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Abstract. In this paper we describe algorithms for computing the BWT and for building
(compressed) indexes in external memory. The innovative feature of our algorithms is that
they are lightweight in the sense that, for an input of size n, they use only n bits of disk
working space while all previous approaches use Θ(n logn) bits of disk working space.
Moreover, our algorithms access disk data only via sequential scans, thus they take full
advantage of modern disk features that make sequential disk accesses much faster than
random accesses.
We also present a scan-based algorithm for inverting the BWT that uses Θ(n) bits of
working space, and a lightweight internal-memory algorithm for computing the BWT
which is the fastest in the literature when the available working space is o(n) bits.
Finally, we prove lower bounds on the complexity of computing and inverting the BWT
via sequential scans in terms of the classic product: internal-memory space × number of
passes over the disk data.

1 Introduction
Full-text indexes are data structures that index a text string T [1, n] to support subsequent
searches for arbitrarily long patterns like substrings, regexp, errors, etc., and have many appli-
cations in computational biology and data mining. Recent years have seen a renewed interest in
these data structures since it has been proved that full-text indexes can be compressed up to
the k-th order empirical entropy of the input text T , and searched without being fully decom-
pressed [24]. At the same time, it has been shown that modern data compressors based on full-text
indexes can approach the empirical entropy of an input string without making any assumption
about its generating source [11]. Clearly, data compression and indexing are mandatory when
the data to be processed and/or transmitted has large size. But larger data means more memory
levels involved in their storage and hence, more costly memory references. It is already known
how to design an optimal external-memory (uncompressed) full-text index [8], and some results
on external memory compressed indexes have recently appeared in the literature [1, 4, 16, 26].
However, whichever is the index chosen (compressed or uncompressed), to use it one must first
build it! The sheer size of data available nowadays for mining and search applications has turned
this into a hot topic because the construction/compression phase may be a bottleneck that can
even prevent these indexing and compression tools from being used in large-scale applications.

Recent research [13, 17, 18, 23, 27] has highlighted that a major issue in the construction of
such data structures is the large amount of working space usually needed for the construction.
Here working space is defined as the space required by an algorithm in addition to the space
required for the input (the text to be indexed/compressed) and the output (the index or the
compressed file). If the data to be indexed is too large to fit in main memory one must resort to
external memory construction algorithms. Such algorithms are known (see e.g. [6, 19]), but they



all use Θ(n log n) bits of working space. We found (see Section 3) that this working space can
be up to 500 times larger than the final size of the compressed output that, for typical data, is
three to five times smaller than the original input and is anyway O(n) bits in the worst case.

Given these premises, the first issue we address in this paper is the design of construction
algorithms for full-text indexes which work on a disk-memory system and are lightweight in that
their working space is as small as possible. The second issue we address concerns the way our
algorithms fetch/write data onto disk: we design them to access disk data only via sequential
scans. This approach is motivated by the well known fact that sequential I/Os are much faster
than random I/Os. Indeed, on modern disks sequential disk access rates are currently comparable
to random access rates in internal memory [25]. Sequential access to data has the additional ad-
vantage of using modern caching architectures optimally, making the algorithm cache-oblivious.
These facts are routinely exploited by expert programmers, and have motivated a large body of
research, known as Data Streaming [22]. In this paper we investigate the problems of building
(compressed) full-text indexes and compressing data using only sequential scans (i.e. streaming-
like). We provide upper and lower bounds for them in terms of the product “internal-memory
space × passes over the disk data”.

In the following we consider the classical I/O model [28]: a fast internal memory with M
words (i.e. Θ(M log n) bits) and O(1) disks of unbounded capacity. Disks are organized in pages
consisting of B consecutive words (i.e. Θ(B log n) bits overall). Since our algorithms access disk
data only by sequential scans, we analyze them counting the number of disk passes as in the
streaming models: From that number is straightforward also to derive the cost in terms of the
number of I/Os (disk page accesses).

Our first contribution is a lightweight algorithm for computing the BWT — a basic ingre-
dient of both compressors and compressed indexes — in O(n/M) passes and n bits of disk
working space. Note that the total space usage of the algorithm is Θ(n) bits and therefore pro-
portional to the size of the input. Since at each pass we scan Θ(n) bits of disk data, each pass
scans Θ(n/(B log n)) pages and the overall I/O complexity is O

(
n2/(MB log n)

)
. We have imple-

mented a prototype of this algorithm (available from http://people.unipmn.it/manzini/bwtdisk).
The prototype takes advantage of the sequential disk access by storing all files (input, output,
and intermediate) in compressed form, thus further reducing the disk usage and the total I/Os.
Our tests show that our tool is the fastest currently available for the computation of the BWT
in external memory, and that its disk working space is much smaller than the size of the input.

