N) with determinant = 1, satisfying by itself the group properties (hence a
subgroup).

e U(2) matrices depend on 4 real parameters, since the unitarity condition UTU = I
eliminates 4 of the 8 independent real quantities of a 2 x 2 complex matrix. A
convenient parametrization of U(2) matrices is

.8 ;0
~ e’z 0 cosl —sind ez 0
_ ia 2 2
U=e ( 0 el ) ( sind  cos 3 > ( 0 i3 ) (1.19)

Exercise: find the a, 3,7, parametrization of X,Y, Z H.

10



2 Lecture 2: Multiple qubits

2.1 Tensor product

Composite systems are described by tensor products of states of the individual
systems, when the individual systems are not interacting. We will denote by A and
B the individual subsystems, and by AB the total system. Let us briefly justify the
use of the tensor product.

Consider two qubits A and B, in the respective individual states

[¥a) = al0) + BI1),  [¥p) =|0) +0[1) (2.1)

What is the state of the total system ? It must be such that the rules of quantum
mechanics correctly predict the outcomes of measurements on the system. Here the
probability to obtain result 0 on the first qubit and result 0 on the second qubit is
clearly the product of the probabilities |a|? and |y|?, since the two qubits are not
interacting. A similar reasoning holds for the probabilities of obtaining the results
(0,1), (1,0) and (1,1), and therefore the state of the total system must be

[Wap) = a]0)|0) + ad|0)[1) + Sy[1)|0) + B[ 1)[1) (2.2)

where |0)]0) is the AB state when both qubits are in state |0), |0)|1) is the AB
state when qubit A is in state |0) and qubit B is in state |1) etc. Then the rules
of QM give the correct probabilities for joint measurements on both qubits in the
computational basis’.

Note that the state (2.2) can be written as a product of two individual states:

(Wap) = [Ya)|¥n) = (al0) + B[1))(7]0) + 6[1)) (2.3)

if this product satisfies the usual distributive properties with respect to the addition
(or in other words if the product is linear in both factors). These are the properties
of the tensor product of vectors, usually indicated by the symbol ®. The symbol
will be often omitted between ket vectors (as in the above discussion) for simplicity
of notations. In fact the notation |0)|0) can be further simplified, by writing |00).

2.2 Basis for tensor spaces

A basis for the states of system AB is provided by all the tensor products of elements
of the A basis with elements of the B basis:

10)10), 0)[1),  [1)]0), [1)[1) (2.4)

Yin fact all terms in (2.2) could be multiplied by an arbitrary phase, and still the probabilities
would come out the same. But this holds only for measurements in the computational basis, i.e.
of observables with eigenvectors |0) and |1). Choosing another basis, for example the |+), |—)
basis for both qubits, we obtain the correct probabilities only if the state is exactly the one in
(2.2).

11



and in general a state of the AB system is expressible as a linear combination:
W) = coo[0)[0) + co1|0)[1) + c10[1)[0) + c11[1)[1) (2.5)
where cqg,... are 4 complex numbers satisfying the condition
|cool? + leor [ + |exo|* + [en]* =1 (2.6)

The discussion can be easily extended to N-qubit spaces: the state of a system of N
qubits is specified by 2V complex amplitudes subject to a normalization condition
as in (2.6). We see here why qubits can potentially encode information in an
exponentially more efficient way than classical bits. These latter can only take
one precise binary value (or string of binary values for N bits), while N qubits can
“contain” in the same state 2%V values.

In general, if V4 and V7 are the vector spaces for the subsystems A and B, the
vector space for the composite system AB is called the tensor product of the vector
spaces VA and VZ, denoted by VA ® VE. A basis for VA ® V' is given by the
set {|u;) @ |v;)}, where {|u;)} is a basis for V4 and {|v;)} is a basis for VB and
therefore

dim(V4 @ VB) = (dimV*)(dimV?) (2.7)
2.3 Scalar product
The scalar product between elements of tensor spaces is defined as

(I9)10), 19)1x)) = (¥1€)(d1x) (2.8)

and satisfies all the properties of a scalar product in complex vector spaces.
Exercise: verify this.

With this definition, the four states |00), |01), |10}, |11) form an orthonormal basis
for a 2-qubit system, and in general the tensor product of N computational bases
yields an orthonormal basis for a system of N qubits.

2.4 Measurements by Alice and Bob

Consider the general two-qubit state (2.5), and suppose that Alice can make mea-
surements on the first qubit and Bob on the second. What is the probability that
in a joint measurement, Alice finds the result 0 and Bob finds the result 0 ? The
answer is given by the standard Born rule:

p(04,05) = (U|Pyo|¥) = |coo]?,  Poo = [00)(00| (2.9)

a similarly for the other three joint results 01, 10, 11. But suppose now that only
Alice makes a measurement on her qubit. Then the probability for her to obtain 0
is:

p(04) = (T|Po, |¥) = |coo|” + [cor[*,  Po, =100){00] +[01)(01 (2.10)

12



where Fj, is now the projector on the eigensubspace corresponding to the degen-
erate eigenvalue 0,4. Similarly the probability for Alice of obtaining 1 is

p(1a) = (PP, W) = Jesol* + lennl’,  Pr, =[10)(10] + [11)(11] (2.11)
Analogous formulae hold for measurements performed by Bob.

The collapse after the measurement follows the usual rule, using the projector
corresponding to the measurement outcome. For example, if Alice obtains 0, the
two-qubit state (2.5) collapses into

) BPol¥) c00[0)]0) + co1|0)[T) (2.12)

VY|P, W) |coo|? + |cor |?

2.5 Entangled states and correlations

A state of a composite system is said to be a separable or product state if it can be
written as a tensor product:

[0) = 19)[€) (2.13)
A state of a composite system is entangled if it is not separable. For example
1
—(]00) + |10)) (2.14)

V2

is separable, since it can be written as
1
750 +[1)10) (2.15)

On the other hand the state ]

V2

is entangled, since it cannot be written as a product.

(|00) + |11)) (2.16)

e Exercise: verify this. Hint: use (2.3).

Suppose that Alice and Bob measure their qubits when the composite system
is in the state (2.14). If Alice makes the first measurement, she will find 0 or 1
with probability 1/2, and the global state collapses into |00) or |10) according to
the result. In both cases a successive measurement by Bob will certainly yield the
outcome 0, without further collapse. If Bob makes the first measurement, he will
certainly obtain 0, the global state remains the same, and a successive measurement
by Alice has 1/2 probabilities of obtaing 0 or 1. Thus the statistics for Alice and
Bob are uncorrelated, i.e. they do not depend on the order of the measurements,
or in other words the results of Alice do not depend on the results of Bob and
viceversa.

13



The situation changes drastically if the initial state is entangled. Then the
individual qubits are not in definite states: only the global state of the system is
given. If Alice makes the first measurement on her qubit when the system is in
the entangled state (2.16), she finds 0 or 1 with probability 1/2. But a successive
measurement by Bob will have an outcome that depends on the result of Alice.
Indeed, if Alice obtains 0, the global state collapses into |00), and a successive
measurement by Bob yields 0. If Alice obtains 1, the global state collapses into
|11), and a successive measurement by Bob yields 1. In this case the results of
measurements by Alice and Bob are correlated. The same happens if Bob makes
the first measurement.

The entangled qubits could be spatially separated, still remaining in an en-
tangled global state. Could Alice send a message to a distant Bob exploiting the
correlations and the collapse of the global state ? After all, if her measuring or
not measuring could be detected by Bob instantaneously, Alice could communicate
with superluminal velocity with Bob, contradicting a fundamental result of special
relativity. Consider the entangled state (2.16): if Alice does not measure her qubit,
the statistics for Bob measurements will be 1/2 probability to obtain 0 and 1/2
probability to obtain 1. On the other hand if Alice does measure her qubit, she will
produce a collapse of the global state into |00) with probability 1/2, and to |11)
with probability 1/2. Then if Bob measures his qubit, he will still find 0 with 1/2
probability and 1 with 1/2 probability, exactly the same statistics as before. Thus
the act of measurement by Alice cannot be detected by Bob, and special relativity
is safe.

Exercise:
i) if
0) = ala) + 51b) (2.17)
1) = v|a) + 0|b) (2.18)
prove that

00) + |11) _ |aa) + |bb)
V2 2

A= ( “ ﬁ) (2.20)

v 0

(2.19)

when the matrix

is orthogonal.

ii) prove that
|01) — |10)

V2

when the matrix A is unitary.

lab) — |ba)

= det(A) 7

(2.21)
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As a consequence:
00) +111) _|++H)+[--)
V2 V2
01) —10) _ |+-)—[—+)

V2 V2

(2.22)

(2.23)

15



3 Lecture 3: Quantum gates

3.1 Classical and quantum computation

Classical circuits are made out of wires and logical gates (AND, OR, NOT etc..),
and are read from left to right:

a a
aAND b aORDb
b — b
a
a *< FANOUT(a)
a

Fig. 3.1 Classical gates

The same conventions hold for quantum circuits, with classical gates replaced by
quantum gates, effecting unitary operations on N-qubit states (and therefore rep-
resented by 2% x 2V matrices). An important difference with respect to classical
gates is their reversibility, since unitary operations are invertible. This implies that
N-qubit gates transform N-qubit states into N-qubit states, whereas classical gates
can transform N bits into M bits, with N not necessarily equal to M (for example
the AND gate transforms 2 bits into 1 bit).

3.2 2-qubit gates: CNOT, Entangler, Exchanger

!

€U

Fig. 3.2 CNOT gate

CNOT|00) = |00), CNOT|01) = |01), CNOT|10) = [11), CNOT|11) = |10).

H

A

N
L

Fig. 3.3 Entangler gate, produces the Bell states
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1

Entangler|00) = —=(]00) + [11)) = ) (3.1)
Entangler|01) — %uon +110)) = o) (3.2)
Entangler|10) %qom ~111)) = |Bo) (3.3)
Entangler|11) — %(IOD ~110)) = |Bu) (3.4)

The states |3;;) are entangled, and form an orthonormal basis (the Bell basis) for
2 qubit states.

L 1]

Fig. 3.4 Exchanger gate: exchanges the two qubits

e Exercise: show that
Exchanger|y)|x) = |x)[¥) (3.5)

for any two qubits |¢)) = «|0) + B]1), |x) = v|0) + §|1).

e Exercise: find the matrix representation of CNOT, Entangler and Exchanger.

3.3 No cloning theorem

The classical FANOUT gate yields two copies of the same bit. On the quantum
side, however, no unitary operation can clone an unknown qubit. Indeed suppose
a cloning machine U existed, transforming any qubit |¢)) tensored with a service
qubit |s) into [¢)|¢)). The service qubit, a part of the cloning machine, is necessary
since U is unitary, so that if the output is a 2-qubit state also the input must be a
2-qubit state. Then

Ulh)ls) = [)|4) (3.6)
Ulg)ls) = [6)]) 3.7
for two different qubits [¢), |¢). The scalar product of the left hand sides:
Ul)]s), Ul)ls)) = ([9)]s), [9)ls)) = (@lo)(sls) = (¢[e) (3.8)
must be equal to the scalar product of the right hand sides:
(I0)¥), [9)]0)) = (Wlo)(vle) = (¥l)* (3.9)

17



Thus the machine U can clone qubits satisfying

(Ylo) = (¥|9)* (3.10)

with the only solution (¢)|¢) = 0, i.e. only for orthogonal gbits. (another solution
would be (¢|¢) = 1, excluded since [¢)) # |¢), cf. Schwarz inequality).

3.4 Non orthogonal states cannot be distinguished

If two quantum states are orthogonal, a measurement in the basis that includes
these states will distinguish them. For example the 1-qubit states |0) and |1) can
be distinguished by a measurement in the computational basis. On the contrary,
if the quantum states are not orthogonal, it is impossible to distinguish them with
any measurement: consider the non orthogonal qubit states

0) +11)

10), 7 (3.11)

A measurement in the computational basis cannot distinguish them (the result 0
can be obtained for both states), and it is easy to prove that this holds in any basis.

e Exercise: prove that the existence of a cloning machine would allow to distin-
guish non-orthogonal states (and viceversa).

e Exercise : prove that a cloning machine (or equivalently a machine that distin-

guishes non orthogonal states) could be used for superluminal communication using
[00)+11) _ [++H)+|—-)
2 V2o

the entangled 2-qubit state

3.5 Quantum money

This limitation can become a resource, and solve, at least in principle, the prob-
lem of printing banknotes that cannot be counterfeited. It is sufficient to “print”
on every banknote a string of qubits in the states (3.11), each banknote having a
different string, associated to a serial number appearing on the banknote. Since
non-orthogonal states cannot be cloned, the banknote cannot be duplicated, and
its authenticity can be checked by contacting the bank, where the list of corre-
spondences (qubit string <— serial number) is kept secure. The bank then directs
a sequence of measurements (depending on the serial number) in the appropriate
computational or oblique basis, adapted to the sequence of states, so that all mea-
surements must have results 0 or 4+ only if the banknote is the original one. Failure
to obtain the correct results, above a threshold due to experimental errors, signals
that the banknote is false.

18



4 Lecture 4

4.1 Superdense coding (Bennet and Wiesner 1992)

Suppose that Alice and Bob share an entangled pair of qubits in the state (2.16).
Then Alice can communicate 2 classical bits of information to Bob, by sending him
just one qubit, the qubit in her possession. Before sending it to Bob, Alice performs
on her qubit one of four operations:

nothing - if she wants to communicate the message 00
apply Z - if she wants to communicate the message 01
apply X - if she wants to communicate the message 10
apply Y - if she wants to communicate the message 11

By so doing, Alice is transforming the original entangled state |5go) in one of
the four Bell states |3;;). When Bob receives the qubit of Alice, he can make mea-
surements on the 2-qubit system in the (orthonormal) Bell basis, thus recognizing
the particular Bell state that corresponds to the message of Alice.

This protocol is called superdense coding, and exemplifies the possibility of
“squeezing” classical information into qubits, using less qubits than the bits neces-
sary for the classical message.

4.2 Teleportation (Bennet et al. 1993)

The teleportation protocol allows Alice to “send” an unknown qubit [¢)) to Bob
without using a quantum channel, i.e. without physically sending the qubit, but
using only a classical channel, as for example a phone communication. To achieve
this, Alice and Bob share a pair of qubits in the entangled state |Gyy) = %
Alice entangles her qubit with the unknown qubit [¢)) = «|0) + 5|1) she wants to
teleport, using a CNOT gate. She then applies the Hadamard gate to the first
qubit (the qubit that originally was in the state |¢))) and measures the two qubits.
After this, Alice telephones the result of her meaurements to Bob. According to
the result 00, 01, 10, 11 communicated by Alice, Bob effects one of four operations
on his qubit , respectively I, Z, X, ZX, and by so doing transforms the state of his

qubit exactly in the state |¢)) of the qubit originally owned by Alice.

The corresponding quantum circuit is
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1) /L H

1Bo0) { ﬁx i

to t1 to i3

Fig. 4.1 Teleportation circuit

a 3-qubit circuit where the upper two qubits belong to Alice and the lower qubit
belongs to Bob. By following the evolution of the initial 3-qubit state («|0) +

I6] ]1})% across the CNOT and H gates, one finds that the 3-qubit state before

Alice measurements is

% [100)(a]0) + 5[1)) + [01)(ex1) 4 5]0)) + |10)(a|0) — B[1)) + [11)(ex|1) — 5]0))]
(4.1)
A measurement by Alice produces a collapse into one of the four states contained in
this superposition. For example if Alice measures 01 the state (4.1) collapses into

01)(e|1) 4 5]0)) (4.2)
This state is a product state, with Bob’s qubit in the state
all) + 5)0) (4.3)

Alice phones her result 01 to Bob, so that Bob learns that his qubit is in the
state (4.3). He therefore applies to it the gate X and reconstructs the original
|Y) = a|0) + B|1) state.

e Observations:

i) the state [¢) is teleported at a speed always < ¢, since it is limited by the speed
of the classical communication.

ii) the original state |¢)) owned by Alice gets destroyed (by measurement), so that
there is no violation of the no cloning theorem.

iii) teleportation is not vulnerable to noise, since it does not use a physical carrier.
(The classical part of the protocol, i.e. communication of Alice’ results to Bob,
could be disturbed by classical causes).
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5 Lecture 5

5.1 Quantum parallelism

Quantum gates implement linear operations, and therefore can operate in parallel
on all the states contained in a superposition. Consider a Boolean function f, i.e.
a function taking N bits into 1 bit. Thus the domain of f is the set of binary N-bit
integers x and the image is {0,1}. By |z) we denote the N-qubit state specified by
the string of 0’s and 1’s in x: thus for N=4 if = 0110, then |z) = |0)|1)|1)|0). We
define now a unitary N+1 qubit operator Uy that acts on the computational basis
of N+1 qubits as follows:

Ur(l2)ly)) = [2)ly ® f(2)) (5.1)

where @ denotes addition modulo 2. If the input N+1 qubit state is a “democratic”
superposition of all the states of the computational basis, tensored with |0) , we

find
Uy S 10) = 2= 3 )]/ (o) 5:2)

We see that applying Uy only once has produced a state containing all the values
of the function f, an operation that classically would require 2V evaluations of the
function f, one for each value of the variable x. But extracting this information
from the output state is not so easy. Measuring the N+1 qubit output state in
the computational basis yields a particular value for xz, giving the corresponding
value for f(x), and destroys all the rest of the information (all the other z, f(z)
values). We will see in next Section how interference may be used to recover more
information.

The superposed state \/LN >, |x) can be easily obtained by using N Hadamard

gates on N qubits in the state |0):

(H® H® ... H)|0)|0)...0) = \/%qo) +)(0) +[1)).-(10) + 1)) = V% > 1)

(5.3)
The combined action of the Hadamard gates and the U; operator is represented
by the following circuit:

0) o] \
0) ]

T G
Ur| 0 p v Xl

o) 7]

|0) y,

Fig. 5.1 Parallel evaluation of a Boolean function f
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e Exercise: prove that Uy is unitary.

e Exercise: find the circuit that implements Uy when N = 1.

5.2 Deutsch algorithm

This algorithm allows to find whether a function f is constant or nonconstant, by
combining parallelism and interference. Consider the circuit:

0 —H H
Uy

) 4

Fig. 5.2 Circuit for Deutsch’s algorithm f

where Uy is defined in (5.1). Following the evolution of the initial 2-qubit state
|0)|1) through the unitary gates yields as final state:

0)1£(0)) = [0)[1 & f(0)) 0) = 1)
V2 V2
[DIF0)) = DIFA)
V2

or in a single formula:

= +10) if £(0) = f(1) (5.4)

_ i|1>% it F0) £ /(1) (5.5)

0) — 1)
V2

Thus by measuring the first qubit we can determine whether the function f is
constant (result 0) or nonconstant (result 1). Constancy of f is a global property,
and classically two evaluations of f would be necessary to establish it, while a single
application of Deutsch’s quantum circuit is sufficient.

+[£(0) © f(1)) (5.6)
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5.3 Deutsch-Jozsa algorithm

Combining together the two preceding Sections leads to a generalization of the
Deutsch algorithm, due to Deutsch and Jozsa. The circuit is:

‘0> // HON HON
Uy

1) H

Fig. 5.3 Circuit for Deutsch-Jozsa algorithm f

where the slash in the first line indicates N qubits in the first register. The input
state is a N 4+ 1 qubit state |0...0)|1), with |0...0) = the state of N qubits all
initialized to |0). The N 4 1 qubit state emerging from the first battery of H gates
is

10) —11)
Vi) Z P 57)
which becomes, after applying Uy:

Observe now that the action of H*Y on |z) = ]xlﬂxl)]scN)

1
HON|z) = ——(10) + (=1)*[1)) (|0} + (=1)%2|1)) ... (]0) + (—=1)*V|1 5.9
) \/2_N<|> (=™ 1) (10) + (=1)"[1)) ... (10) + (=1)™[1))  (5.9)

can also be written as
H®N|z) = 1)*|y) (5.10)
I

with the definition

.CC'yE;ClylEBIQyQEB...EBZCNyN (511)

Then the state of the first N-qubit register before the measurement is

2N _1 (2N

QNZ S (1= Jy) (512)

= =0

Thus the probability of finding 0,0,...0 in a measurement of the first register (N
qubits) is

2
2N _1

(0,0, ...0) QNZ (5.13)
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This probability is 1 if f(x) is constant, and is 0 if f(x) is balanced, i.e. with an equal
number of values 1 and 0. Then by measuring the first register (N measurements)
we can find whether f is constant or not. The total number of operations grows
linearly with N, even considering the H gates in the circuit 5.3, and only one “run”
of Uy is necessary.

By contrast, to obtain this information classically would require 2%V evaluations
of the function f, growing exponentially with N.

