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manzini@mfn.unipmn.it

Abstract. Data Compression is one of the most challenging arenas both
for algorithm design and engineering. This is particularly true for Bur-
rows and Wheeler Compression a technique that is important in itself
and for the design of compressed indexes. There has been considerable
debate on how to design and engineer compression algorithms based on
the BWT paradigm. In particular, Move-to-Front Encoding is generally
believed to be an “inefficient” part of the Burrows-Wheeler compression
process. However, only recently two theoretically superior alternatives to
Move-to-Front have been proposed, namely Compression Boosting and
Wavelet Trees. The main contribution of this paper is to provide the first
experimental comparison of these three techniques, giving a much needed
methodological contribution to the current debate. We do so by provid-
ing a carefully engineered compression boosting library that can be used,
on the one hand, to investigate the myriad new compression algorithms
that can be based on boosting, and on the other hand, to make the first
experimental assessment of how Move-to-Front behaves with respect to
its recently proposed competitors. The main conclusion is that Boosting,
Wavelet Trees and Move-to-Front yield quite close compression perfor-
mance. Finally, our extensive experimental study of boosting technique
brings to light a new fact overlooked in 10 years of experiments in the
area: a fast adapting order-zero compressor is enough to provide state of
the art BWT compression by simply compressing the run length encoded
transform. In other words, Move-to-Front, Wavelet Trees, and Boosters
can all be by-passed by a fast learner.
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1 Introduction

In the quest for the ultimate data compressor, Algorithmic Theory and Engi-
neering go hand in hand. This point is well illustrated by the amount of results
and implementations originated by the fundamental results by Lempel and Ziv.
A more recent example is provided by the fundamental contributions given by
Burrows and Wheeler to data compression [3], via their transform (denoted for
short bwt). In their seminal paper Burrows and Wheeler proposed to compress
the output of the bwt using Move-to-Front Encoding (shortly mtf), followed by
an order zero compressor (usually Arithmetic or Huffman coding). As pointed
out by Fenwick [5] in the first systematic study of that new type of compression,
the technique is so powerful that it yields nearly state-of-the-art compression re-
sults without any particularly sophisticated engineering of the coding step. This
should be contrasted with PPM-based compressors that involve quite a bit of
engineering. From that point on, the research on bwt compression has focused
on two aspects: faster bwt computation, and the identification and exploitation
of potential inefficiencies in the use of mtf. While substantial progress has been
made on the first point, both theoretically and experimentally (e.g. [2, 17]), the
second point experienced a plethora of heuristically-designed proposals (see [1, 4]
and references therein) which improved over the original proposal but often
lacked of analytical justification.

Recently, two theoretical results [7, 8] have shed new light on the role of mtf
within the bwt-based compression paradigm, paving the way to the (analytically
justified) design of more powerful bwt-based compressors. In particular, [8] pro-
posed a new technique, named compression boosting, that fully uses the power
of bwt to show that the performance of any order zero compressor can be au-
tomatically, and optimally, boosted to higher order entropy compression. On
the other hand, [7] proved that combining the bwt with the Wavelet Tree data
structure [10] we can achieve high-order entropy bounds without using mtf or
the boosting technique. At the same time, a novel and very recent analysis of
classic bwt compression [12] showed that mtf may not be as inefficient as initially
thought. Summing this with the fact that the theoretical results in [7, 8] require
some sophisticated algorithmic machinery, it is not at all clear how much com-
putational/compression gain can be achieved by shaving off the mtf-step from
the bwt-based compressors.

The above is the main question addressed in the present paper, whose key
contribution is first of all methodological. We provide the first carefully engi-
neered compression boosting library that can be used, on the one hand, to in-
vestigate the myriad new compression algorithms that can be based on boost-
ing, and on the other hand, to make the first experimental assessment of how
mtf behaves with respect to its recently proposed competitors: Boosting and
Wavelet Trees. The boosting library is available under the GPL license at the
page http://www.mfn.unipmn.it/˜manzini/boosting and it is highly modular in
the sense that it can be used to create a powerful high order compressor even
without any knowledge of the bwt.
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In order to highlight our additional technical contributions, we need to re-
call a few facts about compression boosting [8]. Additional details are given in
Section 3. The boosting technique builds upon three main ingredients: bwt, the
Suffix Tree data structure, and a greedy algorithm to process them. Specifically,
it is shown that there exists a proper partition of the bwt of a string s exhibiting
a deep combinatorial relation with the k-th order entropy of s. That partition
can be identified via a greedy processing of the suffix tree of s. The final com-
pressed string is then obtained by compressing individually each substring of the
partition by means of the base (order zero) compressor A we wish to boost. The
proper design of a compression booster is a bit trickier than it sounds:

(A) The greedy algorithm alluded to before is a bottom up visit of the suffix
tree. In practice, on large files, the memory requirements for the construction
of the suffix tree would be prohibitively large. We use suffix arrays instead and
procedures that efficiently simulate the bottom up visit of the suffix tree [13].

(B) Given the algorithm A we wish to boost, we also need an objective function
that estimates how well A compresses a given string. In [8], the objective function
is given in terms of two parameters λ and μ, and the order zero empirical entropy
of the string (see Section 3 for details). In practice, λ and μ may either be not
available or be too conservative. This point is discussed in Section 4, where we
propose two cost models and the relative objective functions.

(C) Another important aspect of the boosting process is the ability of the algo-
rithm A to quickly adapt to the statistics of a string to be compressed. Faster
adaptation means better compression. This learning process is usually governed
by parameters establishing how fast A “forgets the past”. We limit our experi-
mentation to range coding and arithmetic coding. The somewhat intuitive, yet
surprising, results are reported in Section 5 and outlined in point (F) below.

Using our library we have compared the performance of the compression
booster against bwt compressors based on mtf (e.g. Bzip2 [19] and variants),
bwt compressors based on Wavelet Trees (e.g., Wzip [9]), and state-of-the-art
PPM compressors (e.g. PPMd [21]). We show that:

(D) As predicted by Theory [8], boosting is superior to classic bwt approaches
that use mtf in terms of compression ratio but not by much. It is also slower, as
it is to be expected, because of the significant time cost for building the optimal
bwt-partition (as observed in B). Therefore, those results give a strong indication
that mtf may actually be a time-efficient way to effectively “approximate” the
optimal partition computed by the boosting technique.

(E) As predicted by Theory [7, 10, 11], the simple combination of bwt with
Wavelet Trees is effective both in time and compression ratio, and does not
benefit from the use of the booster. However, the Wavelet Tree approach is out-
performed by classic bwt approaches that use mtf. This further confirms the
effectiveness in time and compression ratio of mtf, and leaves open the problem
of investigating the more powerful approach proposed in [7], namely Generalized
Wavelet Trees, which are based on sophisticated combinations of binary (like,
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Run Length encoders) versus non-binary (like, Huffman or Arithmetic encoders)
compressors and Wavelet Trees of properly-designed shapes.
(F) The experiments performed to estimate the best adaptation parameters for
range and arithmetic coding show clearly that a fast adaptation yields state-
of-the-art compression by simply compressing a run length encoded bwt. This
is somewhat intuitive, yet surprising: to our knowledge no one observed exper-
imentally the superiority of this strategy w.r.t. mtf, and no theoretical analysis
has explained or suggested such behavior. Moreover, this result comes from the
stronger finding that for a fast adapting range coder the optimal partition com-
ing out of the booster is the bwt itself (data not shown, due to space limitations).
That is, the strategy is optimal with respect to the boosting paradigm.
(G) All the bwt-based compressors we tested were inferior, in terms of compres-
sion ratio, to the highly engineered PPMd tool. The principle behind bwt and
PPM techniques is the same: discover and encode according to the “best” con-
texts. However, bwt-based algorithms have the advantage of knowing the entire
string, while PPMd “discovers” good contexts on-line. Yet bwt-based algorithms
do not perform as well. This yields an extremely intriguing engineering problem
for data compression practitioners. Note that there is a very good reason to
stick with bwt-based compressors instead of embracing the, apparently superior,
PPM-based compressors: the reason is that bwt-based compressors are a key tool
for the construction of compressed indices which (informally) are compressed files
offering the additional capability of very fast full-text search (see [18] for formal
definitions and a comprehensive survey).