The second contribution of the paper is to show that from our algorithm we can derive:
(1) a lightweight internal-memory algorithm for computing the BWT, which is the fastest in
the literature when the amount of available working space is o(n) bits (Theorem 2), and (2)
lightweight algorithms for computing: the suffix array, the Ψ array, and a sampling of the suffix
array, which are important ingredients of (compressed) indexes (see Theorems 3, 4, and 5).

Another contribution is a lightweight algorithm to invert the BWT which uses O(n/M) passes
with one disk or O(log2 n) passes with two disks, and Θ(n) bits of working space (Theorem 6).
This result is based on different techniques than the ones used for our construction algorithms.

Finally, we try to assess to what extent we can improve our scan-based algorithms for com-
puting/inverting the BWT with only one disk. In this setting, lower bounds are often established
considering the product “internal-memory space × passes” [21]. For our BWT construction and
inversion algorithms such product is O(n log n) bits; by strengthening a lower bound from [14],
we prove that we cannot reduce it to o(n) bits with a scan-based algorithm using a single disk
(Theorem 7). Hence our algorithms are within an O(log n) factor of the optimal. We note that
our lower bound is “best possible” because, if we have Ω(n) bits of memory, then we can read
the input into internal memory with one pass over the disk and then compute the BWT there.



Related results. As we mentioned above, the problem of the lightweight computation of (com-
pressed) indexes in internal memory has recently received much attention (see [13, 17, 18, 23, 27]
and references therein). However, all the proposed algorithms perform many random memory-
accesses so they cannot be easily transformed into external memory algorithms. To our knowl-
edge no lightweight algorithms specific for external memory are known. The construction of
most full-text indexes reduces to suffix-array construction, which in turn needs log n recursive
sorting-levels [7]. In external memory this sort-based approach takes O

(
n
B logM/B

n
B

)
I/Os [8]

and is faster than our algorithms when M = O
(
n/

(
log n logM/B

n
B

))
. However, the sort-based

approach is not lightweight since it uses Θ(n log n) bits of disk working space.

2 Notation

We briefly recall some definitions related to compressed full-text indexes; for further details
see [24]. Let T [1, n] denote a text drawn from a constant size alphabet Σ. As is usual, we assume
that T [n] is a character not appearing elsewhere in T and is lexicographically smaller than all
other characters. Given two strings s, t we write s ≺ t to denote that s precedes t lexicographically.
The suffix array sa[1, n] is the permutation of [1, n] giving the lexicographic order of the suffixes
of T , that is T [sa[i], n] ≺ T [sa[i + 1], n] for i = 1, . . . , n − 1. The inverse of the sa is the pos
array, such that pos[i] is the rank of suffix T [i, n] in the suffix array. This way, sa[pos[i]] = i. We
denote by posd the set of (n/d) values pos[d], pos[2d], . . . , pos[n] that indicate the distribution of
the positions of the d-spaced suffixes within sa.

The Burrows-Wheeler transform is an array of characters bwt[1, n] defined as bwt[i] = T [(sa[i]−
1) mod n]. The array Ψ [1, n] is the permutation of [1, n] such that sa[Ψ(i)] = sa[i]+1 mod n. The
value Ψ [i] is the lexicographic rank of the suffix which is one character shorter than the suffix
of rank i. The basic ingredients of most compressed indexes are either the bwt or the Ψ array,
optionally combined with the set posd for some d = Ω(log n). In this paper we describe external
memory lightweight algorithms for the computation of all these three basic ingredients.

3 Lightweight Scan-Based BWT construction

In this section we describe the algorithm bwt-disk for the computation of the bwt of a text T [1, n]
when n is so large that the computation cannot be done in internal memory. Our algorithm is
lightweight in the sense that it uses only M words of RAM and n bits of disk space — in addition
to the disk space used for the input T [1, n] and the output bwt(T [1, n]). Our algorithm is scan-
based in the sense that all data on disk is accessed by sequential scans only. Note that in the
description below our algorithm scans the input file right-to-left: in the actual implementation
we scan the input rightward which means that we compute the bwt of T reversed. The bwt-disk
algorithm is an evolution of a disk-based construction algorithm for suffix arrays first proposed
in [15] and improved in [5]. However, our algorithm constructs the bwt directly without passing
through the sa and uses some new ideas to reduce the working space from Θ(n log n) to n bits.