5.4 Qubit carriers: polarized photons, electrons

Many microscopic two-level systems can be considered qubits. Each has its own
advantages and difficulties, due to conflicting requirements for their use in com-
putation: on one hand physical qubits must be well protected from environmental
disturbances, to prevent decoherence, on the other hand they must be accessible to
controlled interaction, to implement the action of quantum gates.

Two examples of physical qubits are provided by photons and electrons, in their
states of polarization and spin, respectively.

5.4.1 Polarized photons

The classical description of a plane wave of electromagnetic radiation is given by
varying electric E and magnetic B fields, orthogonal to each other, in the plane
perpendicular to the propagation of the wave. The direction of E defines the po-
larization. If E makes an angle 6 with a conventional direction (for example the y
direction) we say that the polarization is 6. The electric field, for linearly polarized
radiation, can be written as

E =sinf Be'"* Y 4 cos§ Belkz=wy (5.14)

where F is the modulus of E, the exponential expli(kz —wt)] corresponds to a plane
wave propagating in the z direction with frequency w, and Z, ¢ are unit vectors in
the x and y directions, cf. Fig. 5.3. Note the complex notation for the electric
field, a convenient technique that simplifies computations. The real electric field
can be recovered by taking the real part of (5.14). The radiation described by (5.14)
is linearly polarized since the direction of E does not change in time. The (real)
components of E are given by:

E,(t) = Esinfcos(wt),  E,(t) = E cosfcos(wt) (5.15)

where we have taken the field in the origin z = 0. The two components oscillate in
phase and the resultant field oscillates along the fixed direction 6.
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Polarizer

.tijl

v

.E:E
Fig. 5.4 Polarized radiation

The intensity of the radiation in (5.14) is proportional to |E2 = E* - E = E2.
Suppose that a polarizer, oriented vertically, is placed in the path of the radiation.
By definition, the vertical polarizer kills the horizontal z-component of the radiation
in (5.14), and the emergent intensity is therefore reduced by a factor cos?@. This
is the Malus law for linearly polarized radiation.

The electric field for a horizontally polarized radiation is E = Fe Z and
for a vertically polarized radiation is E = Eetkz=wt) g The superposition of these
two functions, with weights sin 6 and cos @ respectively, yields the total electric field.

kz—wt)

Radiation in quantum mechanics is carried by photons: they are undivisible
elementary quanta of the electromagnetic field. The probability of finding a photon
in a given spacetime point x,y, z,t is proportional to the intensity of the classical
radiation, which plays therefore the role of a square modulus of a wavefunction.
This means that we can consider the electric field as the “wavefunction of the
photon”. We can then assign a ket vector |0) to the horizontally polarized photon
with wavefunction ¢, = Ee’**=“Y% and a ket vector |1) to the vertically polarized
photon with wavefunction v, = Eei==“0g  Then the photon linearly polarized
in the # direction has wavefunction ¢ = sin#i, + cosf),. Calling |0) the ket

corresponding to ¢ (photon #-polarized) we have:
|6) = sin6]0) + cos b|1) (5.16)

Thus the polarization states of the photons are described quantum mechanically
by kets living in a two dimensional space, with computational basis given by |0)
(horizontal polarization) and |1) (vertical polarization). Photons are therefore good
candidates to represent qubits.

Ket vectors can be assigned also to other types of polarization. The direction of
the electric field can vary over time, describing for example a circle in the xy plane.
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Consider the electric field:

- 1 , ) )
E::VEEW@*W%+~§§Ea@%m@ (5.17)

The i = e factor in front of the second term produces a phase shift in the y-
component of F, and we find:

E E E
E, = —coswt, E,=—=cos(wt— z) = —sinwt (5.18)

V2 V2 2 =

describing an electric field rotating in the xy plane, clockwise (left rotation), with
angular velocity w. Similarly we obtain an anticlockwise (right) rotation when —i
multiplies the second term. Thus the two (orthonormal) vectors

S, R = [0y 1) (5.19)
V2 V2 '

L) 7

)+

— 1 |0
V2
describe left and right circularly polarized photons.

Note:  the electric fields E in (5.14) and (5.17) are both solutions of the
Maxwell equations in vacuum.

5.4.2 Electrons

The electron is an elementary particle with spin 1/2; which implies that its spin
states belong to a 2-dimensional vector space. Then also the spin states of the
electron can play the role of qubit states. Conventionally the computational basis is
taken to be the one of the eigenvectors of S,, the spin along z. The spin observables
are represented on this basis by the 2 x 2 matrices

h h h
=X =Y, =7 2
Se=5X, S,=3Y, S.=3 (5.20)

where XY, Z are the 2 x 2 Pauli matrices already defined in (1.18).
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6 Lecture 6: Topics in linear algebra

We give here a list, in logical order, of the basic notions in linear algebra that we
need in Quantum Mechanics, and we assume to be well-known:

e Complex vector spaces, ket notation |v). Vector subspaces.

e Linear independence. Basis.

e Representation of vectors on a basis, components.

e Linear operators, their matrix representation on a basis.

e Scalar product

e Linear functionals. Bra vectors: (v|, their representation.

e Orthogonality, norm, orthonormal basis, Gram-Schmidt procedure.
e Scalar product in components.

e Definition of ket-bra operator |v)(w|. Projectors.

e Completeness relation

e Schwarz inequality, triangular inequality.

e Adjoint operator

e Self-adjoint (hermitian) and unitary operators.

e Change of basis. Determinant and Trace of an operator.

e Eigenvalues and eigenvectors of a linear operator. Characteristic equation.
e Normal operators, spectral theorem, spectral representation.

e Positive operators (see below).

e Functions of operators (see below).

e Polar and singular decomposition of an arbitrary matrix (see below).

e Schmidt decomposition (will be discussed in Lecture 10)
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6.1 Positive operators

Definition: an operator A is positive if (v|A]v) is a real number > 0, V |v).
Theorem: a positive operator is hermitian.

Proof: any operator A can be written as a sum of hermitian and antihermitian

parts A = A+TAT + A_TAT or also A = B +iC with B and C both hermitian. Thus if

A is positive, for any |v) we have (v|B|v) + i(v|C|v) = real number > 0, but since
both (v|B|v) and (v|C|v) are real numbers (because B and C' are hermitian), C'
must be absent (otherwise (v|A|v) would not be real). Then A must contain only
the hermitian part B, i.e. A is hermitian. O

Example: AfA is a positive operator for any operator A (the proof is immediate).

6.2 Functions of operators

Given a function f(z) of a real variable z, we can define the function of the operator
A, f(A), by using the spectral decomposition of A:

A= ZaiPai, f(A) = Z fla;) P, (6.1)

where a; are the eigenvalues of A, and P, the projectors on the eigensubspaces
corresponding to the eigenvalues a;. This definition can be implemented only when
A is normal (i.e. commutes with its adjoint), so that its eigenvectors form an
orthonormal basis and A has a spectral representation. If this is not the case,
a definition of f(A) can be given in terms of a power series (when f(x) can be
expanded in a power series). For example if f(z) = e*,

A% A3
eA:I+A+?+§+... (6.2)

a well-defined operator since A" always exists.

6.3 Polar decomposition

Theorem: any matrix A admits the decomposition
A=UJ=KU (6.3)
where U is a unitary matrix, and J, K are positive operators defined by

J=VATA, K =AAl (6.4)

Moreover, if A is invertible, U is unique. Note: ATA, AA" being positive and there-
fore normal, their square root is well defined through the spectral decomposition,
where positive square roots of the eigenvalues are used.
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Proof: J = v A'A has the spectral decomposition J = ). \;|i)(i| with \; >
Defining [;) = Ali), we have {(¢;|¢;) = A? and thus Ali) = 0 when )\; =
Consider the indices ¢ for which \; > 0, and define |e;) = ‘f> Then (e;le;) =
<ilf:;; ) — <Z/‘\{ilj> = ¢;;. Using the Gram-Schmidt procedure, we extend the set
{|e;)} to a complete orthonormal basis, again indicated by {|e;)}.

Consider now the unitary operator U = ), |e;) (i|]. When \; # 0 we find UJ|i) =
Ailei) = [i;) = Ali). When X\; = 0, we find UJ|i) = 0 = Ali) (recall A|i) =0 when
Ai = 0). Thus A and UJ have the same action on the basis |i), and therefore
coincide = A =UJ.

If A is invertible, so is J (since A = UJ and U is invertible being unitary). Then
U is unique and equal to AJ L.

Finallyy, A = UJ = UJU'U = KU, with K = UJU', and since AAT =
KUUTK = K? (K is positive, hence hermitian), we find K = vV AAT. O

6.4 Singular decomposition

Theorem: for any square matrix A, there exist unitary matrices U and V, and a
diagonal matrix D with elements > 0 such that

A=UDV (6.5)
The diagonal elements of D are called the singular values of A.

Proof: using the polar decomposition we find A = SJ with S unitary and J
positive. From the spectral theorem we have J = TDT' with T unitary and D
diagonal with elements > 0. Setting U = ST, V = T the theorem is proved, since
A=S8J=STDT". o
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7 Lecture 7: Measurement

7.1 The rules of Quantum Mechanics: summary

e State: represented by a ket vector 1), normalized (¢|¢) =1

e Physical quantities (observables): hermitian operators.

e Possible results of a measurement of the observable A: its eigenvalues a;.

e Probability of obtaining a; in measuring A on state |¢):

¥)

with P,, = projector on eigensubspace corresponding to the eigenvalue a;.

plai) = (Y[ Fa,

e State after measurement (collapse):

Pa,|¥)

(| Pa, 1)

) —

e Schrodinger equation:
. d
ih— [¥(1) = HIp(?))

with H = Hamiltonian.

Note 1: the expectation value of an observable A is given by

() = 3 plaa; = S (IR,

a;

b)ai = (P|A[)

where we have used the spectral decomposition A = Zai a; Py, .

(7.4)

Note 2: while the action of quantum gates (or of time evolution according to
Schrodinger equation) is unitary, measurement on the contrary is not a unitary
operation, but a projection. This clash has generated many of the discussions on

the foundational issues of quantum mechanics.

7.2 Generalized measurements

A generalization of projective measurements described by projectors P, (see 7.1),
useful to describe the the statistics and effect of measurement on subsystems. Pro-
jectors are replaced by measurement operators M,,, where m refers to the result
of the measurement. These operators are in 1-1 correspondence with the possible

measurement outcomes.

The rules in 7.1 are generalized as follows:
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e Quantum measurements are described by a set {M,,} of measurement operators.
If the state of the system is [¢), the probability of obtaining the result m is

p(m) = (| M My, |¢) (7.5)
The operators M,, satisfy the condition
> MM, =1 (7.6)

so that > p(m) =1, as is required if p(m) are probabilities.
e The state after the measurement is:

My, |)
(| M, M 1))

Note: the usual projective measurements are recovered by identifying the measure-
ment operators with the projectors of 7.1. The M,, however are not, in general,
projectors.

) — (7.7)

7.3 An example

Consider a qubit A in the state |¢)) = «|0) + 5|1), and a qubit B in the state |0)
The state of the composite system AB is

(|0) + B[1))[0) = [00) + 5[10) (7.8)

Next we entangle system A with system B via a CNOT gate, and then perform
projective measurements on B. The CNOT gate yields the state

|U) = CNOT(|00) + £]10)) = ]00) + 8]11) (7.9)

We now measure qubit B in the |4),|—) basis. It is then convenient to re-express
the 2-qubit state (7.9) as:

V) = —=[al0)[+) + al0)[=) + BI1)|+) = BIH]=)] =

2

Bl 5l -

5(0l0) + A1)+ + %(alm = BIL)|=) = My |)+) + M_[)]-)
(7.10)

with ] 1

M,=—I, M. =-—7 7.11
Measuring the qubit B in the |+),|—) basis means to measure an observable that
acts on system B and has eigenvectors |+) and |—). This measurement is described
by the projectors

P =IQ®+)(+], P-=1&]|-)(—] (7.12)
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and the probability of obtaining the results + or - is:

1 1
p(+) = (VP W) = (WIMIM[0) = o, p(=) = (UIP_|¥) = (¢|MIM_|p) = 5
(7.13)
The state after the measurement with result m (m =+, —) is
) — Pull)__ _ Monlt) Im) (7.14)

VAUIPRI®) S0 M)

Thus a measurement by Bob on his qubit, in the |m) basis, can be described by
Alice by using the measurement operators M, and the rules of Section 7.2. Note
that in this way Alice can describe statistics and effect of a measurement by Bob
in terms of quantities belonging only to her subsystem, i.e. the ket |¢)) and the
measurement operators M, M_.

7.4 POVM

If we are not interested in the state after the measurement, we can use the operators
POVM (Positive Operator Valued Measurement) defined by

E,, = M/ M,, (7.15)

Indeed only the product M M,, enters the formula for the probability p(m). The
POVM operators must satisfy

> En=1 (7.16)

due to (7.6). The name comes from the fact that they are positive operators (AfA
is positive for any operator A). In the next paragraph we provide an example that
illustrates their use.

7.5 Example: projective measurements on V? as POVM in
V2
Consider the following orthonormal basis in a 3-dimensional vector space V3:

0) +12) |¢2>:|0>+!1>—|2>7 |¢3>:!0>—2!1>—I2>

Vi V3 VB

|0), 1), |2) being the computational basis. The vectors |¢;) can be eigenvectors of an
observable ), acting on V3. Suppose that the eigenvectors correspond to eigenvalues
1,2,3, respectively, and that we measure this observable on the two states |¢);) and

|h2)

¢1) = (7.17)

0) — 1)

Y1) = [1),  [iha) = 7

(7.18)
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According to the usual rule in (7.1), using the projectors P,, = |¢m){¢m| we can
compute the probabilities p(m) = (¢;|Py|1;) of obtaining m in a measurement on

i) -
if the state is |¢1) (7.19)

if the state is |¢) (7.20)

For example for a measurement on [1s) , p(1) = (a| Pr|1a) = |(¢a|da)|* = 1/4.

If we obtain 1, we know with certainty that the state on which we have performed
the measurement is |1)q), since p(1) = 0 for |1). Similarly, if we obtain 2, the state
must be [¢)1). Thus if we obtain either 1 or 2 we can distinguish the two non-
orthogonal states . However if we obtain 3 (and this result has in fact higher
probability) we cannot say on which state we have measured Q. The situation is
nevertheless better than the one we have discussed in Section 3.4, where we can
only perform measurements on the states (7.18) in the computational basis: then
only [19) is recognizable with certainty (when the result is 0).

This example illustrates the usefulness of the POVM formalism. Indeed the
same statistics as in (7.19), (7.20) can be reproduced by using operators POVM
acting only on the subspace V2. The POVM can be obtained from the projectors

P, = |pm){(ém| by setting |2) = 0:
By = 20)0], Ba= (10)+10)(01+ (1), By = £(10) ~211)((0] 2(1]) (7.21)

It is straightforward to check that E; + Ey + E5 = I, where I is the identity
in V2. Indeed the sum of the three projectors, before deleting |2), is equal to
|0)(0] + [1)(1] + |2)(2|, the identity in V3. Deleting |2) reduces it to the identity
in V2. Thus E,, E,, E5 satisfy the properties required for POVM operators in V:
they are positive operators (proportional to projectors, which are positive) and sum
to the identity.

Using these POVM it is a simple matter to check that the statistics in (7.19),
(7.20) of measurements on [1;) can be obtained as p(m) = (;| Ey|t)i), using only
quantities defined in V2. This holds because the states to be measured do not
contain a component along |2), and therefore the action of E,, on them is identical
to the action of the projectors P,,.
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8 Lecture 8: Density operator

Systems whose state is not completely known are described by a density operator
p, associated to a statistical ensemble of states {|i;), p;} as follows:

P:ZPJ%MT/%’, Trp:Zpizl (8.1)

the trace = 1 property must hold since p; are probabilities.

The p operator contains all the physical information on the system. It allows to
compute the probabilities for measurements, as we now discuss.

8.1 Probabilities

If the initial state of the system were |¢;), the probability of obtaining result m
would be given by the usual rule of 7.1:

p(mli) = (i Pr|s) (8.2)

where now p(mli) is the conditional probability of obtaining m provided the state
of the system is |¢;). Note that this probability can be rewritten in terms of a trace:

p(mi) = Tr(Pplt) (i) (8.3)

Then the probability p(m) of obtaining m in a statistical ensemble described by p
is:

Zp m| sz TT P, W}z wz ZTT mpz|¢z><wl|> = ( )
(8.4)

Also the expectation value of an observable A can be given in terms of p:
= Zp(m)am = Z ayTr(Pnp) = Tr(Ap) (8.5)

where a,, are the eigenvalues of A, and A =" a,, P, (spectral decomposition).

All the above formulas reduce to the ones in Section 7.1 when the statistical
ensemble contains only one vector |¢) with p = 1. In this case p = |¢) (1| describes
a pure state, as opposed to a mixed state occurring when more than one p; is
different from 0.

8.2 Collapse of p

How does p change after the result m has been obtained in the measurement ? If
the initial state was |¢;), a measurement with result m would collapse it into the

state:
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Then after obtaining m, we have an ensemble of states |¢Z(m)), each with probability
p(ilm) (this is the conditional probability that, having obtained m, the state has
become |1/me))) Therefore p becomes, after the measurement:

: (m)y 1, (m) o P hi) (0] P
p—>pm =) p(ilm) [¢;" )" | = > plilm) ———=-—== (8.7
We use now Bayes formula for conditional probabilities:
_ _ _ p(z)
p(z,y) = plylz)p(z) = p(z|y)p(y) = p(zly) = p(yll‘)@ (8.8)
and apply it to p(i|m) :
plilm) = plmli) - = (] Pafth) (8.9)
p(m) p(m)
and substituting into (8.7) yields
Pm|¢z><¢z|Pm Pmp P
=2 P By THBp) (8:.10)
8.3 General properties of p
Theorem: Every density operator p satisfies the properties:
i) Tr(p)=1 (8.11)
i1) p positive operator (8.12)

Viceversa, if an operator satisfies these properties, it is the density operator of some
statistical ensemble.

Proof: we have already observed that Trp = 1 is just the requirement that p;
be interpretable as probabilities, i.e. Y .p; = 1. The density operator is also a
positive operator, since it is a weighted sum of projectors (with positive weights),
and projectors are positive operators. Viceversa, suppose that an operator p satisfies
both properties (8.11),(8.12). Being positive, it admits a spectral decomposition

p= Z&-Wil (8.13)

where |i) are its eigenvectors and \; the corresponding eigenvalues, which are real
> 0 since p is positive. Furthermore, the unit trace condition implies ) . A\; = 1, so
that \; can be interpreted as probabilities. Thus, p is the density operator for the
ensemble {|i), \;}. O
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8.4 Test of purity

The following Theorem provides a means to establish whether p describes a pure
or a mixed state.

Theorem: Trp* < 1, equality holding if and only if p describes a pure state.

Proof: if p = [¢)(¢], p* = p and Trp* = Trp = 1. When p = >~ pilb;) (1| with

at least two terms in the sum, we have:
PP = pipi(iley) 1) (] = Trp® = pips [{hilby)? (8.14)
i,j )

Notice now that

Zpipj [(ili)]? = Zpi ij|(¢i|¢j>|2 (8.15)

and since 3 p;|{1ilt;)[* < 1 because of Schwarz’ inequality (|(4i[1;)]* < 1 when
[vi) # [5)), then also ; p; ijj’<¢i|1/)j>|2 <1l O

8.5 Different ensembles for the same p

The same p can correspond to different statistical ensembles: For example it is easy
to verify that

p= SI0)00 + S 111 = SHCH + 51— (5.16)

where |+),|—) is the oblique basis. Thus the same p describes both a system that
is in the state |0) or |1) with equal probabilities, and a system in a state |[+) or |—)
with equal probabilities. Another example is given by

1

3 1 1
p = 710001+ 7 [1)(1] = Sla){al + 5[b) (b (8.17)

ja) = \/g|0> + \/%Il% b) = \EIO) - \/%ID (8.18)

Note that |a) and |b) are not orthogonal.

with

The next Theorem answers the question: when do two different ensembles
{li), pi}s {l9j),q;} give rise to the same p 7 Define for convenience

(i) = Vi), 165) = Vo) (8.19)

where the probabilities p; and ¢; of the two ensembles have been absorbed in the
definition of the tilde vectors.
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Theorem:

p= Z WQ@M = Z |<13j><<5j\ (8.20)

if and only if
J

Note that the range of the indices ¢ and j does not need to be the same. When this
is the case, one introduces null tilde vectors in the ensemble with lower cardinality
(equivalent to introducing new vectors with 0 probability in the ensemble), so as to
have ensembles with the same number of vectors.