In conclusion our experiments show that Boosting, Wavelet Trees and mtf
yield quite close compression performance. However, the boosting technique ap-
pears to be more robust and works well even with less effective order zero com-
pressors (such as Huffman coding). Moreover, when used with range/arithmetic
coding the boosting technique yields excellent compression somewhat irrespec-
tive of how fast the order-zero compressor adapts to the statistics of the string.
These positive features are achieved using more resources (time and space) dur-
ing compression: nevertheless our results show that a careful implementation of
boosting can handle efficiently even very large files.

2 Background and Notation

Let s be a string over the alphabet Σ = {a1, . . . , ah} and, for each ai ∈ Σ, let
ni be the number of occurrences of ai in s. The 0-th order empirical entropy of
the string s is defined as1 H0(s) = −

∑h
i=1(ni/|s|) log(ni/|s|). It is well known

that H0 is the maximum compression we can achieve using a fixed codeword for
each alphabet symbol. We can achieve a greater compression if the codeword we
use for each symbol depends on the k symbols preceding it, since the maximum
compression is now bounded by the k-th order entropy Hk(s) (see [15] for the
formal definition). For highly compressible strings, |s| Hk(s) fails to provide a

1 We assume that all logarithms are taken to the base 2 and 0 log 0 = 0.



760 P. Ferragina, R. Giancarlo, and G. Manzini

$ mississipp i
i $mississip p
i ppi$missis s
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m ississippi $
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p pi$mississ i
s ippi$missi s
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s sippi$miss i
s sissippi$m i

Fig. 1. The bwt matrix (left) and the suffix tree (right) for the string s = mississippi$.
Note that the output of the bwt is the last column of the bwt matrix, i.e., ipssm$pissii.

reasonable bound to the performance of compression algorithms (see discussion
in [8, 15]). For that reason, [15] introduced the notion of 0-th order modified
empirical entropy H∗

0 (s) which has the property that if |s| > 0, |s|H∗
0 (s) is at

least equal to the number of bits needed to write down the length of s in binary.
The k-th order modified empirical entropy H∗

k is then defined in terms of H∗
0 as

the maximum compression we can achieve by looking at no more than k symbols
preceding the one to be compressed.

Given a string s, the Burrows-Wheeler transform (bwt for short) consists
of three basic steps: (1) append to the end of s a special symbol $ smaller
than any other symbol in Σ; (2) form a conceptual matrix M whose rows are
the cyclic shifts of the string s$, sorted in lexicographic order; (3) construct
the transformed text ŝ = bwt(s) by taking the last column of M (see Fig. 1).
Although it is not obvious, from ŝ we can always recover s, see [3] for details.
The power of the bwt rests on the fact that equal contexts (substrings) of s are
grouped together resulting in a few clusters of distinct symbols in bwt(s). That
clustering makes bwt(s) a better string to compress than s. In their seminal
paper Burrows and Wheeler proposed to compress the output of the bwt using
Move-to-Front Encoding2 (shortly mtf), followed by an order zero compressor
(Arithmetic or Huffman coding). In [12] it is shown that if we use an order zero
compressor A such that for any string x we have |A(x)| ≤ |x|H0(x) + c|x|, then
the bwt followed by mtf, followed by A produces an output bounded by

μ|s|Hk(s) + (log ζ(μ) + c)|s| + log |s| + μgk (1)

where ζ is the Riemann zeta function. The bound (1) holds for any k ≥ 0 and
μ > 1. In [15] it is shown that if we use Run Length Encoding (shortly rle)
between mtf and the order zero compressor, the output is bounded by

(5 + ε)|s|H∗
k (s) + log2 |s| + g′k (2)

2 Move-to-Front transforms the input encoding each symbol with the number of dis-
tinct symbols seen since its last occurrence, see [3] for details.
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for any k ≥ 0 and ε ≈ 10−2. The bottom line is that combining the Burrows-
Wheeler transform with mtf and an order zero compressor we can achieve the
k-th order entropy, Hk or H∗

k , simultaneously for any k ≥ 0. Note however, that
the coefficient in front of the k-th order entropy in (1) and (2) is greater than 1
whereas we are assuming that A achieves H0 without any multiplicative constant.
This means that there is a small inefficiency as we go from H0 and H∗

0 to Hk

and H∗
k . It is an open question whether this inefficiency can be removed with a

more detailed analysis or is inherent in the use of Move-to-Front encoding.