The algorithm bwt-disk logically partitions the input text T [1, n] into blocks of size m = Θ(M)
characters each, i.e. T = Tn/mTn/m−1 · · ·T2T1, and computes incrementally the bwt of T via
n/m passes, one per block of T . Text blocks are examined right to left so that at pass h+ 1 we
compute and store on disk bwt(Th+1 · · ·T1) given bwt(Th · · ·T1). The fundamental observation
is that going from bwt(Th · · ·T1) to bwt(Th+1 · · ·T1) requires only that we insert the characters
of Th+1 in bwt(Th · · ·T1). In other words, adding Th+1 does not modify the relative order of the
characters already in bwt(Th · · ·T1).

At the beginning of pass h + 1, in addition to the bwt of Th · · ·T1 we assume we have on
disk a bit array, called gt, such that gt[i] = 1 if and only if the suffix T [i, n] starting in Th · · ·T1



At the beginning of pass h + 1, we assume that bwtext contains the bwt of ThTh−1 · · ·T1, and the bit
array gt is defined as described in the text. Both arrays are stored on disk.

1. Compute in internal memory the array saint[1,m] which contains the lexicographic ordering of the
suffixes starting in Th+1 and extending up to T [n] (the end of T ). This step uses Th+1, Th and the
first m− 1 entries of gt. Let us call the suffixes starting in Th+1 new suffixes, and the ones starting
in Th · · ·T1 old suffixes.

2. Compute in internal memory the array bwtint[1,m] defined as bwtint[i] = Th+1[saint[i] − 1], for
i = 1, . . . ,m. If saint[i] = 1 set bwtint[i] = # where # is a character not appearing in T .

3. Using bwtint and scanning both ThTh−1 · · ·T1 and gt, compute how many old suffixes fall between
two lexicographically consecutive new suffixes. At the same time update gt so that it contains the
correct information for the extended string Th+1Th · · ·T1.

4. Merge bwtext and bwtint so that at the end of the step bwtext contains the bwt of Th+1Th · · ·T1.

Fig. 1. Pass h+ 1 of the bwt-disk algorithm to compute bwt(Th+1 · · ·T1) given bwt(Th · · ·T1).

is greater than the suffix Th · · ·T1 (hence at pass h + 1 this array takes exactly hm − 1 bits).
For simplicity of exposition, we denote by gth[1,m − 1] the part of the array gt referring to
the text suffixes which start in Th: namely, it is gth[i] = 1 iff the suffix starting at Th[1 + i] is
lexicographically greater than the suffix starting at Th[1], for i = 1, . . . ,m−1 (note that all these
suffixes extend past Th up to the last character of T ).

The pseudo-code of the generic (h+ 1)-th pass is given in Figure 1. Step 1 reads into internal
memory the substring t[1, 2m] = Th+1Th and the binary array gth[1,m − 1]. Then we build
saint by lexicographically sorting the suffixes starting in Th+1 and possibly extending up to T [n]
(the last character of T ). Observe that, given two such suffixes starting at positions i and j of
Th+1, with i < j, we can compare them lexicographically by comparing the strings t[i,m] and
t[j, j +m− i], which have the same length and are completely contained in t[1, 2m] (thus, they
are in internal memory). If these strings differ we are done; otherwise, the order between the
above two suffixes is determined by the order of the suffixes starting at t[m + 1] ≡ Th[1] and
t[j +m− i+ 1] ≡ Th[1 + j − i]. This order is given by the bit stored in gth[j − i], also available
in internal memory. This argument shows that t[1, 2m] and gth contain all the information we
need to build saint working in internal memory. The actual computation of saint is done in O(m)
time as follows. First we compute the rank rm+1 of the suffix starting at t[m+ 1] ≡ Th[1] among
all suffixes starting in Th+1; that is, we compute for how many indices i with 1 ≤ i ≤ m the
suffix starting at t[i] is smaller than the suffix starting at t[m+ 1] (both extending up to T [n]).
This can be done in O(m) time using the above observation and Lemma 5 in [18]. At this point
the problem of building saint is equivalent to the problem of building the suffix array of the
string t[1,m]$, where $ is a special end-of-string character that has rank precisely rm+1 (instead
of being lexicographically smaller than all other suffixes, as is usually assumed). Thus, we can
compute saint in O(m) time and O(m logm) bits of space with a straightforward modification of
the algorithm DC3 [19].