Proof: the “if” part of the Theorem is easy to prove:

2 Ul = D i los)onl = ZZ%% 65) m!—Zm (@ (8.22)

4,5,k

The “only if” part makes use of the spectral decomposition of p = Y, A¢|k)(k|. If
S, 90 (] = 32, 1030(65] = 3, (K] (with [E) = vAK), then we can prove that
both |¢;) and |¢;) can be expressed as a linear combination of the |k). Indeed a
vector |x) orthogonal to the subspace spanned by the k) satisfies 0 = (x|p|x) =

> (ilx) = 32, [{x|¥i) [ so that (x|v;) = 0,Vi, implying that [¢;) is in the
same subspace spanned by the |k). Then |¢;) = 3, cix|k) and

= N6 - X (Seass ) il - T0@ (52

Since the 37, |k)(I| operators are linearly independent, the above equation implies
S circly = O, and we can find a unitary matrix vy, such that |1;) = 37, vi|k) after
complementing, if necessary, the list of ]/5) vectors with null vectors so as to have
the same range of ¢ and k indices. The same reasoning can be repeated for \¢J>
and therefore also |¢;) = 3, w;x|k) holds, with wj), unitary. Putting these results
together, we conclude that

) =) uisléy) (8.24)
J
with v = vw' unitary. O

8.6 The rules of Quantum Mechanics in terms of p

I. To every (closed) physical system corresponds a complex vector space with scalar
product, called the state space. The system is completely described by the density
operator p, a positive operator with unit trace, acting on the state space.

37



IT. Measurements are described by a collection of operators {M,,}, called measure
operators, acting on the state space, and corresponding to the possible outcomes
m. They satisfy the completeness relation

> MM, =1 (8.25)

Projective measurements of an observable A correspond to measure operators being
projectors on eigensubspaces of A. If the state of the system before measurement
is described by p (then we say that the system is in the state p), the probability to
obtain m is:

p(m) = Tr(M}, Myp) (8.26)
and the state after the measurement becomes
M,,p M
p— pn = —omb M (8.27)
Tr(MpyMp,p)

III. The time evolution of a closed physical system is described by a unitary trans-
formation

p(t) = U(t)p(0) U'(t) (8.28)
where U is the time evolution operator. For conservative systems U (t) = et
IV. The state space of composite systems is the tensor product of the state spaces
of the individual subsystems. If these subsystems are in the states p1, p2, ...pn, the
composite system is in the state

P=p1RpPR...R py, (8.29)

Note : if a quantum system is prepared in a state p; with probability p;, it is
described by a density operator

p=D_pipi (8.30)

Thus we have a statistical ensemble of density operators, rather than state vectors.
It is in fact a generalization of the mixed states defined in 8.1, and when p; are pure
states (8.30) reproduces eq. (8.1). It is easy to verify that the rule (8.30) makes
sense: if p; = . pijlvij) (Y], the probability of finding the system in state [¢);;)
is pipij. Then the density operator for such a system is p =}, - pipi;|vi) (Y| =
> Dipi-

Mixed states can occur for example when noise produces ignorance of the state,
or when the result of a measurement gets lost. In this last case the system will
be in the state p,, (the state after a measurement with result m) with probability
p(m) = Tr(M} M,,p). Then it is described by the density operator

M,p M},

M — N M,.p M 8.31
Tr(M, M,.p) 2 Mnp (8:31)

m

p = Zp(m)pm = ZTT(M);LMmp)
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8.6.1 An example

Suppose we measure a qubit [¢) = «|0)+ 5|1) in the computational basis, and ignore
the result. In which state is the qubit 7 The answer is: it is in the state |0) with
probability |a|? and in the state |1) with probability |3|?. This means that his state
is a mixed state described by the density operator

p = la?|0)(0] + |B[*[1)(1] (8.32)

This is to be compared with the (pure) state |¢) before the measurement, a quite
different state. In the mixed state all information on the phases of a and [ has
been lost.
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9 Lecture 9

9.1 Reduced density operator

Describes subsystems of composite systems. If two subsystems A and B form a
system AB, with density operator p4?Z, the reduced density operator for system A
is defined by

pt = Trp(p'?) (9.1)

where T'rp is the partial trace on system B. The partial traces Tr, and Trg are
defined on tensor products of operators as

TT’A(OA®OB) ET’I“(OA)OB, T?“B(OA®OB) = OATT(OB) (92)
Thus for example

Trp(lai)(as| @ [b1)(ba|) = (lar){aa|Tr(|b1)(ba]) = (b2|b1) |a1){as] (9.3)

Note 1: any operator in AB can be written as a sum of tensor products O ® Ogp.
Indeed the ket-bra representation of an operator C' on system AB is

C=) cungslD)Ir)(il(s| (9.4)

ir,js

the vectors |i)|r) forming a basis in AB. The constants ¢;, ;s are the matrix elements
of C on this basis. Notice now that |i)|r)(j|(s| = |i)(j| ® |r)(s| (both sides act on
the same way on the basis vectors) and therefore every C' can be written as a sum
of tensor products of operators. Then the definition of the partial trace can be
extended by linearity to any C' on AB.

Note 2: Trsp(04®05) = Tra[Tr(04®03)] since Trap(Oa®05) = Tr(0O4)Tr(Op)
as can be verified for ket-bra operators.

9.2 Probabilities

Suppose that in a bipartite system AB, Alice wants to compute the probability to
obtain a result m by measuring an observable (). To be measured by Alice, this
observable must act on the vector space A. But this observable can also be measured
by an observer having access to the whole AB. Thus it must be expressible also as an
observable Q on the whole AB. There is only one way to extend () to an observable
Q acting on the whole AB, and having the same spectrum, i.e.

Q=QaI (9.5)
Indeed if the spectral expansion of @ is Q =), mP,,, we find
Q=> m(P,®I) (9.6)

40



and we see that Q has the same spectrum as @), with corresponding projectors
Pn=FP,®1 (9.7)

We can then compute the probability that a measurement of Q yields the result m.
According to the rule in (8.4), we find

p(m) = T’I“AB(PmpAB) =Trap|[(Pn® I)pAB] =Try (T?”B[(Pm Q I)pAB]) (9.8)
Next we notice that
Trp((Prn @ 1)p*?) = Py Trp(p?) = Pup” (9.9)

as can be easily checked by expanding p? in a sum of tensor products (cf. Note 1
in Section 9.1):

p*P =304 ® 0} (9.10)

Therefore

p(m) = Trap(Punp™?) = Trs(Pnp?) (9.11)
This formula shows that Alice can compute p(m) using only quantities relating
to the subsystem A, provided she uses p* = Trg(p?P) as her density operator,
describing her subsystem. This justifies the definition (9.1) as the effective density
operator for Alice’s subsystem.

9.3 Collapse of p*

The collapsed density operator due to the measurement of Q (after having obtained
m) is:

P8 P
AB m m
= 9.12
Pm TTAB(PmpAB) ( )
Using pAf = 3. O} ® O% and (9.11), it can be rewritten as follows :

Pm = Tra(P,p?)
Taking now the partial trace over B produces the reduced density operator for Alice:

DY P04 P, Tr(0O%) _ P, Trg(p*P)P, _ PoptP,,
Tra(Prmp™) Tra(Pmp?t) Tra(Pmpt)

pit = Try(piak)

(9.14)

The last equality shows that the collapse due to the measurement of Q can be
described by Alice exclusively in terms of her reduced density operator p#, using
the rule (8.27).

Thus the reduced density operator correctly encodes all the information on subsys-
tem A, that Alice can use to predict probabilities and collapse.
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9.4 Examples
9.4.1 Product state
Suppose that the state of a bipartite system AB is

pPP=pxo (9.15)

It is said then to be in a product state (and generalizes the product state in case
of pure states). The partial traces are
Tra(p'?) =pP =0, Tre(p"?)=p* =0 (9.16)

and yield the density matrices of the individual subsystems, as expected.

9.4.2 Pure entangled state

Consider the entangled state of a 2-qubit system

|00) + |11)
=t 7/ 9.17
|00 7 (9.17)
The corresponding density operator is
a5 100) +]11) (00] 4 (11|  |00)(00| + |00) (11| + [11)(00| + |11)(11]
— — (9.18)
VRV 2
The reduced density operator for Alice (who owns qubit A) is:
1
pt = 5TrB(|oo)<oo| +100)(11] + [11)(00] + [11)(11]) =
_ [0)(0[€0]0) + [1){O[(10) + [0)(L[{O[1) + [L)(LCLT) _
2
_ 0O+l _ 1 (9.19)

2 2

Since Tr(p*)? = 1/2 < 1 this reduced density operator describes a mixed state
for qubit A. The ensemble can equally well be considered {|0),|1)} with equal
probabilities 1/2, or {|+), |—)} with equal probabilities 1/2, or any other ensemble
related to these via a unitary trasformation (see Section 8.4).

9.4.3 Teleportation state

Consider the 3-qubit state (4.1) in the teleportation protocol of Section 4.2. After
Alice’s measurement, if we ignore the result obtained by Alice, the state is described
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by a statistical ensemble

100)(f0) + 1)) with prob. i

110} (1) + B0))  with prob. i

|01)(a]0) — B|1)) with prob. 411

1) (al1) — 810))  with prob. 411

The density operator is therefore:

[!00><00| ® (@|0) + B[1))(a*(0]) 4+ 57(1)
+ 01)(01] ® (af1) + B8]0))(a"(1]) + 87(0])
+[10)(10] @ (|0) — B[1))(a”(0[) — B(1])
+ [11) (11| @ (1) — B]0))(a”(1]) — 57(0])

(9.20)

(9.21)

Taking the partial trace with respect to A (the space of the first two qubits) yields

the reduced density operator for Bob:

o = 1010} + B (a* O]) + 5 (1)
+(af1)+ BI0)) 0" (1) + 5 0))
+ (al0) ~ AL (a* (0l — (1)
+ (af1) — Bl0))(a {1]) — 5 (0])] =
| 0) 2+ BRI ] _ [0y0l + 14| _

_ 2(laf +181%)10)(0] + 2(|ex
4 2

I

2
(9.22)

Thus the state of Bob’s system, after Alice has performed the measurement on her
qubits, but before Bob has learned the result, is p? = /2. This state carries no
information on the state [¢) to be teleported (no information on a and f) =
no measurement by Bob can contain information on |¢). This prevents Alice to
use teleportation for superluminal communication, since only after a phone call (at

speed < ¢) can Bob reconstruct [¢) in his lab.

43



10 Lecture 10

10.1 Schmidt decomposition

A very useful Theorem provides a convenient decomposition for any vector of a
composite space:

Theorem: if |¢) is a pure state of a composite system AB, there exist orthonormal
vectors |i4) for system A and |ig) for system B such that

|op) = ZMW ® |ig) (10.1)

with A; > 0 and Y, A? = 1. The ); are called Schmidt coefficients.

Note that this expansion is much more economical than the usual expansion in
terms of tensor products of two bases in A and B: the Schmidt decomposition has
at most n terms, where n = min(dimA, dimB), whereas the usual expansion on
tensor products of the bases has dimA x dimB terms.

Proof: suppose at first that dimA = dimB, and that |j), |k) are orthonormal bases
for A and B. Then |¢)) can be expanded as:

[0) =D auli)lk) (10.2)

j7k

From the singular decomposition (Section 6.4) we know that any matrix a can be
written as a = udv, where u and v are unitary matrices, and d is a diagonal matrix
with elements > 0. Then
) = Zujidiwik|j>|k> (10.3)
ijik
and defining
ia) =) wili), lis) =Y valk), X=dy (10.4)
J k
proves the Theorem. The |i4) and |ip) are orthonormal bases (the Schmidt bases
for A and B) , since they are related to the orthonormal bases |j) and |k) by unitary

transformations. Note that the Schmidt bases depend on the vector |¢). Finally,
the >~ A7 = 1 relation is due to (¢[¢) = 1.

If dimA > dimB, we enlarge the smaller space B by adding extra basis vectors until
the dimensions match. Call these vectors |l-c> Then we apply the above proof, and
find [u) = 3, Alia)lim).

Consider the tensor products |i)|k), where the |k) include also the extra |k). These
products are a complete basis on the enlarged AB space. We observe that |¢)
cannot have components along the basis elements |i4)|k), since it was defined as a
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vector on the original (not enlarged) AB space. Therefore the |ip) present in the
decomposition of |¢)) cannot contain |k) either. We conclude that the decomposition

¥) = ZAi|¢A>|¢B> (10.5)

holds, with the sum on ¢ running on dimB values, the vectors |ig) being genuine
orthonormal vectors of B. The |i4) are an orthonormal set, but not necessarily a
complete basis for A. O

The next Theorem illustrates the usefulness of the Schmidt decomposition.

Theorem: consider a pure state [¢)) for a composite system AB. Then
pt = Nlia)(ial, =) Alis)(isl (10.6)

Proof: immediate using the Schmidt decomposition for |¢)) and taking the partial
traces of pAZ = [¥){(¥]. O

Thus the eigenvalues of p* and p? are identical and equal to A2. Many properties
of quantum systems depend on the eigenvalues of the reduced density operator. For
a pure state of a composite AB system these properties will be the same for both
subsystems. For example the pure state

_ [00) +101) +11)

10.7
|¥) 7 (10.7)
has no evident symmetries between A and B, but we find
7
Tr(p")? =Tr(p")* = 5 (10.8)

e The number of nonvanishing \; in the Schmidt decomposition for a state |¢) of a
composite AB system is called the Schmidt number of |1}, and denoted by Sch(|1)).
It gives a quantitative measure of the entanglement between A and B, present in
the vector [¢). If Sch(|y))) = 1 the state is separable, and when Sch(]i)) > 1 the
state is entangled.

e The Schmidt number is preserved by unitary transformations that act only on A
or only on B. Indeed if |¢) = >, Ai|ia)|ip) is the Schmidt decomposition for |i),
then Ualy) = Y. AiUalia)|ip), where U, is a unitary operator acting only on A,
and Ugalia), |ip) are the Schmidt bases for Us|t)). The A; are unchanged: they are
the same for the vectors |¢) and Uyx|y). Thus local unitary transformations (i.e.
of the form Uy ® Ug) do not change the Schmidt number, and as a consequence
cannot increase the entanglement.

Exercise : show that a state |1)) of a composite system is a product state iff p
(and therefore also p?) describe pure states. Hint: use the Schmidt decomposition
for |1). As a consequence, the reduced density operator for an entangled AB state
is always a mixed state.
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10.2 Purification

Theorem: Given a mixed state p of a system A, it is always possible to introduce
another system R (a copy of the system A) and define a pure state |AR) for the
system AR such that p* = Trr(|AR)(AR])

This procedure, that permits to associate pure states to mixed states p4, is called
purification.

Proof: p*, being a positive operator, has the spectral decomposition:
= pi i) (i (10.9)

with p; > 0, and |i') a complete set of orthonormal eigenvectors of p”. Introducing
a system R with the same states of A, with orthonormal basis {|i®)}, we can define
the pure state for system AR:

|AR) = Z Vi [i)]i%) (10.10)

with corresponding density matrix p4? = |AR)(AR|. Computing now the reduced
density matrix Trg(p*?) we find

Tra(p"?) = oy i) G Tr(li") Z\/pzpy [ (51655 = Zmz

.3
(10.11)
recovering the density matrix p? of (10.9). O
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11 Lecture 11: the full Bloch sphere

We can represent both pure and mixed states for single qubits on the full Bloch
sphere, where pure states are points on the surface, and mixed states points in the
interior.

11.1 Pure states

Consider first the points on the surface. They are described by a vector 7 in R3, of
length 1:

x sin # cos ¢
r=| vy | = sinfsing (11.1)
z cos 6

see Fig. 1.3. This vector is also called the Bloch vector, and corresponds to the
1-qubit state

0 - 0
|7) = cos 5]0> + e’ sin §|1> (11.2)

We have thus the correspondance 77 <— |7) between a vector in R® with unit length
and a quantum 1-qubit state, living in a 2-dimensional Hilbert space.

Exercise: show that (7-&)* = I, where 0,,0,,0, are the Pauli matrices, i.e. the
matrices X, Y, Z defined as single qubit gates in Section 1.5. Hint: use the relation
for products of Pauli matrices:

0,0 = (5”] +1 Zgijko-k (113)
k

where €;;;, is totally antisymmetric, and €123 = 1.
This exercise proves that the eigenvalues of 7'+ & can take only the values +1, -1.

Theorem: |7) is eigenvector of the operator 7- & with eigenvalue +1.

Proof:
- 0
e z T — 1y oS 3 _
70 |T) (x—l—z’y —z )(ewsing)
- cos 6 sin @ cos ¢ — 2 sin 0 sin ¢ cosg -
~\ sinfcos ¢ + isinfsin ¢ —cosf e?sing |

- cosf  sinfe CoS g B cos 0 cos g + sin 0 sin g N

~ \ sinfe’¥  —cosf e¥sing )\ e¥(sinfcos? —cosfsing) )
4

:( c%3, ) = |7 (11.4)

0 qin ¢
e’ sin 5

using elementary trigonometry (Euler formula, and sin and cos of sums of angles).
O
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It is easy to find the other eigenvector of 7+ &, with eigenvalue —1. Indeed 7- & |7¥) =
|) implies (taking 7 into —7) also —7- & | —7) = | — 7), or

7G| =7 =—|—7 (11.5)

Thus the eigenvector of - & with eigenvalue —1 is represented by the antipodal
point (with Bloch vector —7) on the Bloch sphere.

Note: If 6, are the angular coordinates of the vector 7, the antipodal point
corresponding to —7” has angular coordinates #/ =7 — 0, ¢’ = ¢ + 7, and therefore

(7—6) .
. . COS 3 - — Sin 9
’ 7?> - < ei(<P+7r) Sin (71';9) ) - ( eigo CcoS Q ) (116)

2

We can immediately verify that (7] —7) = 0.
Theorem: the operator
I+7.-¢

. (11.7)

is the projector on | £ 7).

Proof: use the spectral decomposition for 7 &, and the completeness of the basis

7.1 =

75 = P = | = 7) (=7 (1L8)
I =177 +] = (7] (1L9)

Summing and subtracting both relations yields

= |- 7= (11.10)

[+ [—7G
2

=

proving the Theorem. O

11.2 Mixed states

By definition, an arbitrary mixed state can be described by a density operator

p =pip1 + Pp2p2 + ... + PnpPn (11.11)

where the p; are projectors on pure states, and ) |, p; = 1. The projectors p; can be
written as p; = |7;) (7|, where 7; are the Bloch vectors of the pure states. Thus

— — — — N = ]+’F 0_" ]‘i‘Fn ° 0_:
p = p1|T1)(T1] + po| 7o) (7a| + -.pp|70) (73] IplTl + .. +pnT
1 M+ .. +pain) -0 I+ piTy) - O
= 501t pa) + (71 ; Puln) & _ (Zép ) (11.12)
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Observe now that the euclidean R? vector ¥ = >, piT; has length < 1, because of
the triangular inequality (the length of the sum of two vectors is smaller than the
sum of their lengths, if the vectors are not proportional). Therefore the density
matrix of a mixed state has the form
pottro (11.13)
2

where |7] < 1. This provides a geometrical representation of mixed states in terms
of a vector 7 that spans all the points inside the Bloch sphere. In fact there is a
1-1 correspondence between the interior points of the sphere and mixed states. The
points on the surface correspond instead to pure states, with |] = 1. Thus the
full Bloch sphere faithfully describes pure and mixed 1-qubit states, with a density
operator given in all cases by (11.13).

Exercise: prove that Tr(p*) < 1 when 7+ 7 < 1, using (11.13).
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12 Lecture 12: EPR and Bell inequality

12.1 EPR

In their celebrated 1935 paper (A. Einstein, B. Podolski and N. Rosen, “Can Quan-
tum Mechanical Description of Physical Reality be considered complete 7?7, Phys.
Rev 47 (10) 777, 1935) the authors consider two particles correlated in position and
momentum, as depicted in Fig. 12.1.

z z

Bob measures
position z

decay into 2 particles

Alice measures
momentum p:

Fig. 12.1 EPR: conservation of momentum in the decay implies opposite p, and
opposite impact coordinates z for the two particles

Since momentum is conserved in the central decay (red dot), the two particles
travel in opposite directions, with opposite momenta. They impact on two screens
A (in Alice lab) and B (in Bob lab). Then if Alice measures on her particle a
momentum p,, Bob will measure on his particle a momentum —p,. Likewise, if Bob
measures a position of impact z, Alice will measure a position of impact —z. The
two particles are correlated in position of impact and in momentum.

The two main assumptions of the EPR paper are:

i) a criterion for “reality”: in the words of EPR, “If, without in any way disturbing
a system, we can predict with certainty (i.e., with probability equal to unity) the
value of a physical quantity, then there exists an element of reality corresponding
to that quantity”.

ii) the request of locality: no action taken on one particle can instantaneously affect
the other, since this would involve information being transmitted faster than light,
which is forbidden by the theory of relativity.