3 A BWT-Based Compression Booster

Recently [8] has described a bwt-based compression booster that, starting from
an order zero compressor, achieves the k-th order entropy without the inefficiency
found in the mtf-based approach. In this section we quickly review how the
boosting algorithm works; the details and proofs can be found in [8].

A crucial ingredient of the compression booster is the relationship between
the bwt matrix and the suffix tree data structure. Let T denote the suffix tree
of the string s$. T has |s| + 1 leaves, one per suffix of s$, and edges labeled
with substrings of s$ (see Figure 1). Any node u of T has implicitly associated a
substring of s$, given by the concatenation of the edge labels on the downward
path from the root of T to u. In that implicit association, the leaves of T
correspond to the suffixes of s$. We assume that the suffix tree edges are sorted
lexicographically. Since each row of the bwt matrix is prefixed by one suffix of s$
and rows are lexicographically sorted, the i-th leaf (counting from the left) of the
suffix tree corresponds to the i-th row of the bwt matrix. We associate the i-th
leaf of T with the i-th symbol of the string ŝ = bwt(s). The symbol associated
to the leaf v is thus the symbol preceding in s the substring of s$ associated with
v. Such symbols are represented inside circles in Fig. 1. If we write �̂i to denote
the symbol associated to the i-th leaf, from the above discussion, it follows that
ŝ = �̂1�̂2 · · · �̂|s|+1 (see Fig. 1 for an example).

For any suffix tree node u, let ŝ〈u〉 denote the substring of ŝ obtained con-
catenating, from left to right, the symbols associated to the leaves descending
from node u. We say that a subset L of T ’s nodes is a leaf cover if every leaf
of the suffix tree has a unique ancestor in L. Any leaf cover L = {u1, . . . , up}
naturally induces a partition of the leaves of T namely ŝ〈u1〉, . . . , ŝ〈up〉. Because
of the relationship between T and the bwt matrix this is also a partition of ŝ.

Let C denote a function which associates to every string x over Σ ∪ {$} the
positive real value C(x). For any leaf cover L, we define its cost as: C(L) =∑

u∈L C(ŝ〈u〉). In [8] it is shown a linear time greedy algorithm that computes a
leaf cover Lmin of minimum cost. That is, Lmin is such that C(Lmin) ≤ C(L), for
any leaf cover L. Lmin is called an optimal leaf cover and we say that Lmin induces
an optimal partition of ŝ with respect to the cost function C. The relevance of
Lmin for achieving the k-th order entropy derives by the following Theorem [8].

Theorem 1. Let A denote an order zero compressor such that for any string
x |A(x)| ≤ λ|x| H∗

0 (x) + μ where λ and μ are constants. Let Lmin denote an
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optimal partition of ŝ with respect to C(x) = λ|x|H∗
0 (x)+μ. If we use algorithm

A to compress the substrings of the optimal partition induced by Lmin, the overall
output size is bounded by λ|s| H∗

k (s) + gk bits for any k ≥ 0, where gk only
depends on the alphabet size |Σ|. A similar result holds for Hk as well. 	


4 The Compression Boosting Library

The efficient implementation of the compression booster algorithm is a non trivial
engineering task. The main challenge is avoiding the explicit construction of
the suffix tree which would require an unpractically large amount of working
memory. We now detail our implementation discussing its space requirements
in the “real world” model where we assume that every character takes one byte
and every integer takes 4 bytes. Let n = |s|. We first compute the suffix array of
s using the ds algorithm [17] that has a peak memory usage of only 5.03n bytes:
n bytes for the text, 4n for the suffix array, and 0.03n working space.

Given the suffix array we compute and store ŝ = bwt(s) using n bytes. The
greedy algorithm computing the optimal partition of ŝ consists of a properly
defined post-order visit of the suffix tree of s. To avoid the explicit construction
of the suffix tree we use the technique from [13] that allows one to emulate the
post-order visit of the suffix tree using the Longest Common Prefix (shortly
LCP) array. Thus, we use the Lcp6 algorithm from [16] for computing in O(n)
time the LCP array given s, ŝ, and the suffix array. This algorithm overwrites
the LCP array over the suffix array and has a peak space usage of (6 + δ)n
bytes. The parameter δ is at most 4 and is bounded also by |Σ|k/n+2Hk(s) for
any k ≥ 0. This means that the space usage is smaller for highly compressible
inputs.