At Step 2 we build the array bwtint which is a sort of bwt of the string Th+1: it is not a real
bwt because it refers to suffixes which are not confined to Th+1 but start in this string and extend
up to T [n]. The crucial point of the algorithm is then to compute some additional information
that allows us to merge bwtint and bwtext I/O-efficiently. This additional information consists
of a counter array gap[0,m] which stores in gap[j] the number of (old) suffixes of the string
Th · · ·T1 which lie lexicographically between the two new suffixes— i.e. saint[j−1] and saint[j]—
starting in Th+1. Note that the gap array was used also in [5]. However in [5] gap is computed in



O(n logM) time using Θ(n log n) extra bits; here we compute gap in O(n) time using only the n
extra bits of gt. The following lemma is the key to this improvement.

Lemma 1. For any character c ∈ Σ, let C[c] denote the number of characters in bwtint that are
smaller than c, and let Rank(c, i) denote the number of occurrences of c in the prefix bwtint[1, i].
Assume that the old suffix T [k, n] is lexicographically larger than precisely i new suffixes, that is,

T [saint[i], n] ≺ T [k, n] ≺ T [saint[i+ 1], n].

Now fix c = T [k − 1]. Then, the old suffix T [k − 1, n] = c T [k, n] is lexicographically larger than
precisely j new suffixes, that is, T [saint[j], n] ≺ T [k − 1, n] ≺ T [saint[j + 1], n], where

j =
{
C[c] + Rank(c, i) if c 6= Th+1[m];
C[c] + Rank(c, i) + gt[k] if c = Th+1[m].

Proof. See Appendix. ut

Step 3 uses the above lemma to compute the array gap with a single right-to-left scan of the
two arrays Th · · ·T1 and gt available on disk. Step 3 takes O(n) time because we can build a
o(m)-bit data structure supporting O(1) time Rank queries over bwtint [24]. Finally, Step 4 uses
gap to create the new array bwtext by merging bwtint with the current bwtext. The idea is very
simple: for i = 0, . . . ,m−1 we copy gap[i] old values in bwtext followed by the value bwtint[i+1].

Note that at Step 3 we also compute the content of gt for the next pass: namely, gt[k] = 1 iff
Th+1 · · ·T1 ≺ T [k, n]. We know the lexicographic relation between Th+1 · · ·T1 and all new suffixes
since it does exist r1 such that T [saint[r1], n] = Th+1 · · ·T1 (the latter is a new suffix, indeed). The
relation between Th+1 · · ·T1 and any old suffix T [k, n] is available during the construction of gap:
when we find that T [k, n] is larger than i new suffixes of saint, we know that Th+1 · · ·T1 ≺ T [k, n]
iff r1 ≤ i. So we can write the correct value for gt[k] to disk.

It is easy to see that our algorithm uses O(m logm) bits of internal memory. Hence, if the
internal memory consists of M words, we can take m = Θ(M) and establish the following result.

Theorem 1. We can compute the bwt of a text T [1, n] in O(n/M) passes over Θ(n) bits of disk
data, using n bits of disk working space. The total number of I/Os is O

(
n2/(MB log n)

)
and the

CPU time is O
(
n2/M

)
. ut

Single-disk implementation. In the bwt-disk algorithm, and in its derivatives described below,
we scan T and the gt array in parallel so we need at least two disks. However, in view of the
lower bounds in Section 6, which hold for a single disk, it is important to point out that our
algorithm (and its derivatives) can work via sequential scans using only one disk. This is possible
by interleaving T and the gt array in a single file. At pass h we interleave m new bits within
the segment Th (so that the portion Tn/m · · ·Th+1 is shifted by m bits). These new bits together
with the bits already interleaved in Th−1 · · ·T1 allow us to store the portion of the gt array that
is needed at the next pass. Note also that the merging of bwtext and bwtint at Step 4 can be
done on a single disk. This requires that, at the beginning of the algorithm, we reserve on disk
the space for the full output (n characters), and that we fill this space right-to-left (that is, at
the end of pass h bwt(Th · · ·T1) is stored in the rightmost mh characters of the reserved space).

Working with compressed files. Accessing files only by sequential scans makes it possible
to store them on disk in compressed form. This is not particularly significant from a theoretical
point of view — in the worst case the compressed files still take Θ(n) bits — but is a significant
advantage in practice. If the input file T [1, n] is large, it is likely that it will be given to us in



compressed form. If the compression format allows for the scanning of a file without full decom-
pression (as, for example, gzip, bzip, and ppm) our algorithm is able to work on the compressed
input without additional overhead. An algorithm that accesses the input non-sequentially would
require the additional space for an uncompressed image of T [1, n]. The same considerations apply
to the output file bwt(T ) and the intermediate files bwt(Th · · ·T1). Since they are bwt’s of (suffixes
of) T they are likely to be highly compressible, so it is very convenient to be able to store them
in compressed form: this makes our algorithm even more “lightweight”. It goes without saying
that using compressed files also yields a reduction of the I/O transfer so this is advantageous
also in terms of running time (see experimental results below).