EPR then proceed with a thought experiment (Fig. 12.1). Alice measures
the momentum of her particle, and finds a value p,. This value becomes then an
element of reality for Alice’s particle. Bob measures the position of his particle,
and finds a value z. Then, because positions are correlated, Alice’s particle must
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have position —z. Note that, according to assumption ii), the measurement of Bob
cannot influence in any way the state of Alice’s particle, in particular cannot change
the value of its momentum p,. Thus for Alice’s particle there are two elements of
reality, the values of its position —z and its momentum p,.

However these two elements of reality cannot coexist in quantum theory, due to
Heisenberg’s principle. EPR conclude that quantum mechanics, in its Copenhagen
formulation, is an incomplete theory since it does not contain all its elements of
reality. One should look for a realistic theory (where for ex. values of position and
momentum coexist on the same particle) satisying also locality.

The EPR reasoning, however, does not lead to a paradox. Indeed it is true that
Bob cannot influence instantaneously Alice’s particle state, however her measuring
the momentum of her particle destroys the position correlation with Bob’s particle.
Then one cannot conclude that her particle has position —z. But this is not ac-
cepted by EPR: modifying long-range correlations seems to violate the assumption
of locality, and their conclusion is that QM is incomplete.

Most physicists today accept the nonlocality of correlations (in modern terms
the existence of entangled states). In fact, as we discuss in next Section, quantum
mechanics explicitly violates at least one of the assumptions of reality and locality.

It is useful to reformulate the EPR argument with quantities that can have only
discrete values, e.g. spin.

Alice and Bob can share a couple of qubits in the entangled state

_00) +11) [+ +H)+[—-)
|Bo0) = v, R NG (12.1)

Then results of measurements in the computational basis (for electrons: measure-
ments of S,) are correlated. But according to (12.1) also results of measurements
in the oblique basis (measurements of S,) are correlated.

Alice measures her qubit in the computational basis, and Bob in the oblique
basis. The EPR argument would conclude that Alice’s qubit has coexistent values
for both S, and S,. Here we can examine the measurement sequence in detail:
suppose that Alice obtains 0 for her measurement in the computational basis, and
that Bob obtains + for his measurement in the oblique basis. The 2-qubit state
undergoes the modifications

|Boo) — 0)]0) — [0)+) (12.2)

The first measurement by Alice, producing the collapse into |0)|0), has destroyed
the correlations in S, measurements.

Note that the final state does not depend on the order the measurements are
made. In fact, if Alice and Bob are separated by a spacelike interval, the order
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of measurements depends on the system of reference, and is a relative concept
depending on the observer. Thus the intermediate state |0)|0) or |+)|+) depends
on the frame of reference. Only the state after both measurements is independent
from the reference frame of the observer.

12.2 Bell’s inequality

In 1964 John S. Bell published a paper with title “On the EPR paradox”, in Physics
1 (3) 195 (1964), where he shows that any theory that agrees with the predictions
of quantum mechanics must violate the assumptions of the EPR paper.

The first part concerns an inequality that must hold whenever we deal with prop-
erties (for example values of measurements) that can coexist on the same object.
Suppose we have three properties A, B, C' that can each have 2 values, respectively
(a,a), (b,b), (c,¢). For example the property A could be the shade of hair, with two
values: a = light and a = dark, etc. Moreover consider a collection of objects for
which these three properties can have definite values. Then the following inequality
holds:

N(a,b) + N(b,é) > N(a,e) (12.3)

where N(a,b) indicates the number of objects having property A with value a and
property B with value b, etc. This is proven by substituting

N(a,¢) = N(a,b,é) + N(a,b,¢) (12.4)
in the inequality (12.3), which rephrases the inequality as
N(a,b,c) + N(a,b,e) >0 (12.5)

always satisfied since all the numbers N are positive. The Bell inequality then
relies on the hypothesis that all three properties can hold together on every object
of the collection. This is the “realism” hypothesis: the values of these properties
pre-exist the act of measurement, and co-exist on the same object. They can be
simultaneously known for every object.

In quantum mechanics there are properties (called observables) whose values
cannot be known simultaneously, for example position and momentum of a parti-
cle, or polarization of a photon in different directions (after a photon passes through
a vertical polarizer, we cannot predict with certainty whether it will pass through a
polarizer at 6 # 0). But following the suggestion of the EPR paper, we could envis-
age the existence of a theory, a completion of quantum mechanics, capable to assign
precise values of position and momentum to the same particle, or precise values to
polarization in different directions for the same photon. Measuring these quantities
would simply reveal the values of properties that preexist the measurement (then
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observables would be objective quantities in a realistic world). This hypothetical
theory is often referred to as hidden variables theory, in the sense that it contains
extra variables that enable a description of physical states more complete than the
one given by quantum mechanics.

For such a theory, the polarizations in three different directions of a collection
of photons should satisfy the Bell inequality (12.3). To create hypothetical pho-
tons with definite values for two polarizations in different directions we could use
correlations, following the EPR idea. Suppose that Charlie has a series of pairs of
anticorrelated photons, and sends one photon of the pair to Alice and the other to
Bob. Anticorrelation means that if Alice’s photon passes a 6 polarizer, Bob’s photon
is absorbed by a 6 polarizer, which means that it passes a 6+ 7 polarizer. Moreover
Alice and Bob have each three polarizers oriented at 0 degrees (vertical polarizer),
at 0 degrees, and at ¢ degrees, and we call them for short 0-pol, #-pol and ¢-pol.
On each pair Alice and Bob measure the polarization of their photon choosing for
a first series of M pairs respectively the 0-pol (Alice) and the 6-pol (Bob), for a
second series of M pairs the 6-pol and the p-pol, and for a third series of M pairs
the 0-pol and the ¢-pol. At the end of the three series, Alice and Bob compare
their results, and obtain the numbers N(0, #) of photon pairs that have passed the
0-pol of Alice and the #-pol of Bob, and similarly for N (6, ) and N(0,¢). Notice
that N(0,0) is also the number N4(0,6+ F) of Alice’s photons with “simultaneous”
O-polarization and 6 + 7 polarization, since the other photon of the pair has been
measured by Bob to have #-polarization, and the pair is anticorrelated.

Bell’s inequality applied to Alice’s photons becomes in this case

Na(0.6+ ) + Na(b. 0+ 5) = Na(0, 0+ 3) (12.6)
or equivalently
N(0,0) + N (0, ¢) > N(0, ) (12.7)
This inequality can be rewritten in terms of probabilities
p(0,0) + p(8, ¢) = p(0, ) (12.8)

where p(0,0) is the probability that in a pair Alice’s photon passes the 0-pol and
Bob’s photon passes the 6-pol, etc., obtained as p(0,60) ~ N(0,6)/M.

We can now prove that the above probabilities computed with the quantum
mechanical rules violate the inequality.

In quantum mechanics linearly polarized photons in the 6, 6 + 3 directions are
described by the orthogonal states (cf. Section 5.3.1):

|6) =sinf |0) +cosb [1), |0+ g} = cosf |0) —sin@ |1) (12.9)

and the following relation holds:

|1>|o>¢—§|o>|1> _ 1910+ %>¢—§|9 + 3)10) (12.10)
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a special case of (2.21).

Consider now many pairs of photons in the entangled state (12.10). The pairs
are sent to Alice and Bob, as discussed above. Alice and Bob make measurements on
the photons they receive, with polarizers oriented in three different directions 0, 8, .
Note that since the pairs are in the entangled state (12.10), the results of Alice and
Bob on every pair will be (anti)correlated in measurements of f-polarization for
any value of 0, due to relation (12.10). We are then in the conditions in which the
inequality (12.8) should hold. The probabilities in (12.8) can be computed with the
rules of QM. In general we find

p(6.0) = (610t e

= |({0]sinf + (1] cos 0)({0|sin ¢ + (1] cos<p)%]2 =

1 1
= 5(—sin9(:oscp+cos€singo)2 = §sin2(go—9) (12.11)

for any 60, . Applying this formula in (12.8) yields

1sin2 6 + 1sinQ(cp —0) > L sin? (12.12)
2 2 2

which is explicitly violated for example when 6 = 7/6,p = /3 since 1/8 +1/8 <
3/8. This thought experiment can be also carried out in a real laboratory with
polarized photons, polarizers, single photon counters, and birefringent crystals that
create entangled photon couples: the results confirm the predictions of quantum
mechanics, and violate Bell’s inequality (12.3).

12.3 CHSH inequality

Clauser, Horne, Shimony and Holt proposed a refinement of Bell’s inequality in
1969. Again they first consider a classical setting, with Charlie preparing pairs
of particles and sending the members of the pair to Alice and Bob. Here Alice
has two measuring devices, that measure the physical quantities () and R, with
possible results equal to the values ¢ = £1,r = £+1. The values ¢ and r are
objective properties of Alice’s particle, simply revealed by her measurement. After
Alice receives the particle, she randomly decides (for example tossing a coin) which
quantity to measure. Analogously for Bob who has two measuring devices for
quantities S and T', with possible results s = +1,t = +£1.

Alice and Bob perform their measurements on each pair of particles simultane-
ously: therefore the measurements are causally disconnected, and Alice’s measure-
ment cannot influence the result obtined by Bob and viceversa.

Consider the quantity

QS+ RS+RT—QT =(R+Q)S+(R-Q)T (12.13)
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Since R, () can take only values 1, if R+ () takes value £2 then R — () takes value
0 and viceversa. Then the quantity in (12.13) can only take the values +2.

Consider now the probability p(q,r,s,t) that the 2-particle system be in the
state Q = ¢, R =1, S = s, T = t, i.e. that measurements of @), R, S,T yield
the results ¢,r, s,t. These probabilities can depend on how Charlie prepares the
system, or on transmission noise etc. Denoting by F(..) the average of a statistical
variable, we find

E(QS+RS+RT—-QT) =Y plg,r,s,t)(gs+rs+rt—qt) < > plg,r,5,)2 =2
q,7,8,t q,7,8,t

(12.14)

since the sum on all probabilities is 1. Finally, the average of a sum is the sum of

averages, and we have the CHSH inequality:
E(QS)+ E(RS)+ E(RT)— E(QT) <2 (12.15)

Repeated measurements by Alice and Bob on the 2 particles (prepared always with
the same p(q, , s,t) by Charlie) allow to determine the averages of Q.S, RS, RT, QT .
Alice and Bob communicate after the sequence of measurements and compare results
to determine for ex. E(QS) in those measurements where Alice has measured Q
and Bob has measured S, etc..

Suppose now that Charlie prepares a quantum state of 2 qubits in the state

_DI0) —10)]1)
Ty = = (12.16)

and Alice and Bob measure the observables
Z+ X 7 —X
— , T=1®
V3 A

Computing the expectation values of the products QS, RS, RT, QT in the state
(12.16) yields

Q=20I, R=X®I, S=I/ ) (12.17)

1 1 1 1
(QS) = E? (RS) = E? (RT) = Ev (QT) = _E (12.18)
so that
(QS) + (RS) + (RT) — (QT) = 2V/2 (12.19)

violating the CHSH inequality. This violation has been experimentally verified
using polarized photons.

Exercise: verify (12.18).

As a consequence, one or more assumptions that underlie the derivation of the
CHSH identity must be abandoned. The two main assumptions are:
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1) the quantities @, R, S,T have definite values independent from the observer’s
measurement. This is the “realism” hypothesis.

2) the measurement by Alice cannot influence the result of Bob’s measurement.
This is the locality assumption.

In conclusion, the theoretical (using thought experiments) and experimental viola-
tion of the Bell and CHSH inequalities show that nature is not locally realistic.
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13 Lecture 13: Classical and Quantum Cryptog-
raphy

13.1 Topics in classical cryptography

e Cesar’s code: alphabetical substitutions. Symmetric key for coding and decoding

e Frequency analysis. Vernam: keys are random and as long as message, and one
key for one message (one-time pad).

e Mechanical encrypting devices, Leonardo da Vinci, Leon Battista Alberti.

e Arthur Scherbius: Enigma (3 rotating disks). Reflector = symmetric coding.
26 x 26 x 26 = 17576 initial positions of the rotors. Interchangeable rotors: number
of possible keys increases by a factor 3!. Insertion of a plugboard (interchanges 6
couples of letters before entering the rotors. 100391791500 ways to do it, with 26
letters) In total ~ 10' key combinations. Weighs 12 kg, 34 x 28 x 15 cm.

e Alan Turing, “On Computable Numbers” , 1937. Bletchley Park, the Bombe,
Colossus.

e ENTAC, Electronic Numerical Integrator and Calculator, 1945.

e Data Encryption Standard (DES), 1976. All these systems need key transmission:
same key necessary to encrypt and decrypt.

e Public key cryptography: the lock metaphor. Asymmetric key, using modular
arithmetic and practical irreversibility of some mathematical functions. Whit Diffie
and Martin Hellmann, “New Directions in Cryptography”, 1976. Ron Rivest, Adi
Shamir and Leonard Adleman, RSA algorithm based on the difficulty of inverting
pq = N, with p,q = large primes.

Bibliography

Marcus du Sautoy, “The music of the primes” (trad. italiana: “L’ enigma dei
numeri primi”, Rizzoli 2004)

Simon Singh, “The Codebook”, 1999

13.2 Modular arithmetic
13.2.1 Definition and properties
Systematically studied by Carl Friedrich Gauss (1801).

The notation
a = b (mod n) (13.1)
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means that the relative integers a and b differ by integer multiples of n, i.e.:
a=>b+nk (13.2)
with k relative integer. For example 2 = 38 (mod 12) and also 38 = 2 (mod 12).

Modularity is compatible with addition and multiplication. If a = b (mod n)
and ¢ = d (mod n), then

a+c=b+d (modn), ac=bd (modn) (13.3)
Cancellation law: if
ur = uy (mod n) (13.4)
then
x =y (mod n) (13.5)

only if u is coprime with n (no common factors). Indeed ux = uy (mod n) means
that n divides u(x —y), and if n is coprime with u, it cannot divide it, and therefore
must divide z — y, i.e. x =y (mod n).

The smaller a satisfying a = b (mod n) is simply the remainder of the division
b/n. Conventionally we denote this remainder by b (mod n). Thus the notation

a="b (mod n) (13.6)

with = sign means that a is the remainder of b/n. Note that in this case a < n.
For example 2 = 38 (mod 12) but 26 = 38 (mod 12). The following property holds:

ab (mod n) = [a (mod n) b (mod n)| (mod n) (13.7)

13.2.2 Little Fermat Theorem
a? = a (mod p) (13.8)

for any integer a and prime p.

Proof: by induction. It evidently holds for @ = 1. Suppose that (13.8) holds for
an arbitrary integer a, then prove that

(a+1)Y =a+1 (mod p) (13.9)
Recall Newton’s binomial expansion

(a+1)P = i <i)a" =1+ (]1?)@4- (]2))@2 + ...<pf l)ap‘l +a’  (13.10)

n=0
Notice now that, when 0 <n < p:

<p) _pp=1)..(p—n+1) (13.11)

n n!
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is divisible by p if p is prime. Indeed binomial coefficients are integers, so that the
denominator in the fraction must divide (p — 1)...(p — n + 1) (it cannot divide the
prime p), and therefore (13.11) for 0 < n < p is an integer multiple of p. Then all
the terms in (13.10) between 1 and a? are integer multiples of p, so that

(a+1)P=a’+1 (mod p) =a+1 (mod p) (13.12)
after using the induction hypothesis a? = a (mod p). O

Note: if p does not divide a (as for example when a < p) we can apply the
cancellation law and Fermat’s little theorem becomes

a?~t =1 (mod p) (13.13)

13.2.3 Euclid’s algorithm

It is described in Euclid’s books 7 and 10 of the Elements (circa 300 a.C.), and
determines the greatest common divisor (GCD) of two integers a, b.

If a > b, the sequence

a = qob+ 7o
b=aqro+m

To = @271 + T2

TN-3 = qN-1TN—2 + TN_1
TN_2 = qNTN-1 T TN (13.14)

ends with 7y = 0 (a remainder is stricly smaller than the divisor, so that ry < rx_;
and the series of remainders must terminate with 0). Then the last nonvanishing
remainder ry_; is the greatest common divisor of a and b, denoted by GCD(a, b).

Proof: since ry_o = gyryn_1, ry_1 divides ry_s. Then ry_3 = gny_1ryv_2+7TNn_1 =
(gnv_1gy +1)rNy_1 = rn_1 divides also ry_3. Iterating, we prove that ry_; divides
all the remainders, and also @ and b. Thus ry_; is a divisor of a and b. Next
we prove that it is the greatest divisor. Any divisor ¢ must divide ry, because
rg = a — ¢ob. Analogously we show that ¢ divides all the remainders, and therefore
divides rn_1, which implies ¢ < ry_;. Therefore ry_; is the GCD of a and b. O

13.2.4 Extended Euclid’s algorithm

An immediate consequence of Euclid’s algorithm is that we can write the GCD of
a and b as
GCD(a,b) = sa+tb (13.15)

with s,t relative integers. Indeed starting from the bottom of the sequence in
(13.14) we have GCD(a,b) = ry_1 = "nv—3 —qn_17n—2 and we obtain the GCD as a
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linear combination with integer coefficients of the remainders ry_o, ry_3. Similarly
we can express ry_o and ry_3 as linear combinations of preceding remainders, and
so on = MCD(a, b) is expressed as in (13.15). O

13.2.5 Linear modular equations

The extended Euclid’s algorithm allows to solve for x linear modular equations of
the type:
ar =c (mod b), a,b,c,x integers (13.16)

We want to find x such that ax — ¢ be an integer multiple of b, which is equivalent
to find integers x,y such that
ar +by =c (13.17)

Consider
sa+th=g (13.18)

where ¢ = GCD(a,b), and s,t can be found with Euclid’s extended algorithm.
Since g divides a and b, g must divide also ¢, cf. (13.17). Thus ¢/g is an integer. A
solution for x and y is then given by

x=s(c/g), y=t(c/g) (13.19)

Exercise: use the extended Euclid’s algorithm to find = such that 7x = 1 (mod 160).
Answer: z = 23.

13.3 RSA algorithm - public key cryptography

Rivest, Shamir and Adleman (RSA) algorithm is based on an asymmetric key. The
key used to encode the message is public, and different from the secret key used to
decrypt it.

Bob wants to send a message M to Alice. For example Alice is a bank and Bob is
a client who wants to send his credit card number M to the bank. The protocol
runs as follows.

Alice:

1) chooses two giant prime numbers, p and q. We assume that M is always less
that the product pq. To illustrate the procedure, we take two small prime numbers
p =17, ¢ = 11. The two primes are the private key, known only by Alice.

2) computes N = pq. Here N = 187.

3) chooses another number e, relatively prime with (p — 1)(¢ — 1) and smaller than
(p —1)(¢ — 1). For example e = 7 is relatively prime with 160 (i.e. their GCD is
1), and < than 160.
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4) publishes e and N. This couple of integers is the public key.

Bob:

1) encrypts his credit card number M into a coded message C' with the formula:
C = M*° (mod N) (13.20)

using the public key (N,e). For example, if M = 88, C' = 887 (mod 187). This
calculation is simplified if we use (13.7): 88" (mod 187) = [88* (mod 187) x

882 (mod 187)x 88 (mod 187)] (mod 187) = 132x 7788 (mod 187) = 894432 (mod 187) =
11. Thus C' = 11 is the coded message.

2) sends C' to Alice. A malicious interceptor, traditionally called Eve, will not be
able to decode the message, if p and ¢ are very large primes. Indeed to decrypt C,
i.e. to invert formula (13.20), the knowledge of p and ¢ is necessary. Eve can try to
deduce p and ¢ by factorizing the giant number /N, but this is an arduous task with
conventional computers: the number of necessary operations grows exponentially
with NV in all classical known algorithms.

Alice:
1) computes the decryption key d, defined by
ed=1 (mod (p—1)(qg—1)) (13.21)

In our example 7d = 1 (mod 160) can be solved easily with Euclid’s extended
algorithm, to find d = 23.

2) using this key, which has required the knowledge of the secret couple (p,q), she
can decrypt the coded message C' by virtue of the inversion formula

M = C* (mod N) (13.22)
obtaining M = 112 (mod 187) = 88, recovering the message M of Bob.