Having computed the LCP array we can discard the input string s; thus at
this stage we are only storing ŝ and the LCP array for a total space usage of
5n bytes. The computation of the optimal partition using the technique in [13]
reduces to a left to right scan of the LCP array. This allows us to store the
endpoints of intervals of the optimal partition in the same memory used for
the LCP array (that is, overwriting the LCP array). Thus the only additional
memory used during the “emulated” suffix tree visit is the space used to store
the stack of the suffix tree nodes whose visit has started but not yet finished.
This space could be Θ(n) in the worst case, but in practice is much smaller than
n bytes overall.
Cost models. An important issue in the implementation of the compression
booster is the choice of the parameters λ and μ in the cost function C(x) =
λ|x|H∗

0 (x)+μ of Theorem 1. Given a compressor A, theory dictates that λ and μ
be chosen so that |A(x)| ≤ C(x) for any string x. However, if we strictly enforce
this condition it is possible that for many strings x we have |A(x)| � C(x).
Since the optimal partitioning is computed minimizing C(Lmin), if C(x) is “too
far” from |A(x)| we could end up with a partition which does not exploit the full
potential of the compressor A. To evaluate this phenomenon our boosting library
supports two different cost models. In addition to the “entropy bound” model
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outlined above, we provide a “real cost” model in which the optimal partition is
computed with respect to the cost C(x) = |A(x)|. Using the “real cost” model we
get the best possible compression that we can achieve using the compressor A.
The drawback of this model is that the computation of the optimal partition no
longer takes linear time. The time cost might be quadratic in the worst case,
although the experimental results show that the overall running time usually
increases only by a factor 1.5.

User interface. Our library provides a simple interface to boost the perfor-
mance of an arbitrary compressor using either mtf or the optimal partitioning
strategy outlined in Sect. 3. This can be done even without any knowledge of the
Burrows-Wheeler transform! The user simply needs to provide compression and
decompression procedures and, for the computation of the optimal partition, a
procedure evaluating the cost function C(x) (see [6] for details).

5 Experimental Results

Using the boosting library described in the previous section we have imple-
mented several bwt-based compressors. By means of extensive experiments we
tried to assess to what extent mtf and the boosting algorithm are able to turn
a generic order zero compressor into a state of the art compressor. We ran all
experiments on a 2.6 GHz Pentium 4 CPU with 1.5 GB of main memory running
Fedora Linux. All code was written in C and compiled using gcc Ver. 3.2.2. As a
testbed we used the collection of files introduced in [17] for testing suffix array
construction algorithms.

The following are the algorithms tested in our experiments.

Bzip2 is the well known tool based on the bwt developed by Julian Seward [19].
Bzip2 splits the input file into blocks of size 900Kb and computes the bwt
followed by mtf on each block. The actual compression is done using rle03

followed by Multiple-Table Huffman coding [22].
MtfRleMth executes the same steps as Bzip2 operating on the whole input instead

that on fixed length blocks.
MtfRleRc. The earliest versions of Bzip2 used arithmetic coding instead of

multiple-table Huffman. Recently, range coding has been (re)discovered as a
patent-free alternative to arithmetic coding. Range coding and arithmetic cod-
ing are based on similar concepts and achieve similar compression. MtfRleRc
compresses the bwt using mtf followed by rle0, followed by range coding (we
used the code from [14]). Note that MtfRleRc is identical to MtfRleMth except
that, instead of Multiple-table Huffman coding, it uses range coding.

RleRc compresses the bwt using rle followed by range coding.

3 We use rle to denote the run length encoding of the runs of any character, while
we use rle0 to denote the run length encoding only of the runs of zeros. If a string
was produced by mtf, rle0 is the natural choice because of the massive presence of
0-runs as observed by Fenwick [5].
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BoostRleRc is the boosting algorithm applied to the compressor consisting of
rle followed by range coding. Note that the difference in compression between
RleRc and BoostRleRc gives the “added value” of the use of the booster.

MtfRleAc, RleAc, BoostRleAc are analogous respectively to MtfRleRc, RleRc,
BoostRleRc except that they use the arithmetic coding routines from [23] in-
stead of range coding.

MtfRleHuff, RleHuff, BoostRleHuff are analogous respectively to MtfRleRc, RleRc,
BoostRleRc except that they use Huffman coding instead of range coding. Note
that MtfRleHuff differs from MtfRleMth in that the former uses a single Huffman
table whereas the latter uses up to six tables for the same file.