Note that the use of compressed files is straightforward if we use two disks: in this way we
can store T and gt separately and at Step 4 we can store on two different disks the compressed
images of bwt(Th · · ·T1) and bwt(Th+1 · · ·T1). The use of compression in the single disk version
is trickier and requires the use of ad-hoc compressors.

Experimental results. To test how bwt-disk works in practice, we have implemented a proto-
type in C (source code available at the page http://people.unipmn.it/manzini/bwtdisk). The main
modification wrt the description of Fig. 1 is that, instead of storing the entire array gt on disk,
we maintain a “reduced” version in RAM. In fact, Step 1 uses gth[1,m−1] which can be stored in
RAM. At Step 3 we need the entire gt to lexicographically compare all suffixes T [k, n] of Th · · ·T1

with Th · · ·T1 itself (see proof of Lemma 1). Instead of storing the whole gt, we keep in internal
memory the length-` prefix of Th · · ·T1, call it αh, and the entries gt[k] such that αh is a prefix of
T [k, n]. Unless T is a very pathological string, this “reduced” version of gt is much more succinct:
by setting ` = 1024 we were able to store it in internal memory in just 128KB. Using this “re-
duced” version, the comparison between T [k, n] and Th · · ·T1, can be done by comparing T [k, n]
with αh. If these two strings are different, we are done; otherwise, αh is a prefix of T [k, n] and
thus the bit gt[k] is available and provides the result of that suffix comparison. Hence, by using
standard string-matching techniques, it is possible to compare all suffixes T [k, n] with Th · · ·T1

in O(n+ `) time overall.
Our implementation can work with a block size m of up to 4GB and uses 8m bytes of

internal memory for the storage (and computation) of saint, bwtint, and the gap array. We ran
our experiments with m = 400MB on a Linux box with a 2.5Ghz AMD Phenom 9850 Quad Core
processor (only one CPU was used for our tests) and 3.7GB of RAM. On the same machine we
also tested the best competitor of our algorithm. Since all other known approaches for computing
the BWT in external memory compute the suffix array first, we tested the DC3 tool [6] which is
the current best algorithm for computing the suffix array in external memory. We ran DC3 using
two disks for the storage of temporary files and setting the ram usage parameter to 1500MB.
With these settings the peak heap memory usage reported by memusage was between 3.2 and
3.3 Gigabytes for both bwt-disk and DC3.

In our implementation we store the files in compressed form: the input T is gzip-compressed,
whereas the partial (and final) bwt’s are compressed by Rle followed by range coding: accord-
ing to the experiments in [10] this combination offers the best compression/speed tradeoff for
compressing the BWT. Our current implementation uses a single disk. Since at Step 4 we scan
simultaneously two partial bwt’s (say bwt(Th · · ·T1) and bwt(Th+1 · · ·T1)) in that step the disk
head has to move between the two files and the algorithm is not “scan-only”. We plan to support
the use of two disks to remove this inefficiency in a future version.

Our algorithm stores on disk only the compressed input and at most two compressed partial
bwt’s. Hence, the working space (the space used in addition to the input and the output) has the
size of a single compressed partial bwt: in Fig. 2 we bound it with the size of the final compressed
bwt. The results in Fig. 2 show that our algorithm is indeed lightweight: for all files the working



File Name Size (GB) Description

Proteins 1.10 Sequence of bare protein sequences from the Pizza&Chili corpus [12].

Swissprot 1.88 Annotated Swiss-prot Protein knowledge base (file uniprot sprot.dat down-
loaded from ftp://ftp.ebi.ac.uk/pub/databases/swissprot/release on June 2009).

Genome 2.86 Human genome (May 2004 version) filtered in order to have a string over the
alphabet A,C,G,T,N. This is the same file used in [6].

Gutenberg 3.05 Concatenation of English texts from Project Gutenberg. This is the same file
used in [6].

Random2 4.00 Concatenation of two copies of a string of length 2GB with characters randomly
generated over an alphabet of size 128 using the tool gentext [12].

Mice&Men 5.43 Concatenation of the Mouse (mm9) and Human (hg18) genomes filtered in
order to have a string over the alphabet A,C,G,T,N.