We now prove the inversion formula. Raising to the d-th power both members
of the encryption formula yields

C?= M* (mod N) (13.23)
The equation (13.21) defining d implies
ed=1+r(p—1)(g—1)=14+k(p—1)=1+h(g—1) (13.24)

If M is not a multiple of p, then M and p are coprime, because p is prime. By
Fermat’s little theorem
MP™t =1 (mod p) (13.25)
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and
Med = MUY — (AMPmYEN = 1°M (mod p) = M (mod p) (13.26)

Thus
M = M(mod p) (13.27)

If M is a multiple of p,
M =0 (mod p) = M (mod p) (13.28)
We can conclude that p always divides M — M. Similarly we prove that
M = M(mod q) (13.29)
i.e. ¢ divides M* — M. Since p and ¢ are primes, also N = pq divides M®? — M:
M = M(mod N) (13.30)
Thus, using (13.23)
C%= M (mod N) = M(mod N) = M = C? (mod N) (13.31)

Finally, since M < N (N is very large), it is also the smallest M satisfying M =
C? (mod N), i.e.
M = C?% (mod N) (13.32)

and the inversion formula is proved. O

13.4 Quantum cryptography

As discussed in Lecture 23, a quantum algorithm due to Peter Shor factorizes N
in polynomial time. When quantum computers will be commercially available, the
security of the RSA encryption protocol will vanish. Quantum mechanics however
offers an intrinsecally secure solution: quantum cryptography.

13.4.1 BBB&84 protocol

Alice wants to send a message to Bob, in the form of a string of bits. Using polarized
photons, Alice could send a sequence of them, with polarizations corresponding to
the states |0) and |1), the sequence reproducing the message. Bob has a vertical
polarizer, and can therefore distinguish the two orthogonal polarization states, and
thus reconstruct the message of Alice.

However the photons can be intercepted by Eve, who can measure their polar-
ization by using a vertical polarizer. She can read the message, and send the same
sequence to Bob, who will not suspect Eve’s intervention. So Eve’s eavesdropping is
undetected in this case, and the transmission between Alice and Bob is not secure.
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However Alice can send photons in two different bases: the |0),|1) basis, cor-
responding to horizontal and vertical polarizations, and the |+),|—) basis, corre-
sponding to 45° and 135° polarizations. Alice chooses the bases randomly, and so
does Bob when he measures the photons sent by Alice, using vertical or 45° polar-
izers. The bit 0 is encoded in the |0) and |+) photons, while the bit 1 is encoded
in the |1) and |—) photons. Exploiting the two bases, Alice and Bob can verify
whether their communication is secure, free from interception. The BB84 protocol,
proposed by Bennet and Brassard in 1984, runs as follows.

Alice sends a string of photons to check security, say 200 photons. She chooses
the bases at random, and sends a string of 200 bits by coding the bits 0 and 1
as discussed above. Bob measures the photons sent by Alice using at random the
polarizers corresponding to the two bases. When Bob uses the same basis chosen by
Alice, the results of Alice and Bob will agree: if Alice sends the bit 0(1), Bob will
measure the bit 0(1). When Alice and Bob use different bases, the measurement
by Bob has a probability 1/2 to agree with the bit sent by Alice (for example a
photon sent by Alice in the state |—) (bit 1) has a probability 1/2 to pass (bit
1) Bob’s vertical polarizer). After the 200 photons have been sent by Alice, and
measured by Bob, Alice calls Bob by phone, in a public channel, and compares with
Bob the bases used for every photon. Alice and Bob can write down a list of the
photons that have been sent and measured on the same bases (approximately one
half of the 200 photons). The results on the other photons are just discarded. Then
Alice and Bob check whether they agree on the bits encoded in the polarizations.
If disagreements are above a certain threshold (depending for ex. on the noise of
the optical fiber used or the transmission) they can deduce that Eve has tried to
intercept.

Indeed, if Eve is intercepting, she measures the photons sent by Alice with two
polarizers (let us suppose that she knows that Alice and Bob use vertical and 45°
polarizers), but she cannot know which of the two bases has been used by Alice,
since Alice phones Bob after the transmission of the 200 photons. Eve has a 50%
chance to guess the correct basis, and use the correct polarizer to measure photons
without disturbing them (recovering the bit and transmitting the same photon to
Bob). In this case the bit sent by Alice will coincide with the bit received by Bob.
However, in approximately the other half of the cases, Eve will not guess right, and
use a polarizer not adapted to the basis chosen by Alice. In this case, the photon
Eve transmits to Bob has a 50% chance to yield the correct bit (i.e. the same bit
Alice sent) when it is measured by Bob. Thus, compounding these probabilities,
Eve has a 75% chance of being undetected, for every photon she intercepts. With
100 photons, she has a (3/4)'%° &~ 3.2 x 107* chance of being undetected, and Alice
and Bob, checking the agreement between their bits, will know whether they have
been intercepted.

After this security check, Alice and Bob can use the same channel (for ex. optical
fiber) to send messages, or a secret key to encode future messages. This is why the
BB84 algorithm is also called e quantum key distribution (QKD) algorithm. Note
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that the probabilistic character of measurement of photons using different bases in
emission and reception can be used by Alice to produce genuinely random sequences
of bits 0 and 1, and use them as secret keys if the channel is secure.

13.4.2 Ekert protocol

In this protocol, proposed by Artur Ekert in 1991, the photons are not prepared
by Alice, but by a third party (Charlie) who produces pairs of entangled photons,
for ex. in the Bell state |5g0), and sends one to Alice and the other to Bob. Alice
and Bob measure the photons using again two different polarizing filters chosen at
random. The remaining part of the protocol is identical to the BB84. If there are
no interceptors, Alice and Bob receive correlated photons, and if they choose the
same bases for the measurement their bits should be identical. If not, there is a
detected intrusion by Eve.
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14 Lecture 14: Turing machine
Models of classical computing:

e Turing machine
e (Circuits.

14.1 Turing machine

Contains 4 elements:

1) program

2) finite state controller
3) tape

4) tape writer and reader

The INPUT is the initial content of the tape. The OUTPUT is the final content of
the tape. The finite state controller operates on a finite set of internal states ¢, ...q,
and is a sort of microprocessor, coordinating the machine operation. There are also
two special internal states gs, qn, respectively the starting state and the halting
state. The tape is written with 4 characters: 0, 1, >, b (blank).

finite
program state
controller

read /write

A 4

>10|1|1]0|1T]0]0]b|O0]1

tape

Fig. 14.1 Turing machine

The Turing machine (TM) starts in the internal state g, and with the tape writer/reader
on the first square of the tape, containing the start symbol >. The computation
proceeds serially according to the program. When the internal state becomes gy,
the machine halts and the result of the computation is the content of the tape.

A program is a finite list of instructions of the form (¢, x, ¢, 2, s) where
q: state

x: 0,1, >,0b
s -1,0,+1
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The controller examines the list of instructions (program), until it finds a program
line (¢, x,q, 2, s) where ¢ is the current state of the machine and x is the character
under the tape reader/writer. In that case the controller executes the program line:
it changes the internal state to ¢/, overwrites the symbol x turning it into 2/, and
moves the tape reader/writer one step left, right, or does not move it, according to
s = —1,41,0. If no program line is found with g=internal state and x = character
under the reader/writer, the state changes into ¢, and the machine stops.

Exercise: consider the program

(gs, >, q1,>,+1)
(¢1,0,q1,0,+1)
(q1,1 Q17b +1)
(q1,0,q2,b,—1)
(q2,0,G2,b,—1)
(g2, >, S +1)
(g3,0,q1,1,0)

Show that it computes the function f(z) = 1, where z is a string of bits. Hint:
verify it on a definite z, for example z = 1001, and show that if the initial tape
configuration is >,1,0,0,1,b,0, ..., the output tape configuration is >,1,b,b, ....

Every program executable on a modern computer can be translated in a program
for TM and viceversa. This is the Church-Turing thesis: the class of functions
computable with a TM coincides with the class of functions computable with an
algorithm.

14.2 Turing number

To every TM we can assign an integer number T}, that identifies TM uniquely.
The TM is characterized by its program: thus we assign a number T}, to every
possible program. There are many ways to do it. For example, we can represent
the ordered sequence of ¢; in the program lines of the Exercise in previous Section
by first establishing the dictionary ¢ — 1,92 — 2,93 — 3,¢s — 4, g, — 0, and then
defining the integer in base 5 as

Ny =41111112222330 = 0-5° +3-5' +3 -5 +2-5% + - .. (14.1)

There is then a 1-1 correspondence between base 5 integers and arbitrary sequences
of five possible internal states. If the internal states are m, the integer N; will be
a base m integer. We need also to specify m, via the integer Ny = m. Analogously
we construct a base 4 integer N, describing the sequence of tape characters in the
program lines, setting 0 — 0,1 — 1,>— 2,0 — 3. For the program lines of the
Exercise we find

Ny, = 22031333332231 (14.2)
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Finally for the sequence of s in the program lines we translate 0 — 0,+1 — 1, -1 —
2 and we find the base 3 integer

N3 = 1112210 (14.3)

The four integers Ny, N7, No, N3 contain the whole information on the program in
the Exercise, and therefore uniquely determine the corresponding TM. However,
we want to characterize a TM by a single integer number T);. This is achieved by
using for example a 1-1 correspondence between couples of integers (Ny, N2) and
integers N

(N1, N3) «— N (14.4)

and then using the same correspondence to assign an integer number N’ to (N, N3).
Finally we assign

(N, N') «— Ty (14.5)

Then from the number T); we can work out in reverse the couple (N, N’), and
from N and N’ the couples (N1, Ny) and (Ny, N3), and therefore the quadruple
N(), Nl, NQ, N3 determining the TM.

One way to find a 1-1 correspondence between couples of integers and integers
is illustrated below.

Ny : :
<' :‘ """""" yorrrrr
4 >5 6 ---------- Y SRR b AREEEEEEEEEEEE
‘3 :'2' """"" ‘r’z """"" ‘i """""" " """""""
0 1 8 9

Fig. 14.2 A 1-1 correspondence between (N1, N2) and N: the numbers in the grid
refer to N, and to every N corresponds a point with coordinates (N, Na).

14.3 Universal Turing machine

Let M be a Turing machine with Turing number T);.
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The universal Turing machine (UTM) is defined as follows. If its input tape contains
the binary representation of T);, a blank, and a string of tape characters x, then
UTM produces as output the same output M would produce with input x.

Thus UTM can simulate any Turing machine M. It is similar to a modern
programmable computer. The program corresponding to 7T}, is written as input on
the tape, and data to be processed by the program are written in a different part
of the input tape. Then a fixed program (that defines the UTM) is used to execute
the program T),.

Exercise: discuss the case of an UTM input tape containing Th; = Ty

14.4 Halting problem

Can all well-posed mathematical problems be solved by an algorithm ? The answer
is no. There are easy problems, hard problems, and impossible problems (cf. Godel).

An example of a problem with no algorithmic solution is the Halting problem. The
following proposition

“Does the program of a TM with Turing number z halt, if input is y ?”

is undecidable. In particular, no algorithm exists providing an answer to the propo-
sition

“Does the program of a TM with Turing number x halt, if input is z ?”
Proof: by contradiction. Define the halting function

h(z) = 0 if TM x does not halt, with input x
Y7 1 if T™M o does halt, with input z

Suppose an algorithm HALT (z) exists to evaluate h(z). Then consider the following
program:

TURING(x)
y = HALT (z)
if y =0 then
halt
else

loop forever
end if (14.6)

If HALT is a valid algorithm, TURING is a valid program with Turing number ¢.
By definition of halting function, h(t) = 1 if and only if TURING halts with input
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t. But examining TURING we see that it halts with input ¢ if and only if h(t) = 0
— contradiction. Then the assumption that an algorithm exists for computing
h(z) is wrong: no algorithm can be found for the halting problem. O

230 A. M. Turive [Nov. 12,

ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO
THE ENTSCHEIDUNGSPROBLEM

By A. M. Turive.
[Received 28 May, 1936.—Read 12 November, 1936.]

The “computable’”” numbers may be described briefly as the real
numbers whose expressions as a decimal are calculable by finite means.
Although the subject of this paper is ostensibly the computable numbers.
it is almost equally easy to define and investigate computable functions
of an integral variable or a real or computable variable, computahle
predicates, and so forth. The fundamental problems involved are,
however, the same in each case, and I have chosen the computable numbers
for explicit treatment as involving the least cumbrous technique. I hope
shortly to give an account of the relations of the computable numbers,
functions, and so forth to one another. This will include a development
of the theory of functions of a real variable expressed in terms of com-
putable numbers. According to my definition, a number is computable
if its decimal can be written down by a machine.

In §§9, 10 I give some arguments with the intention of showing that the
computable numbers include all numbers which could naturally be
regarded as computable. In particular, I show that certain large classes
of numbers are computable. They include, for instance, the real parts of
all algebraic numbers, the real parts of the zeros of the Bessel functions.
the numbers =, e, etc. The computable numbers do not, however, include
all cefinable numbers, and an example is given of a definable number
which is not computable.

Although the class of computable numbers is so great, and in many
ways similar to the class of real numbers, it is nevertheless enumerable.
In § 8 Texamine certain arguments which would seem to prove the contrary.
By the correct application of one of these arguments, conclusions are
reached which are superficially similar to those of Godelf. These results

t+ Godel, *Uber formal unentscheidhare Sitze der Principia Mathematica und ver-
wandter Systeme, 1", Monatshefte Math. Phys., 38 (1931), 173-198.

Fig. 14.3 First page of: Alan M.Turing, Proceedings of the London Mathematical
Society, 2, 42 (1) 230-65 (1937)
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15 Lecture 15: Classical circuits

Circuits, with wires and gates, are a model of computation equivalent to the Turing
machine, and often more convenient and realistic.

15.1 Basic gates

A classical logical gate is a function f : {0,1}" — {0,1}™, taking n bits into
m bits. When m = 1 the function is said to be boolean. For example, the NOT
classical gate is a 1-bit to 1-bit function, the AND gate is a 2-bit to 1-bit function
etc. Both implement boolean functions. Basic classical gates are given in Fig. 15.1.

NOT a —>o— a
AND b —ab
OR P T)— @)
XOR Y )))—asb
NAND  { [ Do—ab
NOR ? 2 )o— ab

Fig. 15.1 Classical gates.

Example: a circuit that adds two 3-bit integers is shown in Fig. 15.2. It generalizes
easily to n-bit integers.
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x c

Ty bi L — !
HA (carry bit) FA y—HAﬂ_ C

y D— zay ¢ HA TRy B

Y2 FA

yr —FA Ty

HA

Fig. 15.2 Adds two binary integers x = xgr122, ¥ = yoy1y2. The carry bit ¢ in the
half-adder HA is 1 if z = y = 1. The carry bit ¢’ in the full-adder FA is 1 if at least two
input bits are 1.

Observation: any function f of n bits into m bits:

flzr,.xn) = (fi(zr, oxn), fa(@r, o n)y ooy fin(T1, - 20)) (15.1)

is equivalent to m functions f1, fo, ..., fn of n bits to 1 bit (the “components” of the
function f).

15.2 Universal set: NAND and FANOUT

Theorem: the gates NAND and FANOUT are a universal set: using only these
gates, every function f : {0,1}" — {0,1}" can be implemented in a circuit.

In virtue of the above observation, we need to prove the Theorem only for boolean
functions f(x1, ..., z,).

We first give in Fig. 15.3 some examples of basic gates, realized with circuits
that use only NAND and FANOUT.
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NOT —Do— = —<_[)P—
AND J)— = oo
OR —P— = Reir—

XOR T))— =

cNOT _ [ = ':,D—_
function 1 — _i}_

Fig. 15.3 Basic gates in terms of NAND and FANOUT

|

The proof of the Theorem proceeds by induction on n. For n = 1 there are 4
possible boolean functions: the identity (represented by a wire), the NOT gate, the
0 function and the 1 function. These functions are all implementable using only
NAND and FANOUT, see Fig. 15.3 (the 0 function is obtained from the 1 function
simply by adding the NOT gate to the circuit).

Next we suppose that the Theorem holds for n, and prove that it holds for n+1,
i.e. for boolean functions f(xg, 1, ..., z,). To do so we define

fo(z,.yxn) = f(0,2q, ..., x,), filxy, nxy) = f(1, 21, .., 20) (15.2)

By the induction hypothesis, these two n-bit boolean functions are implemented
by circuits with only NAND and FANOUT gates, represented in Fig. 15.4 with
rectangular boxes. The same Figure proves the Theorem: indeed it realizes a circuit
that computes f(zg,x1,...,z,), using only NOT, AND, XOR and the rectangular
boxes. All these circuit components can be realized with only NAND and FANOUT,
cf. Fig. 15.3. O

To be precise, Fig. 15.4 contains also CROSSOVER components, since there
are crossings between the wires. We recall that CROSSOVER can be realized with
three CNOT gates, and CNOT is realizable with NAND and FANOUT, as in Fig.
15.3.
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Fig. 15.4 Proof of universality of NAND and FANOUT

f()(l‘l, wn)

T

fl(flfl, ..

jD— f(ﬂi‘(), ZBn)

\TJ
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16 Lecture 16: Complexity

16.1 Asymptotic notation

A notation that captures the essential behaviour of a function for large values of its
variable.

1) f(n) = O(g(n)) if there exists a ng such that for any n > ng , f(n) < c g(n) with
¢ = constant.

2) f(n) = Q(g(n)) if there exists a ng such that for any n > ng, f(n) > ¢ g(n) with
¢ = constant.

3) f(n) = O(g(n)) if f(n) and g(n) have the same asymptotic behaviour up to a
constant factor. If f(n) = O(g(n)) = Q(g(n)) then f(n) = O(g(n)).

Examples:

e 2n is O(n?), 2" is Q(n?)

e Tn? + y/nlogn is ©(n?) since Tn? < Tn? 4+ y/nlogn < 8n? for n sufficiently large.
e f(n) = O(g(n)) & g(n) = Q(f(n)), f(n) = O(g(n)) & g(n) = O(f(n)).

e if g(n) is a polynomial of order k, g(n) = O(n') for k < 1.

e logn = O(n*) for any k > 0.

e n'°8" is superpolynomial: n* = O(n'°&™) for any k, but n'°s™ £ O(n*).

e 18" is subexponential: ¢ = Q(n'°¢") for any ¢ > 1, but n'°e™ £ Q(c").

o if e(n) = O(f(n)) and g(n) = O(h(n)), then e(n)g(n) = O(f(n)h(n)).

Exercise: : show that ordering n names alphabetically is 2(nlogn). Since algo-
rithms are known, that are O(nlogn), the ordering problem is ©(nlogn).

16.2 Computational complexity

FEasy problems: solution can be found in polynomial time, i.e. with a number of
steps that is a polynomial function of the dimension n of the input. For example
the addition of two n-bit integers scales as n.

Hard problems: superpolynomial in n. For example the factorization of an integer
N requires a number of steps scaling as expn, if n is the number of digits of N.
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The main complexity classes are:

P: problems that can be solved in polynomial time (easy problems).
NP: problems whose solution can be verified in polynomial time.
NP-complete: any NP problem can be reduced to a NP-complete problem.

Obviously NP includes P. No proof exists, but it is generally believed that NP #
P. If a polynomial-time resolution of a NP-complete problem was ever found, any
NP problem could be solved in polynomial time, which would imply P = NP. The
current consensus is that no polynomial time resolution of a NP-complete problem
exists.

For example integer factorization is NP, since the solution can be checked (by multi-
plication) in polynomial time. However no polynomial time factorization algorithm
is known within classical computation. The situation changes with quantum compu-
tation: the Shor algorithm, based on the quantum Fourier transform (see Lecture
23), factorizes in polynomial time. Unfortunatley the factorizing problem is not
NP-complete, so that we cannot conclude P = NP within quantum computation.

16.3 Examples

e A graph is a finite collection of vertices {vy,...v,}, connected by links (v;,v;).
The graph is non-directional if the order of the vertices in the links is irrelevant. A
cycle is a sequence of vertices {vy, ...v, } such that every pair (v;,v;4+1) is a link and
(Um,v1) is a link. In words, a cycle is a closed path in the graph.

A cycle is simple if all its vertices appear only once.

A cycle is Hamiltonian if it is simple and includes all the vertices of the graph.

A cycle is Fulerian if every link of the graph is “visited” only once.

Given a graph, no polynomial algorithm is known to decide whether it admits a
Hamiltonian cycle. Moreover the Hamiltonian cycle (HC) problem can be shown to
be NP-complete.

Perhaps surprisingly, the Eulerian cycle (EC) problem is in class P. In fact, a graph
admits an Eulerian cycle if it is connected and only an even number of lines originate
from every vertex of the graph, a result due to Euler. Checking that it is connected
requires O(n?) operations, and checking the number of incident lines for every vertex
requires O(n3) operations (there are at most n(n — 1)/2 lines in the graph with n
vertices). Thus EC is in class P.
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Fig. 16.1 Without the dashed line, this graph has no Hamiltonian cycle, but has a
Eulerian cycle. With the dashed line, there is a Hamiltonian cycle, but no Eulerian cycle.