Wavelet. This algorithm computes the bwt of the whole input and compresses the
resulting string using a wavelet tree [10]. The importance of wavelet trees stems
from the fact that they have been used for the design of efficient bwt-based
compressed indices [18] and that they also achieve the k-th order entropy for
any k ≥ 0. More precisely, from [7] follows that for a string s over the alphabet
Σ the output size of Wavelet is bounded by 4|s| H∗

k (s) + 6|Σ|k+1 log(|s|) bits.
BoostWav is an implementation of the boosting algorithm applied to the wavelet

tree encoder using the “real cost” model. Thus the difference between Wavelet
and BoostWav is that the former builds one wavelet tree on the whole bwt,
whereas the latter finds an optimal partition of the bwt and builds one wavelet
tree on each substring of the optimal partition. Again, the difference in com-
pression between Wavelet and BoostWav is the “added value” of the booster.

PPMd is an implementation of the ppm encoder by Dmitry Shkarin [21, 20] which
is the current state of the art for PPM compression. In our tests we used PPMd
at its maximum strength, that is using a model of order 16 and 256Mb of
working memory.

Range/arithmetic coding variants. The behavior of range and arithmetic
coding depends on two parameters: MaxFreq and Increment. The ratio between
these two values essentially controls how quickly the coding “adapts” to the
new statistics. For range coding we set MaxFreq = 65536 (the largest possible
value) and we experimented with three different values of Increment. Setting
Increment = 256 we get a range coder with fast adaptation, with Increment = 32
we get a range coder with medium adaptation, and finally setting Increment =
8 we get a range coder with slow adaptation. For arithmetic coding we set
MaxFreq = 16383 (the largest possible value) and Increment = 64 obtaining
therefore a fast adaptation.

Compression ratio. Figure 2 reports the average compression ratio (in bits
per symbol) and average (de)compression time (microseconds per symbol) for
all the algorithms mentioned above. Looking at the average compression ratio we
can see that both mtf and the boosting algorithm do a good job in transforming
an order zero compressor into a state-of-the-art compressor. However, our data
show some unexpected behaviors. Considering the three version of range coding
(with fast, medium, and slow adaptation) we see that mtf achieves the best
compression using medium adaptation whereas the boosting algorithm “prefers”
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averg ctime dtime

Bzip2 1.424 0.53 0.14
MtfRleMth 1.167 0.96 0.46
RleAc fast 1.126 0.97 0.59
MtfRleAc fast 1.158 0.94 0.53
BoostRleAc fast RC 1.125 7.43 0.59
RleHuff 1.596 0.89 0.47
MtfRleHuff 1.230 0.95 0.46
BoostRleHuff RC 1.195 5.04 0.45
BoostRleHuff EB 1.229 2.96 0.45
Wavelet 1.230 0.96 1.01
BoostWav RC 1.229 3.55 0.94
PPMd 1.080 0.60 0.66

averg ctime dtime

RleRc fast 1.129 0.90 0.48
MtfRleRc fast 1.161 0.90 0.48
BoostRleRc fast RC 1.129 4.11 0.48
BoostRleRc fast EB 1.134 3.04 0.48
RleRc med. 1.171 0.89 0.48
MtfRleRc med. 1.153 0.96 0.48
BoostRleRc med. RC 1.152 4.13 0.49
BoostRleRc med. EB 1.158 3.02 0.48
RleRc slow 1.245 0.90 0.48
MtfRleRc slow 1.164 0.90 0.48
BoostRleRc slow RC 1.175 4.12 0.48
BoostRleRc slow EB 1.194 3.02 0.48

Fig. 2. Experimental results for the collection of files introduced in [17]. For each algo-
rithm we report the average compression in bits per symbol and the average compres-
sion and decompression time in microseconds per symbol. The RC and EB acronyms
indicate the cost model (“real cost” or “entropy bound”) used by the booster.