Html 8.00 First 8 GB of file Law03 from [2] consisting of a collection of html pages crawled
from the UK-domain in 2006-07 (with the WARC headers removed).

Input file bwt-disk space bwt-disk time DC3

name size output/working total step 1 step 3 step 4 total time work space

Proteins 1.10 0.29 1.02 0.49 0.59 0.15 1.45 6.31 30.62

SwissProt 1.88 0.08 0.33 0.36 1.16 0.10 1.88 6.67 30.68

Genome 2.86 0.22 0.69 0.50 2.32 0.55 3.72 6.88 30.68

Gutenberg 3.05 0.18 0.74 0.85 2.19 0.36 3.76 7.14 30.58

Random2 4.00 0.56 2.00 0.80 3.28 2.32 6.90 7.48 30.66

Mice&Men-4 4.00 0.22 0.70 0.52 3.37 0.80 5.06 7.22 30.66

Html-4 4.00 0.06 0.33 0.58 2.55 0.19 3.60 7.49 30.66

Mice&Men 5.43 0.22 0.70 0.52 4.06 1.14 6.10 — —

Html 8.00 0.05 0.32 0.49 4.90 0.33 6.01 — —

Fig. 2. Dataset (top) and experimental results (bottom). Since DC3 cannot handle files larger than 4GB
we considered also the files Mice&Men and Html truncated at 4GB (indicated by the suffix -4). In the
bottom table, column 2 reports the size (in Gigabytes) of the uncompressed input file: the values in all
other columns are normalized with respect to this size. Column 3 reports the size of the compressed bwt
which is also an upper bound to the working space of bwt-disk(see text). Column 4 reports the total
(working + input + output) disk space used by bwt-disk. Columns 5–9 report running (wallclock) times
in microseconds per input byte. The last column reports the size of DC3 working space (again normalized
with respect to the size of the input file).

space is (much) smaller than the size of the input text uncompressed; for most files even the total
space usage is less than the size of the uncompressed input. The algorithm DC3 uses consistently
a working space of more than 30 times the size of the uncompressed input. Comparing columns
3 and 9 we see that, for all files except Random2, DC3 working space is more than 100 times the
size of the compressed bwt; for the file Html-4, which is highly compressible, DC3 working space
is more than 500 times the size of the compressed bwt! (recall that bwt-disk working space is at
most the size of the compressed bwt).

By comparing the running times (columns 8 and 9 in Fig. 2) we see that bwt-disk is always
faster than DC3 (recall that DC3 only computes the suffix array so we are ignoring the additional
cost of computing the BWT from the suffix array). The results show that the more compressible
is the input, the faster is bwt-disk, while DC3’s running time is much less sensitive to the content
of the input file. Another interesting data is the total I/O volume of the two algorithms (measured
as the ratio between total I/Os and input size and not reported in Fig. 2). According to [6] for



files up to 4GB for DC3 such ratio is between 200 and 300. For bwt-disk such ratio is less than 6
for all files except Random2 for which the ratio is 14.76.

The asymptotic analysis predicts that, if M � n, as the size of the input grows, our algorithm
will eventually become slower than DC3 (our algorithm is designed to be lightweight, not to
be fast!). However, the above results show that the use of compressed files and avoiding the
construction of the suffix array make our algorithm, not only lightweight, but also faster than
the available alternatives on real world inputs.

4 Other Lightweight Scan-Based Construction Algorithms

Internal Memory Lightweight BWT construction. Our bwt-disk algorithm can be turned
into a lightweight internal memory algorithm with interesting time-space tradeoffs. For example,
setting M = n/ log n we get an internal memory algorithm that runs in O(n log n) time and uses
2n bits of working space: n bits for the gt array and n bits for the M words that play the same
role as the internal memory in bwt-disk. Setting M = n/ log1+ε n, with ε > 0, the running time
becomes O

(
n log1+ε n

)
and the working space is reduced to n + o(n) bits. This algorithm still

accesses the text and the partial bwt’s by sequential scans, hence it takes full advantage of the
very fast caches available on modern CPU’s.

We can further reduce the working space by replacing the n bits of the gt array with a o(n)-bit
data structure supporting O(1)-time Rank queries over bwt(Th · · ·T1). This data structure can
provide in constant time the lexicographic rank of each suffix of Th · · ·T1 (in right-to-left order,
see [24]) and therefore can emulate, without asymptotic slowdown, the scanning of gt.