Both HC and EC are examples of decisional problems: an algorithm solving the
problem anwers yes or no to the question of existence of particular cycles.

e The Traveling Salesman Problem (TSP) is another NP-complete decisional prob-
lem, and is formulated as follows:

“Given n towns and a distance d;; between town ¢ and town j, is there a closed
path including all towns with total length < d 7 ”

We now prove that HC reduces to TSP. It suffices to apply TSP with the following
specifications: if the graph has n vertices, each vertex is considered a town, and
the distance d;; beween towns is assigned to be 1 if the corresponding vertices in
the graph are connected by a link, and 2 otherwise. Then with TSP we can answer
the question: does a closed path connecting all towns exist, with length <n +1 7.
An algorithm solving TSP will provide the answer: if positive, it implies that such
a path exists, and its length is n (it must be < n + 1 and, since the closed path
connects n towns, it must be at least n). Then a Hamiltonian cycle exists in the
graph, including all its vertices only once. O

Thus, given an algorithm that solves TSP, it can be converted to an algo-
rithm that solves HC. Since HC is NP-complete, this implies that also TSP is
NP-complete: if every NP problem reduces to HC, it also reduces to TSP.

e CSAT (circuit satisfybility) is the decisional problem: “Given a boolean circuit
composed by AND, OR, NOT gates, does an input assignment exist that gives as
output the bit 1 7 ”. This problem can be shown (Cook-Levin proof) to be NP-
complete, by use of the Turing machine paradigm, see for ex. Chuang and Nielsen,
p.146. Thus if a problem is NP, and CSAT reduces to it, the problem is also NP-
complete. In this way many other problems have been shown to be NP-complete.

e SUBSET SUM is another NP-complete problem, well suited to be attacked also
by quantum computing protocols. It consists in finding whether a subset exists, in
a list of integers (ny,...ny), having as sum a given integer S.
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Note: no quantum protocol is known to solve in polynomial time NP-complete
problems. It is widely believed that P # NP also within quantum computation.

16.4 Energy and information

Energy requirements for computation are related to reversibility. In irreversible
gates, as for example the classical NAND gate, there is loss of information. To
cancel information, energy is required, as stated in Landauer’s principle (1961):

To cancel 1 bit, an energy of at least k7T log 2 is required.

This principle can be justified by considering the encoding of 1 bit by using a
gas in a box. The gas is very peculiar, consisting of only one molecule. The box is
divided into two parts, with a mobile partition. As such, the box contains 1 bit of
information, which has value 0 if the molecule is on left of the partition, and value
1 if on the right of the partition. Suppose we want to cancel this information: we
remove the partition and compress the gas to the left with a piston, which slides
halfway into the box. Now the molecule will be located with certainty in the left
part of the box, and carries no information. A bit has been cancelled. But work
was necessary to compress the gas. This work can be computed by considering the
entropy of the system before and after compression. In the initial state, the box
had entropy S = klog(number of microstates) = klog 2, since there are two possible
microstates (molecule on the left, molecule on the right). After the compression,
only 1 microstate survives, and the box has entropy = 0. Thus the box entropy has
decreased by AS = klog2, which corresponds to a work W = TAS = kT log 2.

16.5 Reversible classical computation: the TOFFOLI gate

The gates for a classical universal set, NAND and FANOUT , are non reversible.
Information is lost: from the output we cannot reconstruct the input. Nevertheless,
it is possible to simulate NAND and FANOUT with reversible gates. For example
the Toffoli gate, a 3-bit to 3-bit gate, can be used as in Fig. 16.2 to act as NAND
or FANOUT. Thus Toffoli by itself can be considered a universal set.

a —eo— a a ———— ] —e— 1
—_— b b —_— b a ——eo—— Qa
—&d—c®ab 1 —H— 1®ad 0 —D— a
TOFFOLI NAND FANOUT

Fig. 16.2 The TOFFOLI gate, and its use to simulate NAND and FANOUT

This shows that classical computation can be made reversible, but at the cost
of introducing service bits in input (“ancilla bits”) , and producing extra bits in
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output (“garbage bits”). These extra bits must be cancelled at some stage, to
reduce cluttering of the memory, and will require energy for their cancellation.
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17 Lecture 17: Quantum circuits I

17.1 Rotation operators

We define the operators:

7 7 0 cos?  —isin?
Y M S 2 2
R, () = exp( Z2X) = cos 2[ i sin 2X = ( isin®  cos? ) (17.1)

9 _qin?
R,(0) = eXp(—igY) = €08 g[ —isin gY = ( COSg Sm92 ) (17.2)

S1n 5 COS 5

0 0 .. 0 exp(—i2 0
R.(0) = exp(—2§Z) = cos 5] — isin §Z = ( (O 2) exp(i2) (17.3)
These are unitary operators acting on 1-qubit states. They are called rotation oper-
ators because they rotate the qubits on the Bloch sphere, by an angle 0, respectively

around the z,y, z axes. For example
RO)F) = 7"y, 7' =Ra(0) ¥ (17.4)

with R, (6) acts on the 3-dimensional Bloch vector by rotating it around the axis
x by an angle 6 (counterclockwise). Thus we have a 1-1 correspondence between
operators R on the qubit Hilbert space and geometric rotations R in the usual
3-dimensional euclidean space. We now prove eq. (17.4).

Proof: consider the density operator corresponding to a pure qubit state |r):
I+7.-¢
p=In=""7 (17.5)

cf. eq. (11.10). The density operator corresponding to the transformed state |7”)
is

I + Zz r;0;

p, = |7_H><7—H| = Rz(e) |7_"><F| Ra:(@)]L = Rz(9> 9 Rz(0>T -
1 i Rp(0)oi R (0)T
e, 2( ) (17.6)
On the other hand we also have
[+7'.§
P (17.7)
2
and comparing (17.6) and (17.7) we deduce r}. Computing R, (0)o;R.(0)" we find
R,(OXR,(0) =X (17.8)
: 0 .. 0 0 .0
R.(0)Y R, (0)" = (cos 5[ —isin §X) Y (cos 5[ — isin §X) =
=cosf Y +sinf Z (17.9)
; 6 .0 0 .0
R.(0)ZR,(0)" = (cos 5] —4sin §X) Z (cos 5] —isin §X) =
=—sinf Y +cosf Z (17.10)
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using Pauli matrices identities XY X = =Y, XY =iZ etc., and basic trigonometric

identities cos? g — sin? g = cosf, 2sin g cosg =ginf. Thus
1 0 0
Ry (0)0iRo(0)' =) ay(0)o;,  ay(®)=| 0 cosf sinf (17.11)
J 0 —sinf cosf

The matrix a;;(€) represents a geometric rotation around the x axis by an angle ¢
(clockwise). Substituting into (17.6) :

- L+ 3 Re(@)oiRe ()t T +30m 2ja(0)oy 143,32 ai(0)ri)o;
2

2
(17.12)

ry = Z%‘(@)ﬁ‘ =Y au(=0)r; (17.13)

so that

)

are the coordinates of the transformed 7'’. We have therefore proved eq. (17.4): 7’
is obtained by a counterclockwise rotation of 7" around the = axis by an angle 6. O

In general, a counterclockwise rotation around an axis along the versor n of an
angle 6 corresponds to the operator:

R,(0) = exp(—igﬁ - 0) = cos g[ — isin gﬁ o (17.14)

17.2 Decompositions of U with rotations
Theorem: any single qubit unitary U can be expressed as:
U=e“ Ry(0) (17.15)

Proof: geometrical, by observing that any point on the surface of the Bloch sphere
can be reached from any other point with a rotation by an appropriate angle 6
around an appropriate axis n.

Exercise: verify that for the Hadamard gate H, formula (17.15) holds with a =
/2,7 = (1,0,1),0 = 7.

V2
Exercise: verify
XR,(0)X = R,(—0), XR.(0)X =R,.(—0) (17.16)
Hint: use XY X = —Y and Xe¥' X = XY (due to X? = I). Similar for Y — Z.

Theorem: any single qubit unitary U can be expressed as:

U=e“ R,(B)R,(7)R.(5) (17.17)
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Proof: use the matrix expressions of the rotations, and eq. (1.19).
This Theorem can be generalized as:
U= e Ry(B) R (7)Ra(0)
with n and m not parallel.
Theorem: any single qubit unitary U can be expressed as:
U=e*AXBXC
with A, B, C unitaries such that ABC = I.

Proof: set

A= R®R(D)., B=R(-DR(LZ9), = p(ZPEY

and use (17.16).

17.3 Controlled gates
Prototype of controlled gate: CNOT. More generally:

U

Fig. 17.1 Controlled U gate. For U = X it becomes the CNOT gate.

Exercise: prove the following circuit equivalences :

. —
-
:
B
R B
i

Fig. 17.2 Quantum circuit equivalences.
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Problem: realize any controlled-U gate using only CNOT and single qubit gates.

Solution: use the U = ¢ *AX BX(C decomposition, see circuit equivalence in Fig.
17.3.

1o\
Oeia

Fig. 17.3 Realization of controlled-U in terms of CNOT and single qubit gates.
Exercise: verify the equivalence in Fig 17.3.

Single qubit gates U controlled by n qubits are denoted by C"(U). Thus the CNOT
gate is a C'(X) gate, the Toffoli gate a C?(X) gate etc.

Theorem: any C?(U) gate can be realized with CNOT and single qubit gates.

Proof: given by the equivalence in Fig. 17.4, where C?(U) is given in terms
of CNOT gates and and controlled C*(V), CY(VT) gates, with V2 = U. These
controlled gates, in turn, can be realized in terms of CNOT and single qubit gates
as in Fig. 17.3, and the Theorem is proved. O

This is a remarkable result: classically 1 and 2 bit reversible gates are not sufficient
to realize the Toffoli gate, whereas 1 and 2 qubit gates are sufficient to realize the
quantum Toffoli gate.

U Vv vi Vv

Fig. 17.4 Realization C?(U) in terms of CNOT and C(V), C1(VT), with V2 = U.
Exercise: verify the equivalence in Fig 17.4.

Note 1: in general a square root of a single qubit gate U = e R;(6) can be found
as the (unitary) gate V = /2 R;(6/2).

Example: in the case U = X, we find that V = (1 —i)(I + iX)/2 satisfies
V2 = X. We can therefore express the Toffoli gate C*(X) in terms of CNOT and
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CHV),CY(VT) gates. Resolving these C*! gates in terms of CNOT and single qubit
gates via the ABC' procedure leads to the final result for the Toffoli gate:

® ® l T

o B i - i
L [t LT b 7t LI 77|
miinabilsatisabilsatinlil

Fig. 17.5 Realization of the Toffoli gate in terms of CNOT and single qubit gates
where the 7" and S gates are given in (18.25) and (19.1).
Theorem: any C™(U) gate can be realized with CNOT and single qubit gates.

Proof: given by the equivalence in Fig. 17.5, where for definiteness we take n = 5.
The Figure shows how to realize a controlled C%(U) gate using only Toffoli gates,
and a C'(U) gate. Since Toffoli and C*'(U) gates can be realized with CNOT and
single qubit gates, the Theorem is proved. O

ler) —e— le1)

lc2) —e— |ca)

c3) —¢— = Je3)

ca) —4— |ca)

cs) —¢4— |cs)

U 0) —D S
0) Y D
0) S, S
|0) & 1 S
U

Fig. 17.5 Realization of C"(U) in terms of TOFFOLI and C'(U). The |¢;) are the
control qubits, and there are n — 1 input ancilla qubits set to |0).

Exercise: verify the equivalence in Fig 17.5.

Note 2: controlled gates can also be activated when the some of the control qubits
are in the state |0). Then dots are replaced by circles to represent the controls. An
example is given in Fig. 17.6:
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Fig. 17.6 A generalization of the Toffoli gate, where the unitary U is applied to the
second qubit if the first and third control qubits are respectively in the state |0) and |1).

Note 3: Since the Toffoli gate is universal for classical computation (see Sect. 16.5),
quantum circuits can compute all classical boolean functions (using the quantum
Toffoli gate with qubits limited to |0) and |1)).
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18 Lecture 18: Universal set of quantum gates

Theorem 1: any unitary operation U on n qubits can be realized using only CNOT
and single qubit gates.

Theorem 2: any single qubit gate can be approximated by products of the Hadamard
gate H and the § gate T" defined in (18.25).

Thus CNOT, H, T are an universal set for quantum computation.

The proof involves three steps.

18.1 Step I: every unitary matrix U can be written as prod-
uct of two-level unitary matrices.

A two-level operator (or matrix) is defined to act nontrivially only in a two-dimensional
subspace spanned by two vectors of the computational basis. We proceed to prove
Step 1 in the case of a 3 x 3 unitary matrix. The generalization to n X n matrices
will be straightforward. Consider the unitary matrix

a d g
b e h (18.1)

c fJ
We now construct three unitary two-level matrices, Uy, Us, Us such that
Ut UhU =1 = U=UUUS (18.2)

Let us start with Uy. If b = 0, U; is taken equal to the identity matrix, otherwise

a* b*
VIEERE /P
Uy = o 18.3
' VIl /P + b (183)
0 0 1
Then

a/ d/ g/
LU= 0 ¢ W (18.4)

Cl f/ j/

Note that |a'|*> + |/|> = 1 since U, U is unitary. A similar procedure is used to find
Us. If ¢ =0 then Uy = I , otherwise

o

\/|a’\2+|c’|2
1 0 (18.5)

< g
/|a/‘2+|cl‘2 |a’|2+‘c"2

a’*
\/|a’\2+|c’\2
U, = 0

85



so that

1 d/l g//
UQUlU = 0 e” h"’ (186)
0 f// j//

Because of unitarity of the matrix, the first row must have unit norm and therefore
d’ = ¢" = 0. Finally, choose Us as

1 0 0
Up=| 0 e f (18.7)
O h//* j//*

so that UsUsU U = I. The procedure generalizes to any unitary d x d matrix U.
With steps analogous to the ones described above, we can find two-level unitary
matrices Uy, ..., Uz 1 such that

1 0-- 0

0

Ud_lUd_Q"'UlU == (188)

: U’
0

Next we iterate the procedure for the (d — 1) x (d — 1) submatrix U’, and so on,

until we arrive at

UUs -+ UpU = 1 (18.9)

with Uy, ..., U, two-level unitary matrices. O

18.2 Step II: every two-level unitary operation can be im-
plemented with CNOT and single qubit gates.

The proof is constructive. Again we show how it works in an example, the general-
ization being easy. Consider a three-qubit system, and a two-level unitary matrix

a 000000 c
1

(18.10)
1

0
0
0
0 1
0
0
b

QL OO O O OO

1
00 0O0O0O

where the basis for the three-qubit vector space is lexicographically ordered |000),
|001), |010), |011), ... |111). This gate acts nontrivially only on the first and on
the last basis states:
U1000) = a|000) + b|111) (18.11)
U|111) = ¢|000) + d|111) (18.12)
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and we call U the 2 x 2 (unitary) submatrix

U= ( Z fl ) (18.13)

Define then a Gray code connecting 000 to 111, i.e. a sequence of 3-bit numbers
connecting 000 to 111 and differing by 1 bit at every step. For example:

000, 001, 011, 111 (18.14)

Then the following circuit implements U:

b1 9 &
Fig. 18.1 Realization of a two-level unitary operator U using only Toffoli gates and a
controlled C?(U)

e Exercise: prove it.

The Gray code indicates which generalized Toffoli’s to use, the & placed on the bit
change and empty (full) dots corresponding to 0 (1). Since Toffoli (and generalized

Toffoli) gates, and C*(U) can be realized with CNOT and single qubit gates, as
shown in Section 17, Step II is proved. O

18.3 Step III: every single-qubit gate can be approximated
with arbitrary precision with products of H and T
gates.

We first define in next subsection a distance between unitary operators, and then
prove III.

18.3.1 A distance between unitary operators

In order to understand how good is a given approximation, we define the distance
(or error) E between the unitary operators U and V as:

BE(U,V) = max|[(U = V)] (18.15)

If Py and Py are respectively the probabilities of measuring a given result m in the
states Uly) and V|¢), then we can prove that:

\Py — Py| < 2B(U,V) (18.16)
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and this justifies our definition of the distance E.

Proof:
[Py — Pyl = (WU P U ) — (0IVIE V)| (18.17)
Let
A = (U —-V)y) (18.18)
Then

[Py = Pyl = [([UTPn|A) + (A[PuV )] < (WU Pl A) + (Al PnV]4)]

< [IAlWV@IUTPULY) + (Al @IVIELV ) <Al +[|All < 2E(U, V)

(18.19)

where we have used triangle (for moduli of complex numbers) and Schwarz inequal-
ities, and the definitions (18.15) and (18.18). O

Using the definition (18.15), the distance between products of unitary operators
can be shown to satisfy

E(UnUn—i - Up, ViViner - V1) <> E(U;, V) (18.20)
7j=1

Proof: take the case m = 2. Then for some state |¢):
EU:U,, VaVi) = |[(UsUr = VaW)[) ] (18.21)
cf. the definition of F, and we find

(U201 = VaW)[)]| = [[(UaUy = VaUh)[) 4 (VaUy — VaVa) [4h) ]
< ||(U2 = V2)Ur )| + [|(Va(Ur = V) |)]] < E(Us, Va) + E(Uy, V1)
(18.22)

where we used the triangle inequality (for norms of vectors), and

(U2 = V2)Uh[)| < E(Us, Va),  [[(Va(Ur = VO)IO)| = [[(Ur = V)OI < E(Uy, Vi)

(18.23)
from the definition of E and the fact that the norm of U|t)) is the same as the norm
of [¢) if U is unitary. The proof is easily generalized to any m by induction. 0O

Exercise: prove that for small dp

E(Ri(p), Ra(p +d¢p)) = %p (18.24)
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18.3.2 A rotation of a 2r-irrational angle

Defining the single qubit T gate :

T= ( e_og 63% ) = 132 (18.25)

we find 4 ‘
HTH = He 82 H = ¢ §HZH — o=i§X (18.26)

™

Thus T effects a rotation on the Bloch sphere around the z-axis of an angle 7, and

HTH a rotation around the r-axis of an angle §. Their product gives:

T HTH = e 5% ¢75% = [cos g] - isingZ] [cos %] — isin gX] =

= cos? g[ — i[cos %(X + Z) + sin %Y] sing

0

2 T T . T ™ LT T
=cos® =] — ——————[cos =X +sin =Y +cos =7|sin —4/1 + cos? —
8 w/1—1—0032%[ 8 8 8 ] 8\ 8

(18.27)
The product of rotations must be a rotation, so that
L

T HTH = cos El—zsm g0 (18.28)

and comparing these two formulas for THT H yields
0 o T 1 T T
cos — = cos” —, N = ————=(cos —,sin —, cos — 18.29
2 8 V/1+cos? % ( 8 8 8> ( )

(remember that n must be normalized).

Thus we have constructed, using only products of 7" and H, a rotation R;(6) of
an angle # around an axis n given in the above equation. The crucial fact is that
here 0, as defined in (18.29), is not a rational multiple of 27, i.e.

0 + r 2w, 1, s integers (18.30)
s

This can be shown using cyclotomic polynomial theory, see for ex. Boykin et al. in
quant-ph/9906054.

Then iterating R;(0) we can approximate with arbitrary accuracy a rotation
R;(«) with any angle a.

Proof: if ¢ is the accuracy desired, take an integer N such that N > 27 /5. Then
define the angle 6, = (kf)mod 2w. There must exist j and k in the set {1,..., N},
with j < k, such that |0, —6,| = |0,_;] < QW’T < 4, simply because if we have N points
in an interval (0,27), at least two of them must be at a distance < 2%. Observe that
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fx—; cannot be 0, since it would imply 6;_; = (k—j)f mod 2 =0 = (k—j)0 = r2x
(integer r) contradicting the fact that # is not a rational multiple of 27.

As a consequence, by taking the product of k — j rotations THT H, we obtain a
rotation around 7 by an angle 0,_; < J. Iterating this rotation we can approximate

R () with accuracy 6.0
in —gin T\ 14 cos? (18.31)
sin — = sin — cos? — :
2 8 8

Exercise: show that

Exercise: show that

o T 2+12
- = 18.32
cos” o 1 ( )
18.3.3 A different axis
Consider now the product with H gates
HR,(0)H = He "s"7 [ = ¢~ianHOH _ g=igimad (18.33)

This is a rotation, with the same angle # as defined in (18.29), but around a new
axis m defined by

1
m = ———(cos g, —sin%,cos g) (18.34)

Treor T

since HXH =Z HYH = —-Y,HZH = X. For the same reason as in the preceding
subsection, every rotation Ry («) can be approximated with arbitrary accuracy ¢
by a product of R, () rotations.

18.3.4 Approximation for any single-qubit gate

Finally, any single-qubit gate U can be written as

U = Ra(8)Ra() Ra(C) (18.35)

Each of the three rotations can be approximated with precision 9, so that U can be
approximated with arbitrary precision 30 (cf. the product rule (18.20)) using only
products of T and H. O
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19 Lecture 19: Quantum circuits II

19.1 Another set of universal quantum gates: H, S, CNOT
and TOFFOLI

Consider the circuit:

0) —H H
0) —H H
1) b— s — R.(0)[¢)

Fig. 19.1 Obtaining a 27-irrational rotation with H, S, and TOFFOLI.