running time peak memory
bwt lcp visit cmpr total lcp visit

sprot 0.70 0.60 1.67 0.11 3.08 7.01 5.00
rfc 0.60 0.51 2.35 0.11 3.57 6.86 5.00
howto 0.50 0.45 2.83 0.15 3.93 7.29 5.01
reut 1.24 0.55 1.92 0.08 3.79 6.58 5.00
linux 0.52 0.42 3.39 0.12 4.46 6.88 5.04
jdk13 1.15 0.40 2.10 0.05 3.70 6.26 5.00
etext 0.75 0.63 2.65 0.16 4.19 7.57 5.00
chr22 0.49 0.54 6.33 0.17 7.53 8.34 5.49
gcc 0.85 0.40 3.00 0.10 4.36 6.75 5.07
w3c 1.10 0.43 3.18 0.06 4.78 6.31 5.01

running time
bwt lcp visit cmpr total

sprot 0.70 0.59 1.23 0.11 2.63
rfc 0.60 0.51 1.52 0.11 2.74
howto 0.50 0.46 1.86 0.15 2.96
reut 1.24 0.56 1.32 0.08 3.19
linux 0.52 0.42 2.17 0.12 3.23
jdk13 1.15 0.40 1.48 0.05 3.08
etext 0.75 0.64 1.59 0.16 3.14
chr22 0.49 0.54 0.89 0.18 2.10
gcc 0.86 0.40 1.64 0.10 3.00
w3c 1.10 0.43 2.34 0.06 3.94

Fig. 3. Running time and peak memory usage for the various stages of the BoostRleRc
(medium adaptation) algorithm using the “real cost” model (left) and the “entropy
bound” model (right, the table only shows running times since the memory usage is
the same as for the “real cost” model). The running times of the four basic steps (bwt
computation, LCP array computation, optimal partition computation via suffix tree
visit, actual compression using range coding) and the total running time are given
in microseconds per input byte. The peak memory usage is given for the LCP array
computation and the suffix tree visit which are the steps using more memory. Memory
usage is reported as number of used bytes per input byte.

fast adaptation. It is also remarkable that RleRc with fast adaptation achieves
a very good compression, better indeed that mtf combined with any version of
range coding (and the same is true for RleAc fast). This means that the bwt
can be compressed efficiently using rle and an order zero encoder that quickly
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adapts to the new statistics. This is somewhat intuitive, but to our knowledge no
one observed experimentally the superiority of this strategy w.r.t. mtf, and no
theoretical analysis has explained or suggested such behavior. Overall the data
show that the boosting algorithm is superior to mtf in terms of compression
ratio and it is also more robust in the sense that it works well even with less
effective order zero compressors (for example Huffman coding). This superiority
is however paid in terms of running time as discussed below.

Running time. The data in Figure 2 show that for range coding the boosting
algorithm with the “real cost” model is between 4 and 5 times slower than mtf in
compression while there is no significant difference in decompression. For arith-
metic and Huffman coding the ratio is even higher. Using the “entropy bound”
model the compression time decreases significantly and there is a correspond-
ing loss in compression efficiency. Summing up, mtf and the boosting algorithm
(with the two different cost models) offer three different trade offs between com-
pression ratio and compression time: the user can choose the one most suitable
for the application at hand. Figure 3 reports the resource usage of the various
stages of the boosting algorithm. We can see that the most time consuming step
is the optimal partition computation via the suffix tree visit both in the “real
cost” and “entropy bound” models. Note also that the peak memory usage is
achieved during the LCP array computation.

Wavelet tree performance. The data in Figure 2 show that the algorithms
Wavelet and BoostWav roughly achieve the same compression as the algorithms
based on Huffman coding (RleHuff and BoostRleHuff) and are inferior to the
algorithms based on range/arithmetic encoding. We point out that the similar
compression ratio of Wavelet and BoostWav provide an experimental validation
of the theoretical analysis of [7] which states that even using a single wavelet
tree—as in the algorithm Wavelet—we already achieve the k-th order entropy.

PPMd performance. The results in Figure 2 show that PPMd outperforms all
other compressors. Additional tests on the files of the Canterbury corpus (see [6])
show that the Weighted Frequency Count algorithm from [1] (which is based on
the bwt) compresses better than mtf, boosting, and wavelet tree algorithms.
This suggests that in the field of (bwt) compression Theory is currently a step
behind Practice. Although we emphasize that for the construction of compressed
indexes it is essential to have simple and efficient bwt-based algorithms whose
performance are theoretically guaranteed, we take these results as a stimulus for
further research!
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