If we no longer need the input text T , we can write the (partial) bwt’s over the already pro-
cessed portion of text. That is, at the end of pass h, we store bwt(Th · · ·T1) in the space originally
used for Th · · ·T1. The right-to-left scan of Th · · ·T1 required at Step 3 can be emulated, without
any asymptotic slowdown, using the same data structure used to replace gt (see again [24]). Note
that overwriting T roughly doubles the size of the largest input that can be processed with a
given amount of internal memory. Summing up, we have:

Theorem 2. For any ε > 0, we can compute the BWT in internal memory in O
(
n log1+ε n

)
time, using o(n) bits of working space. The BWT can be stored in the space originally containing
the input text. ut

The only internal-memory BWT construction algorithm that can use such a small working
space is [18] which—when restricted to using o(n) bits of working space—runs in ω

(
n log2 n

)
time. Note, however, that the algorithm [18] has the advantage of working also for non constant
alphabets and can use as little as Θ(n log n/

√
v) bits of working space with v = O

(
n2/3

)
, running

in O(n log n+ vn) worst case time.
The algorithms in [17, 23] build directly a compressed suffix array but, at least in their original

formulation, they use Ω(n) bits of working space. The algorithm in [27] build a compressed suffix
array of a collections of texts. Note that building a (compressed) suffix array for a collection of
texts of total length n is a different (simpler) problem than building a (compressed) suffix array
of single text of length n: in a collection each text is terminated by a unique eof symbol so there
cannot be very long common prefixes. For a collection of p = Θ(log n) texts of size n/p the
algorithm in [27] runs in O(n log n) time using O(n) bits of working space, storing the output in
compressed form and overwriting the input. The algorithm in [27] is based on the same techniques
from [15] that we use in this paper.1 However we merge bwt(Th · · ·T1) and bwt(Th+1) following

1 Note that [27] was published after the first draft of this paper [9] was completed.



the original idea of [15] of locating the suffixes of Th · · ·T1 inside the (compressed) suffix array
of Th+1, while [27] does the opposite. This choice implies other differences: for example, instead
of the gap array [27] builds an array of ranks which is later sorted to perform the merging.

Lightweight SA construction. We can transform our bwt-disk algorithm into a lightweight
algorithm for computing the Suffix Array. The key observation is that the values stored in bwtext
are never used in subsequent computations. Therefore, to compute the sa, we can simply replace
bwtext with an array saext containing the sa entries (that is, at the end of pass h saext contains
sa(Th · · ·T1)). The only change in the algorithm is that, after the computation of the gap array,
at Step 4 we update saext as follows: we copy gap[i] old saext entries followed by saint[i+ 1], for
i = 0, . . . ,m− 1. Summing up, we have the following result.

Theorem 3. We can compute the suffix array in O(n/M) passes over Θ(n log n) bits of disk
data, using n bits of disk working space. The total number of I/Os is O

(
n2/(MB)

)
and the CPU

time is O
(
n2/M

)
. ut

Note that compared to the algorithm in [5], which has a similar structure and similar features,
our new proposal reduces the working space (and thus the amount of processed data), and the
CPU time, by a logarithmic factor.

Lightweight Computation of the Ψ Array. We use the same framework as above and main-
tain an array Ψext that, at the end of pass h, contains the Ψ values for the string Th · · ·T1. Since
the value Ψ [j] refers to the suffix of lexicographic rank j, at Step 4 Ψext values are computed
using the same scheme used for BWT and suffix array entries: for i = 0, . . . ,m−1, we first update
gap[i] values in Ψext referring to old suffixes and then compute and write the Ψ value referring
to T [saint[i + 1], n]. We can compute Ψ values for the new suffixes using information available
in internal memory, while for old suffixes we make use of the relationship Ψh+1[j] = Ψh[j] + kj
where kj is the largest integer such that gap[0] + gap[1] + · · · + gap[kj ] < Ψh[j] (details in the
full paper). Since each value kj can be computed in O(logm) time with a binary search over the
array whose i-th element is gap[0] + · · ·+ gap[i], we have the following result.

Lemma 2. We can compute the array Ψ in O(n/M) passes over Θ(n log n) bits of disk data,
using n bits of working space. The CPU time is O

(
(n2 logM)/M

)
. ut

To reduce the amount of processed data, we observe that although Ψ values are in the range
[1, n], it is well known [24] that the sequence Ψ [1], Ψ [2] − Ψ [1], Ψ [3] − Ψ [2], . . . , Ψ [n] − Ψ [n − 1],
can be represented in Θ(n) bits. Thus, by storing an appropriate encoding of the differences
Ψ [i]− Ψ [i− 1] we can obtain an algorithm that works over a total of O(n) bits.