S = 1(.) 19.1
(o7) (19.1)

where S is the phase gate

Exercise:

i): prove that the probability of measuring 0,0 on the first two qubits is P(0,0) =
5/8, and in that case the state |[¢)) gets rotated around the z axis by an angle 6
satisfying

cosf = g (19.2)

For any other results the state |¢) is changed into Z|v).

Hint: before the measurements the state of the system is:

L1100) (354X SX) ) +01) (S~ X S3) ) +10)(S— X SX) [0)-+]11)(~ S+ XSX)[o)]
(19.3)

Note also
35 + XSX — ( o 3@.11 ) — (3+1) ((1) % ) — (3+1) < ; gfz‘-; )
S—XSXz(lai Z.El):u—@')(é _01> (19.4)

Since (3+44)/5 has unit modulus, (3+4i)/5 = € with cos§ = 3/5, and 35+ X SX
is proportional to a rotation R, (#), cf. Section 17.1. Moreover the matrix S — X SX
is proportional to Z.

ii): prove that 6 satisfying (19.2) is an irrational multiple of 27.
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Hint: observe that )
o0 _ 3+ 41

5
If  was a rational multiple of 27, we could write 6 = (r/m)2m, so that e’ = 1 =
(3 + 44)™ = 5™, implying (3 + 4i)™ = 0(mod 5). But this is contradicted by the
Theorem:

(19.5)

(34 4i)™ = 3 + 4i(mod 5) (19.6)

which can be proved easily by induction.

We have therefore obtained (with probability 5/8) a rotation R, (f) on the qubit
|t)) with € an irrational multiple of 27. We can then proceed as in 18.3.2. Note
that if the measurement of the first two qubits does not yield the result 0,0, then
we can just apply Z to the third qubit and repeat the action of the circuit until 0,0
is obtained (and [¢) has been changed into R, (0)|¢)).

19.2 Principle of deferred measurement

Measurements can always be moved from an intermediate stage of a circuit to the
end of the circuit. If the result of the measurement is used in the circuit, then the
quantum gates controlled by classical bits can be substituted by quantum controlled
gates.

Example: Teleportation circuit, with measurements by Alice moved to the end.
Then the circuit becomes:

%) i H * g}—

1Boo) { e "

to tq to t3 ta

—e®
|

Fig. 19.2 Teleportation circuit with measurements moved to the end of the circuit.

The action of this circuit is identical to the original teleportation in Fig. 4.1. After
the two controlled X and Z gates, the 3-qubit state becomes

[Wy) = %(I00> +101) +[10) + [11))[¢) (19.7)

so that the state of Bob’s qubit is again [1), whether Alice measures her qubits or
not. There is no need of classical information sent by Alice to Bob. However the
controlled gates X and Z are extended gates (connecting one qubit of Alice with
Bob’s qubit), and are responsible for a transfert of information, with speed < c.

Note: the original qubit [¢)) of Alice has been destroyed also in this case: even
without measurements, Alice’s 2-qubit state at the end of the circuit is given by
the balanced superposition $(|00) + |01) 4 [10) + |11)) that retains no information

on [¢).
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19.3 Principle of implicit measurement

We have noted in previous Section that Bob’s state does not depend on Alice mea-
suring her qubits or not. This generalizes to the principle of implicit measurement:
any quantum wire, not terminated by a measurement, can be considered measured.

Supposing that p is the density operator for a 2-qubit system, we can consider
a measurement in the computational basis of the first qubit (Alice’s). Suppose also
that Alice does not communicate her result to Bob. What is the state of Bob’s
qubit after Alice’s measurement 7 Is this state different if Alice does not measure
her qubit ? To answer, we recall that the collapse of p due to a measurement, if the
result of the measurement is known, is given by p,, = P,,pPp,/T7r(Pyp), see Section
8.2. If the result is not known, the density matrix becomes

p = Zp( ZT'/’ mpP ZPmpP (19.8)

cf. Sect. 8.6. Thus, for a measurement by Alice in the computational basis, we find
p' = FPopPo+ PrpPr = ([0)(0[ @) p (10)0] @ 1) + (|11){1[ @) p (|1)(1]| @ 1) (19.9)

and the reduced density operator for Bob is
P =Tra(p)) = Tra(PopPy + PipPy) = Tra((Py+ Pp) = Tra(p)  (19.10)

where we used ciclicity of T'ry since F,, P; operate nontrivially only on the first
qubit. Then we conclude that the reduced density operator for Bob is unchanged
by the measurement of Alice. By the act of measurement, Alice cannot transfer
information to Bob.

19.4 Measurement of an observable

Suppose that a unitary gate U is also hermitean. Then U is an observable. We can
devise a circuit that effects the measurement of this observable on any state [1;,).
Assume for simplicity that |1);,) is a single qubit state, and that the eigenvalues of
U are +1 and -1. Then the circuit that realizes the measurement apparatus for U
is as in Fig. 19.2.

0) —H+H

|'¢m> U |¢out>

Fig. 19.3 Circuit realizing the measurement of an observable U with eigenvalues +1.

Denoting by [plus) and |minus) the eigenvectors of U corresponding to the eigen-
values +1, the state on which we want to measure U can be expanded as

|Vin) = a|plus) + Blminus) (19.11)
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The output of the circuit in Fig 19.2, before the measurement of the first qubit, is
the 2-qubit state
a|0)|plus) + B|1)|minus) (19.12)

After the measurement it collapses into |0)|plus) (with probability |a|?) or into
|1)|minus) (with probability |3|?). Thus the measurement produces a collapse of
the second qubit [1;,) into an eigenvector of U with the correct probabilities. O
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20 Lecture 20: Quantum Fourier Transform (QFT)

20.1 Discrete Fourier Transform

The discrete Fourier transform is defined as a transformation on N complex numbers
Yo, Y1, ---, Yyn—1 yielding N complex numbers zg, z1, ..., zy_1 defined by:

1 N—-1

Note the analogy with the usual Fourier transform of a function f(z):

2k

flk) = \/%7 / da f (x)e™” (20.2)

where the sum on the discrete index j is replaced by an integral on the continuous
“index” =, and y; and z;, correspond respectively to f(x) and f(k).

20.2 Quantum Fourier Transform

It is a unitary operation QFT defined on basis vectors |0), |1),...,|N — 1) as

N-1
e2m IRIN| ) (20.3)
k=0

QFTj) =

2=

Then the components y; of a vector |v) = Zj.\[:_ol y;l7) transform under QFT into

new components zx given by the discrete Fourier transform (prove it). We will show
in the following that QF'T is indeed unitary.

Using n qubits, the dimension N of the vector space of physical states is 2",
and the basis vectors |0), ..., |7), ..., |2 — 1) are given by the 2" vectors of the com-
putational basis |00 --0),...,|j1j2 - Jn)s--s[11 - -+ 1), where j1, Jo, ..., jn is the binary
expression of the integer j.

20.3 Binary numbers and binary fractions
The binary representation of the integer j is j17Js2...7, where

J= 02" 2" 2 (20.4)
Real numbers between 0 and 1 can be represented with binary fractions, defined by

_ jl j2 jn

0410 jn = = 4 22 4 oo 22 20.5
Jijz--) 5 + 52 + 4 o (20.5)
and related to the binary integers jiJs...7, by
. . r .
0.J1J2" Jn = on J1J2e0n (20.6)
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20.4 Product representation of QFT

Theorem: the unitary operator QFT can be written as the product

- » 1 i 0.5 i 0.jn—1j i 0.41+j
QFT|jrjz---ja) = z(10) +€7 O [1))([0) ™ DIntn[1)) - - (]0) 4 € O 1))

(20.7)
Proof:
1 2n—1 1 1 1
N 2mi jk/2m _ 2mi §/2" (k12" 14+ k20 7.
QFT’]) - 2% e ’ ’k> - 2% Z Z € ! ! |k1 kn>
k=0 k1=0 kn=0
1 1 1 1
_ T Z o2mi jk12*1|k1> Z e2mi jk22*2|k2> o Z o2mi jkn2fn|kn>
k1=0 k2=0 k=0
=79 + eI 1))(J0) + €™ 1) - ([0) + 2T L)) (20.8)
2

and observing that

2mi /2 _ 2w 0. g2 i/2? _ o O.dn-1dn o2 3/2" _ 2w 0.j1jn (20.9)

the theorem follows. O
20.5 Efficient circuit for QFT

1j1) —| H (—{Ro—|R3}+{R — Rn

|j2> H _R2 o —|Rn—o— Ry

|73) l

|jn—1) A— H— Rop——

) . [
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where
1 0

For example Ry = Z, Ry = S, R3 =T, and in general R? = Ry,_;.
The above circuit implements the QFT on the n-qubit input state |j) = |j1) - - [Jn)-

Proof: after the first H gate, the input state becomes (prove it):
1 2 0.1 - -
2—%(|0> +e 1)) [52) - [jn) (20.11)
Applying next the controlled-R, gate produces the state (prove it):

1
-

22

(10) + €*™ *72 1)) |ja) -+ |jn) (20.12)
After the application of all controlled- R gates on the first qubit the state has become
L (10) + €27 OB 1)) [f) -7, (20.13)

23 "

Applying the same procedure to the second qubit leads to:
(10 €27 051 1) (J0) 4 T O [1)) () ) (20.14)
and repeating it on all the other input qubits yields the final state that coincides

with the output of QFT|j172 - - jn) in (20.7), once we invert the order of the output
qubits with CROSSOVER gates. O

The circuit proves that QQF'T' is unitary, since all gates are unitary. The circuit
uses n+(n—1)+---+1=n(n+1)/2 = O(n?) gates. In contrast, the best classical
algorithms for the discrete Fourier transform use ©(n2") gates, so that QFT has
an exponential advantage on its classical counterpart.
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21 Lecture 21: Phase estimation

21.1 The circuit

Consider the eigenvalue equation for a unitary operator U:
Ulu) = ™% |u) (21.1)

where U and the eigenvector |u) are known, and ¢ is unknown. The QFT provides
an algorithm to find the phase ¢, assuming that black boxes (circuits) are available
to prepare the state |u) and to implement controlled-U?’.
The procedure of phase estimation uses two registers: the first register contains ¢
qubits, each in the initial state |0). The number ¢ will depend on:

- the accuracy we want to reach in the estimation of the phase

- the probability of success of the algorithm
The second register contains initially the eigenstate |u), with the appropriate
number of qubits necessary to encode the eigenstate.

The circuit for the phase estimation is given in Fig. 21.1. The effect of the
sequence of controlled-U gates on the state |7)|u) is

G- gy — o) U9 U2 fu) = ) U fu) (21.2)
and recalling the eigenvalue equation (21.1):
7)) — 15) ) (21.3)

The first register exits the H gates in the state:

) — — o Z 17) (21.4)

(remember (|0)-+1))(|0)+[1)) -+ (J0)+[1)) = Y5 -+ 35—l -+ i) = 375" 1)

Thus the initial state of the two registers |0)|u) is transformed by the Clrcult as:

201 201
i 1 i 2he)i
) — = 3" i) = S Sy (215)
Jj=0 j=0

Suppose now that the phase ¢ can be expressed exactly with t bits:
= 0.01...0 (21.6)

(remember that the phase as defined in (21.1) is a real number between 0 and 1).
Then applying the inverse QFT to the first register gives

2t—1

_§ : 2m

1) — 12%) = ler...00) (21.7)
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and measuring the register in the computational basis yields the phase ¢.

10) —@ .......... e

t qubits 0) — H P S S

e
|
S
\

) T v ur T v

Fig. 21.1 The circuit for phase estimation.

21.2 Performance of the algorithm

And if the phase ¢ cannot be written exactly as ¢ = 0.p1...¢0, 7 For example ¢
could be irrational, and therefore have infinitely many ¢; bits in the binary fraction.
The procedure of the previous section gives then an approzimation of ¢. Given a
desired accuracy d and a probability 1 —e¢ of reaching this accuracy, we can compute
the necessary number t in the first register of the phase estimation algorithm.

i) Consider the state of the first register emerging from the circuit for phase esti-
mation, before the inverse QFT:

=
— )RR (21.8)

t
22 155

Here ¢ can only be approximated by a binary fraction. Suppose that the best ¢-bit
approximation of ¢ which is less than ¢ is given by the binary fraction 0.b;...b; =
b/2!, ie.

o~ b/2f (21.9)

where b is an integer in the interval [0,2" — 1], with binary expression b = b;...b;.
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The accuracy is then
§=¢p—b/2 (21.10)

Now & > 0 because we have supposed that b/2" < ¢, and § < 1/2' because 1/2" is
the maximum error in a ¢-bit approximation. Thus

0<d§<1/2f (21.11)

ii) Applying the inverse QFT to the first register in (21.8) produces

2t—1

Z e~ 5t e2miek| ] (21.12)
e, 1=0
since the inverse QFT acts as:
2t ! _ 2mikl
QFT k) = Z e 2 (21.13)

(this can be simply shown by considering the matrix elements of QFT and of
QFT~! = QFT?" on the |j) basis). The state (21.12) can be rewritten as:

2t—1
1 27rzk(b+l) riok
o > e (b + Dmod 2°) (21.14)
k,l=0
since translating the index [ by the constant integer b just reshuffles the terms in
the sum. We can even redefine the range of the sum on [, and the same state can
be expressed by:

2t—=1 2t
=Y S e T (b 4 Dmod 21 (21.15)
l7—2t 141 k=0

The sum on [ still involves 2! terms and again addends are just reordered.

iii) consider now the amplitude a; of the state |(b+ [)mod 2):

2t—1 _ 2t—1
0 = % Z e_%(tb‘”))e%rigok _ %Z(e%ri(cp—(b—&—l)/?))k _ (2116)
k=0 k=0
1 1 — 27i(28p—(b+1)) 1 1 — 27i(2¢6—1)
- - S I (21.17)
ot | 1 — e2mi(e—(b+1)/2") ot | 1 — e2mi(6-1/2Y)

(use 22:01 2" = (1 —2")/(1 — ), and the definition of § in (21.10)). Its square
modulus is the probability of obtaining, when measuring the qubits in the first
register, the binary expression of the integer (b + [) mod 2!. Thus the square
modulus of aq gives the probability of obtaining b, the best approximation of .
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But what is the probability of obtaining a result m that differs more than a given
e from b, i.e. such that |m — b| > e ? The answer is the sum of all |oy|?* such that
b+ [ differs by more than e from b, or equivalently such that [ differs by more than
e from 0. This sum is:

—(e+1) ot—1
Prob(lm—b|>e)= Y |auf+ > |l (21.18)
I=—2t=141 l=e+1

iv) For any real 6, |1 — ¢?| < 2, and therefore

2
|| < 2|1 — e2mi(6-1/2]

(21.19)

Moreover |1 — €| > 2]0|/m when —7 < 6 < 7 (to prove it observe that |1 — | =
V2 —2cosf = 2|sin ¢|). As a consequence

11— 20129 > 41(5 — 1/2Y)] (21.20)

because indeed —7 < 27(d — 1/2") < 7 always (try with the extreme values | =
—271 + T and [ = 27! and use 0 < § < 1/2"). Then (21.19) implies also

1

|| < 25 1] (21.21)

v) Applying this inequality to eq. (21.18) gives a bound on Prob(|m —b| > e):

1| ey 1 |
Prob —-b < - —_ —_ 21.22
rob(jm —b| > e) < 1 l—;1+1 (1 —21)? + 521 (1 — 2t5)2 ( )

Remembering that 0 < 20 < 1 we can write

[ G T I G e |
|=—2t—141 l=e+1 |=—2t=141 l=e
—e 2t=1-1 2t=1—1
1 1 1 1 1 1 [~1 1
< - = === =< - —dl =
—4[ 2 @t X z2] > 52—2/6152 2e—1)
j=—2t—141 l=e l=e
(21.23)
vi) Finally, if we set e = 2!"" — 1, we find that |m — b| > e is equivalent to:
m b 1
—0[>2"" = || > = 21.24
e n_ b L (21.24)
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Thus the probability that, measuring the first register, we find a result m that gives
us an estimate of ¢ with an accuracy worse than 1/2" is given by

1 1
Prob(|m —b| > e) < e —1) = 29 (21.25)

and conversely, the probability of obtaining a result m with accuracy better than
(or at most equal to) 1/2™ is

1

This result can be stated as follows:

Theorem: To obtain ¢ with an n-bit accuracy, and with a probability of at least
1 — g, the phase estimation algorithm needs ¢ qubits in the first register, where ¢ is
given by?

1

t=n+ {log2(2 + 2—)1 (21.27)

€
(use the definition of € given in (21.26) to express t in terms of n and £). Thus
if we want an n-bit accuracy with a probability of at least 90% (corresponding to
e =1/10) we would need t = n + log, 7 ~ n + 3 qubits in the first register.

Note: we have assumed the possibility of preparing the second register in the state
|u). If |u) is not known, one can still use a (possibly unknown) state [¢). This
state can be expanded on the basis of the eigenvectors |u) of U, corresponding to
the eigenvalues e*7u:

) =3 clu) (21.28)
The ¢, are unknown if |¢)) is unknown. Using it as second register, the phase
estimation protocol produces a final state ) c,|@,)|u), with |@,) being a “good
estimator” of the phase ¢,. Thus measuring the first register yields a good ap-
proximation of (,, where u is random with probability |c,|*. Measuring the second
register gives the eigenvector corresponding to the eigenvalue e,

21.3 Summary of the algorithm

The circuit for the phase estimation algorithm can be schematically drawn as fol-
lows:

«

2the equal sign in formula (21.27) really means “ = the closest integer bigger than”.
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0) —{m TQ — %)

Fig. 21.2 Schematic circuit for phase estimation, where |@) = |¢1...¢¢) is a good estima-

tor of the phase ¢ in the eigenvalue > of U, and |u) is the corresponding eigenvector.

The phase estimation algorithm is the core of the Shor algorithm for factorization
in polynomial time, as will be discussed in Lecture 23.

21.4 Kitaev’s algorithm

Consider the circuit

0) —H H

u) ——U u)

Fig. 21.3 Kitaev’s algorithm for phase estimation.

where |u) is an eigenvector of U with eigenvalue e*™%%.
Exercise: show that the probability of obtaining 0 in the measurement of the first
qubit is p(0) = cos? (7).

Note that the input state |u) is unchanged at the end of the circuit, and can be
re-used as input. Repeating the procedure yields a statistics of measurements that
allows to estimate p(0), and thus ¢. This algorithm provides an alternative way to
determine the phase ¢ of the eigenvalue of an unitary operator.
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22 Lecture 22: Order finding

This is an application of the phase estimation algorithm, important for the factor-
ization algorithm. Consider two integers, z and N, with x < N and no common
factors.

Definition: the order of x modulo N is the smallest positive integer r such
that 2" =1 (mod N).

The problem of finding the order is a difficult problem for a classical computer:
no classical polynomial algorithm is known. By this we mean an algorithm poly-
nomial in the number L of bits necessary to specify the problem, for example the
number of bits necessary for the binary expression of N. Thus L satisfies N < 2.

Exercise: find the order of 5 modulo 21

Theorem: r always exists (provided = and N are coprime) and r < N. For the
proof, see the Appendix.

22.1 The algorithm

The quantum algorithm for order finding is simply the algorithm for phase estima-
tion applied to a unitary operator U, y defined by

Ugn|y) = |2y mod N) (22.1)

where y is a L-bit integer, thus 0 < y < 2L — 1, and U, y acts on a vector space of
dimension 2%.

Technical note: when y > N, the application U, y is defined to act on |y) as
the identity. Thus U, y acts nontrivially on |y) only for 0 <y < N — 1.

Theorem: the states defined by

—1
2misk
lus) = — Z { mis } |2% mod N) (22.2)
k:

with integer s satisfying 0 < s < r — 1 (and r = order of x modulo N), are
eigenstates of U, v :

o
Uy nlus) = exp {WTZS] lus) (22.3)

Applying now the phase estimation algorithm gives an estimation the phase s/r
of the eigenvalue exp[2mis/r|, and from s/r we can deduce r (via the continued
fraction algorithm, see later), i.e. the order of x modulo N.
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Proof:
[ —2misk
Vr k=0 LT

1 © [—2mis(k — 1)} .
= — exp | ————2| |z mod N
R L

= — exp | ———— 2| |z mod N
AT e

. r—1 .
2 1 —2misk
= exp {7?_25} — g exp [ :ZS } |2% mod N)

} |2"™ mod N)

— x| 22 (22.4)

We redefined k£ — k — 1 in the sum in the second line, and in the third line we
wrote the sum from £k =1 to k = r as a sum from k£ = 0 to £ = r — 1 since both the
exponent and the vector |x*mod N) do not change if k — k + r, so that the term
with £ = 0 is equal to the term with k£ = r. Indeed the exponent remains the same
since exp[27i x integer] = 1, and |2F mod N) = |2¥*" mod N) because 2" = 1 mod
N.

Exercise: prove that U, y is unitary.

For the phase estimation algorithm, we need to know the eigenstate |us), but
this is equivalent to know the order r (since it enters the definition (22.2) of |us)),
which is just the number we want to find ! There is a way out of this logical loop:
we can choose as second register the state |1) = |00...01), where all the L qubits
are set to |0) except the last one which is set to |1). This state is in fact a sum of
cigenstates |us):

m:%§m> (22.5)

as can be seen from the inversion of formula (22.2):

r—1

1 2misk
2% mod N) = 7 Zexp [WTL] ) (22.6)
s=0

by taking £ = 0. The inversion formula can be verified easily noting that

r—1

Z exp[—2misk/r] = k0 (22.7)

s=0

(for k£ = 0 this relation is trivial, for k # 0 use the formula for the geometric sum).
Another way of proving (22.6) is to notice that the transformation matrix of (22.2)
is unitary, and its inverse is given by its transpose conjugate.
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In summary, taking as the input of the second register the state |1), the algorithm
will estimate a phase s/r, where s can take the values 0 < s < r — 1 with equal
probabilities 1/r | but r is fixed to be the order of x modulo N. We now need a
procedure to extract r if we know that it is the denominator of a rational number
s/r. This procedure is the continued fraction algorithm we describe in next Section.

Note: one possible result of the algorithm is that the estimated phase is zero,
since s = 0 — s/r = 0 may happen with probability 1/r. One has then to repeat
the algorithm until one finds a nonvanishing phase.

22.2 Continued fraction algorithm

The procedure yields a fraction s/r which is close to the phase ¢ obtained by the
phase estimation algorithm. It is based on the following

Theorem: if s/r satisfies

Sl — (22.8)

then s/r is a convergent of the continued fraction for ¢ (for the proof see Appendix
4 of Nielsen and Chuang).

To satisfy the condition of the Theorem, we need to know ¢ with a (2L + 1)-bit
precision. Indeed in this case
1

S
Sl <921 o & '
. so) 2 o (22.9)

since r < N < 2F and therefore r? < 22L = 292 < 22L+1,

Definition: the continued fraction [ag, aq, ..., ap|, where aq, ..., aps are inte-
gers, ag > 0 and aq, ..., ap are strictly positive, is defined by

1
lag, ai, ...,ap| = ag + : (22.10)
“F e

tayg

Every positive rational number has a continued fraction representation.

Example: take the rational number 31/13. To find its continued fraction rep-
resentation we perform repeatedly the operation of separating the integer part and
inverting the fractional part:

31 2+45/13 2+—1 2+ L 2+ L 2+—1
_— = = = _= 1 = 1 =
13 13/5 2+3/5 2+ 3 2+ 573
1 1
SIS S I S (2211)
en ey



For any rational number only a finite number of steps is necessary, because the
numerators in the fractional parts (5,3,2,1 in the example) are strictly decreasing
and therefore have to terminate with 1. The example shows that the continued
fraction expression for 31/13 is [2,2,1, 1, 2].

Note 1: one advantage of the continued fraction representation, over the usual
decimal representation, is that every rational number is represented by a finite
string of integers ay, ..., aps, whereas this is not true in the decimal representation
(1/3=10,3] = 0.33333....).

Note 2: the procedure of separating the integer part and writing the rest as
1/(1/rest) can be applied also to an irrational number. Then the procedure never
stops, and irrational numbers have infinite continued fractions. For example

m=1[3,7,15,1,202,1,1,1,2,1,3,1,14,2,1,1,2,2,2,2, ... (22.12)

For a number given by |ay, ..., aps], the m-th convergent is given by the continued
fraction [ag, ...am] (m < M). For example the convergents for 31/13 are:

2] =2, [2,2]=5/2=25, [2,2,1]=7/3=2.333..., [2,2,1,1] =12/5 =24,
2,2,1,1,2] = 31/13 = 2.3846... (22.13)

and are called convergents because they converge to [ay,...an] (= 31/13 in the
example).

The Theorem above ensures that if the phase estimation algorithm gives the
phase ¢ with a (2L + 1)-bit accuracy, i.e.

Y1 Y2L+1
<,0=0.g01...g02L+1 = ?—i-—{— 22L+1’ (2214)
then the fraction s/r can be found in the convergents of the rational number ¢.
Which convergent ? One can try them all, starting from the end (those that ap-
proximate better the phase ¢): each yields a particular r, and one can verify (in
polynomial time) whether 2" = 1 (mod N), until one finds the correct r. O

22.3 Summary of quantum order finding

e Inputs:
1) black box U, x to execute the operation [j)|k) — |j)|z7k(mod N)),
where x, N are coprime and N is a L-bit integer.
2) t = 2L + 1 + [logy(2 + 5-)] qubits in the state |0).
3) L qubits in the state |0....01)

e Output: the smallest r > 0 such that 2" = 1 (mod N).

e Runtime: O(L?) operations. The algorithm succeeds with probability O(1).
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e Procedure:

L. |0)1) initial state

2. \F 22 I \/@ Yo 21 o 17)|us) superposition with H gates
3. = \/i? Yoz Z] o eI ) ) application of U, y

4. — \/%7 Sl |2/t\/§)]us) inverse QFT

5. — estimation of 2 s measuring first register

6. —r continued fraction algorithm

Note: if s,r are L-bit integers, then the continued fraction for ¢ = s/r can be
computed using 0(L3) operations: 0(L) for separation and inversion, and for each
such operation, 0(L?) for elementary arithmetic.

22.4 Period finding

Problem: find the period of a function f(x) (mapping L bits into 1 bit), i.e. the
smallest r, with 0 < r < 2%, such that

flx+r)= f(x) (22.15)

Preparatory observations:

We assume to have an oracle Uy (a circuit) that implements the unitary transfor-
mation on ¢ + 1 qubits

Usle)ly) = le)ly @ f(=)) (22.16)

We need ¢ = O(L + log,(%)) input qubits initialized to [0).
Finally we define the 1-qubit state:

Fon = > et ) (22.17)

If f(x) has period r this relation can be inverted:
1 r—1 N
@) = —= > 1) (22.18)
i

To prove it, substitute (22.17) into (22.18), and use 3._) €2™*/" = for z integer
multiple of r, otherwise = 0.
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Procedure:

1. ]0)|0): input t 4+ 1 qubit state
2. — \/LQT Zit:_ol |£)|0): create superposition with H®*

3. — g Yo [0 (@)) = Jrgyr ise Yo €M |2) | F(1)): apply Uy
4. — \/%7 S |l7;‘>|f(l)> apply QFTT to the first register (¢ qubits)

5. — l//vr: measurement of first register, a good estimate of /r

6. — r: continued fraction algorithm.

22.5 Appendix: number theory

To prove the Theorem at the beginning of this Section, we need the following

Lemma 1: the GCD(a,b) is the least positive integer that can be written as az + by,
with z,y relative integers.

Proof: suppose that s is the least positive integer that can be written as ax+by.
Since GCD(a,b) divides both a and b, it divides also s, and therefore GCD < s.
Next we prove that s < GCD by showing that s is a divisor of both a and b.
Suppose that s does not divide a. Then a = ks + p, with 1 < p < s —1, and
therefore a = k(az + by) + p = p = a(l — kx) + b(—ky) is a positive integer that
can be written as a linear combination of a and b, and smaller than s, and this is a
contradiction. Hence s must divide a, and likewise we show that s divides b. This
implies the Lemma. 0O

Multiplicative inverse (mod N)

Definition: if ab = 1 (mod N), then b is the inverse of a (mod N) , and
viceversa. The modular inverse does not exist always. For example 2 x 3 = 1 (mod
5) but 2 has no inverse (mod 4).

Lemma 2: a has a multiplicative inverse (mod N) iff GCD(a,N) = 1, i.e. iff ¢ and
N are coprime.

Proof: suppose that a has an inverse ¢~ (mod N). This means aa™' =1 +
kN = aa™! + (—=k)N = 1. Lemma 1 then implies GCD(a,N) = 1. Conversely, if
GCD(a,N) = 1, then integers a~! and b exist such that aa ™' +bN =1 = aa™! =
(mod N). O

Note: all integers in the range 1 to p — 1 have inverses (mod p) if p is prime.
Indeed all integers 1,2,...,p are coprime with p.
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Exercise: prove that the modular inverse is unique.
Using now Lemma 2 we prove the

Theorem: the order r of x modulo N always exists (provided x and N are coprime)
and r < N.

Proof: Consider the sequence x (mod N), 2% (mod N), ... 2V (mod N). These
are N integers in the interval [1,N-1]. (z' can never be 0 (mod N) since z and N
are coprime by hypothesis, and 2 = 0 (mod N) is incompatible with z having a
modular inverse). If N integers can take values in the interval [1,N-1], at least two
of them must be equal, i.e. there exist integers ¢ and j in the interval [1,N] and with
i < j such that ' = 2/ (mod N). Multiplying both sides ¢ times by the modular
inverse of z yields 277" = 1 (mod N), and shows that the order isr =j —i < N .
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23 Lecture 23: Factorization

23.1 Two theorems in number theory

Theorem 1: if N is a composite (i.e. not prime) L-bit integer, and y is a solution
of y¥» = 1 (mod N) in the interval 1 < y < N — 1 (thus the trivial solutions y =
l,y=N—1= —1 (mod N) are excluded), then GCD(y—1, N) and GCD(y+1, N)
are nontrivial factors of N that can be computed with O(L?) operations.

Proof: since y*> =1 (mod N), N must divide y* —1 = (y+1)(y —1). Moreover
N > y+1>y—1 and therefore N cannot divide (y + 1) or (y — 1), but must have
nontrivial common factors with (y + 1) and (y — 1). These common factors can
be found by computing the GCD of N and y + 1 with Euclid’s algorithm, which
requires O(L?) operations.

Theorem 2: if we choose at random an integer x in the interval [1, N — 1], coprime
with NN, it is very probable that its order (mod N) is even, and 2"/? is not equal
to £1 (mod N) (the probability is always > 1/2, see Appendix 4 of Nielsen and
Chuang, where this probability is shown to be 1 — 2% where m is the number of
different prime factors of N).

Then y = 2™/ (mod N) is a nontrivial solution of y?> = 1 (mod N).

In conclusion, finding the order » modulo N of an integer x, chosen at random in
the interval [1, N — 1], and coprime with N, allows to find in polynomial time a
nontrivial solution of y?> = 1 (mod N), and hence a nontrivial factor of N.

23.2 The factorization algorithm

We have seen that the two theorems of the previous section can be combined to
construct a factorization algorithm. This algorithm was first proposed by P.W. Shor
in 1994, and produces in polynomial time and with good probability a nontrivial
factor of a composite integer N. All operations can be executed on a classical
computer, except the order finding subroutine that requires a quantum computer
(to find the order in polynomial time).

23.3 Summary of the algorithm
e Input: N

e Output: a nontrivial factor of N

e Runtime: O((log, N)?3) operations
e Procedure:
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1. If N even. — output = 2

2. Determine whether N = a® for @ > 1, b > 2 (can be done by a classical algorithm
in O(L?) operations). If yes, — output = a.

3. Choose z in the interval [1, N — 1]. Compute the GCD(z, N) , if it is > 1 then
— output = GCD(z, N)

4. Quantum subroutine to find the order r of x modulo N.

5. If r is even and 2/2 # —1 (mod N), compute GCD(2"/2 —1, N) and GCD(2"/? +
1, N), and test whether these are nontrivial factors of N. If yes, — output = these
factors.

NB: 2'/? cannot be = +1 (mod N) because 7 is the smallest integer such that
2" =1 (mod N).

23.4 Example: the factorization of N = 91

i) The steps 1. and 2. are passed without exiting.

ii) step 3. : choose for example x = 4, coprime with 91.

iii) compute order of 4 modulo 91. Result = 6 (4% = 4096 = 1 + 45 x 91).
iv) check that 27/2 # —1 (mod N), — 43 = 64 # —1 (mod 91), ok.

v) GCD(64+1, 91) = 13, GCD(64-1,91) = 7

23.5 Bibliography

P. W. Shor (1994), “Algorithms for quantum computation: discrete log and fac-
toring”, Proc. of the 35-th Annual Symposium on the Foundations of Computer
Science, 124-134, IEEE Computer Society Press.
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24 Lecture 24: Quantum search algorithm (Grover)

24.1 The problem

The problem is to find, in a set of N = 2" elements, a subset of M elements
that satisfies some given conditions. We say then that the search problem has M
solutions.

We can assume the existence of a function f(z) from n bits to 1 bit, that takes
the value f(z) = 1 if x is a solution and f(z) = 0 if = is not a solution.

We also assume that there is a black box (an “oracle”) Uy able to execute the
operation on the n + 1 qubit state |z)|q), where |z) is a n-qubit state and |g) is a
1-qubit state:

Uslo)lg) = [2)lq © f(x)) (24.1)

In particular
Uyla)|0) = [x)[ f(x)) (24.2)

In the quantum search algorithm it is useful to prepare the 1-bit initial state |¢) in

the state : |
|—) = ﬁ(l@ — 1) (24.3)

Then it is easy to find that the action of U; becomes:

(prove it). The 1-gbit state does not change, and can be omitted from the discussion.
We can then consider the action of Uy as follows:

Uslz) = (=1)"@|z). (24.5)

i.e. the oracle marks the solutions of the search problem with a minus sign (corre-
sponding to f(z) = 1).

The circuit that implements the quantum search is

o Ja— —  F—- _ D
|?> . ....... ] _|ﬁ_l|

n qubits

|0>_H_ ....... —]

Fig. 24.1 The circuit for quantum search.
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where G is the Grover unitary operator given by

] ORACLE H PHASE H
L= i wocvom| S |
— —{H}—

Fig. 24.2 The Grover operator.

and where we have omitted from the drawing the 1-qubit state (24.3), and possibly
other work qubits for the functioning of G.

Let’s trace the action of the quantum search circuit in Fig. 24.1.

1) Starting with the initial state |0...0), the H gates produce the complete super-
position

1 N-1
) = TN ; %) (24.6)

To this state we repeatedly apply the Grover operator G = H®" PHASE H*" ORACLE.
The box ORACLE is the unitary operator Uy, acting on the n-qubit state |z) as

in (24.5). The box PHASE acts on the n-qubit basis vectors as indicated in the

box: it multiplies all |z) by (—1) except the state |0) which is left untouched. It is
immediate to see that this PHASE operator can be expressed as

PHASE = 2|0)(0| — I (24.7)

as can be verified by acting on |0) and on |z # 0). Thus the Grover operator G can
be written as

G =H®" (20)(0] = I) H*" Uy = 2[v)}(v| = 1) U; (24.8)
where in the second equality we used |¢)) = H®"|0).

2) We define the vectors |a) and |3) as

) (24.9)

Lk B e

where the symbols ZH and Z/ are respectively sums on x # solutions and x =
solutions. Then we can write |¢) as

N-1

1 N-—-M M
)= 75 Ll = =5 )+ NEa (24.10)

8
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3) The action of the oracle Uy on any vector ala) + b|f5) is obtained by simply
changing the sign of |3):

Us(ale) +0[5)) = ala) — b|3) (24.11)

(because all solutions |z) change sign under the action of Uy). It can be interpreted
geometrically as a reflection about the vector |«) in the plane defined by |a) and
|3). Similarly the operator 2|¢))(¢)| — I also performs a reflection in the same plane,
about the vector [¢). Indeed taking in this plane the basis given by |¢) and [¢]),
where |1 ) is a vector in the plane, perpendicular to [¢), we find

)] = D(eld) +dlyr)) = clp) —dliy) (24.12)

Thus the Grover operator is the product of two reflections in the plane, which
amounts to a rotation in this plane with an angle 6 that we compute in next
paragraph.

4) Here we study the action of G on [¢). First, we rewrite the (real) coefficients in
the expansion (24.10) of [¢)) on the basis vectors |a) and |3) as:

|>—cos—|a)+sm—|ﬁ COS— \/ _ sm— \/ (24.13)

with 0 < 6 < 7. Applying the Grover operator on [¢) yields:

Gly) = 2[) (] = 1) Usl) =
0 0 6 0 0 0
= [2(cos 3 la) + siné 15)) (cos§ (a] + sin§ (Bl) —1I] (0085 la) — sin§ 18))
0 0
= CO0S % |a) + sin 37 |B) (24.14)
after using some elementary trigonometric identities. In general

GFJop) :cos(g+k9) ) +sm(g+ke> 18) (24.15)

Thus G rotates [i) counterclockwise by an angle 6 determined by (24.13), and is
represented on the (|a),|)) basis of the plane by the rotation matrix

G = ( cos6 —sinf ) (24.16)

sinf cos®

The geometry of the various vectors in the af plane is given in the figure below:

115



Gly)

9/2
7z

Us|y)

Fig. 24.3 Action of G and Uy on [¢))
Note: if M < N/2, = cosg > 1/\/§7 and 0 < 0 < 7w/2.

5) Performance: the idea is to use G to rotate |¢) near |3). How many iterations
of G are necessary 7 The angle between |¢) and |5) is arccos /M /N (since the

cosine of this angle is (B|¢)) = /M /N, see (24.10)), and therefore we must repeat
the Grover iteration R times, with

M
arccos ~
R=Cl|{——"— vV & (24.17)

and CI = closest integer. This will bring the rotated |¢)) within an angle 6/2 from
18)-

The rotated vector has a projection > cosf/2 = /¥ on |B), so that a

N
measurement of the state in the computational basis yields a solution of the problem

with a probability of at least cos?6/2 = 1 — M/N. Already with M < N/2 the
probability of success exceeds 1/2. With M < N this probability approaches 1,
but the necessary number R of iterations increases.

6) This number R depends on the number of solutions M, but not on the nature of
these solutions. Provided we know M, we can apply the quantum search algorithm.
In fact the requirement of the knowledge of M can be lifted, see for ex. Nielsen and
Chuang, Section 6.3.

An upper bound can be established on R. Since arccos /M /N < /2, we find

2
R <integer part [%] (24.18)

From this equation we see that a lower bound on € gives an upper bound on R.
Since for 0 < 6 < 7 we have 0/2 > sinf/2 = /M /N, the corresponding upper
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bound on R is:

T | N
R <int t | =1/ — 24.19
< integer par [4 M] ( )

Thus R = O(1/N/M) Grover iterations are necessary to obtain a solution with high
probability. This is a quadratic improvement over the O(N/M) operations required
classically.

24.2 Summary of the quantum search algorithm
with M =1 (one solution z)

e Input: a black box oracle U performing the transformation

Ulz)lg) = |x)lq ® f(x)) (24.20)
where f(z) =0 for all 0 < x < 2" except xg, for which f(zy) =1

e n + 1 qubits in the state |0).
e Output: z,
e Runtime: O(v/2") operations

e Procedure:
1. |0)®"0) initial state

2. — \/127 ?;Bl x>w apply H®" to first n qubits, and HX to last gbit.

V2

3. — [2l) (] — I)U]R \/127 iif)l $>% ~ |xo>% apply R times

the Grover operator, with R ~ [7v/2"]
4. — 19 measure the first n qubits

24.3 A two-bit example

In this example N = 4, and the oracle that tests z is one of the four gates:
o o -~
; \ l F U
N N N S

ZE():O 560:1 ;UO:Q 56'023

Fig. 24.4 Oracles for the four cases: solution zg = 0, ... solution zg = 3.

each corresponding to a particular solution z.
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The first two qubits (the “query” qubits) encode x, the last qubit (the workspace
qubit for the oracle, not to be confused with the last qubit in the procedure of
previous section) is the oracle response. The circuit for the search of the solution
is:

| | =

— Oracle I

Fig. 24.5 circuit for the search of the solution z

Initially, the two query qubits are in the state |00), and the last qubit in the state |1).
Gates in the dotted box perform the conditional phase shift operation 2]/00) (00| — I.
For the present case, N =4, M = 1 so that from (24.13) # = 7/3, and the formula
(24.17) for R yields exactly 1. Thus only one iteration is required to obtain exactly
xo. In other words, the two qubit query state after the first H gates:

[9) = 5(100) + 101} + [10) + [11)) (24.21)

is at an angle of 30 degrees from |«), and a single rotation of §# = 60 degrees moves
it to |5). Ome can verify, using the circuit, that the measurement of the top two
qubits gives xy after using the oracle only once.

By contrast, a classical computer trying to find zy by examining all the two-bit x
(four of them) would require an average of 2.25 oracle calls.

Exercise: prove it.
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