Theorem 4. We can compute the array Ψ in O(n/M) passes over Θ(n) bits of disk data, using
n bits of disk working space. The total number of I/Os is O

(
n2/(MB log n)

)
and the CPU time

is O
(
(n2 logM)/M

)
. ut

Lightweight Computation of posd. To compute the set posd with a sampling step d =
Ω(log n), we modify our bwt-disk algorithm as follows. At the end of pass h, instead of bwtext =
bwt(Th · · ·T1) we store on disk the pairs 〈i1, j1〉, 〈i2, j2〉, . . . 〈ik, jk〉 such that sah[i`] = j` is a
multiple of d (here sah = sa(Th · · ·T1)). These pairs are sorted according to their first compo-
nent and essentially represent posd(Th · · ·T1). The update of this set of pairs at pass h + 1 is
straightforward: the second component does not change, whereas the value i` must be increased
by the number of new suffixes which are lexicographically smaller than i` old suffixes. This can
be done via a sequential scan of the already computed set of pairs and of the gap array. Since
the set posd contains n/d = O(n/ log n) pairs, we have:



Theorem 5. We can compute posd in O(n/M) passes over Θ(n) bits of disk data, using n bits
of disk working space. The total number of I/Os is O

(
n2/(MB log n)

)
and the CPU time is

O
(
n2/M

)
. ut

5 Lightweight Scan-Based BWT Inversion

The standard algorithm for inverting the BWT is based on the fact that the “successor” of
character bwt[i] in T is bwt[Ψ [i]]. Since we can set up a pointer from position i to position Ψ [i]
for i = 1, . . . , n in linear time, to retrieve T we essentially need to solve a list ranking problem
in which we have to restore a sequence given the first element and a pointer to each element’s
successor. The näıve algorithm for list ranking — follow each pointer in turn — is optimal when
the permuted sequence and its pointers fit in memory, but very slow when they do not. List
ranking in external memory has been extensively studied, and Chiang et al. [3] showed how to
reduce this problem to sorting a set of n items (recursively), each of size Θ(log n) bits. If we
invert bwt by turning it into an instance of the list-ranking problem and solve that by using
Chiang et al.’s algorithm, then we end up with a solution requiring Θ(n log n) bits of disk space.
We now show that, still using Chiang et al.’s algorithm as a subroutine, we can invert bwt using
a sorting primitive now applied on O(n/ log n) items, for a total of O(n) bits of disk space. In
the full paper we will also show how we can similarly recover T from the array Ψ still using O(n)
bits of total disk space, and how to take advantage of the posd array.

To leave the discussion general we write sort(x) to indicate the cost of sorting x items with-
out detailing the underlying model of computation. Our algorithm for BWT-inversion works in
O(log n) rounds, each working on two files. The first file contains a set S of n/ log n substrings of
T . Each substring is prefaced by a header, which specifies (i) the position in bwt of the substring’s
first character, (ii) the position in bwt of the successor in T of the substring’s last character, (iii)
eventually, the character whose index is in (ii) and, (iv) eventually, the substring’s position in
a certain partial order that we will define later. These substrings are non-overlapping and their
length increases as the algorithm proceeds with its rounds. The second file contains the bwt plus
an n-bit array bwtMark which marks the characters of bwt already appended to some substring
of S. The overall space taken by both files is O(n) bits.

The main idea underlying our algorithm is to cover T by the substrings of S, avoiding their
overlapping. The substrings of S consist initially of the characters which occupy the first n/ log n
positions of bwt; then, they are extended one character after the other along the O(log n) rounds,
always taking care that they do not overlap. If, at some round, c of those substrings become
adjacent in T , they are merged to form one single, longer substring which is then inserted in S,
and those c constituting substrings are deleted. In each round, we use Chiang et al.’s list-ranking
algorithm on the headers both to detect when substrings become adjacent and to determine
the order in which we should merge adjacent substrings. Our algorithm preserves the condition
|S| = n/ log n, by selecting (c − 1) new substrings which are inserted in S and consist of one
single character not already belonging to any substring of S. This is easily done by scanning bwt
and bwtMark and taking the first (c − 1) characters of bwt which result unmarked in bwtMark.
Keep in mind that whenever a character is appended to a substring, its corresponding bit in
bwtMark is set to 1.

Theorem 6. We can invert the BWT in O(n/M) passes on one disk and O(log2 n) passes on
two or more disks. If we allow random (i.e. non sequential) disk accesses we can invert the BWT
in O( nB logM/B

n
B logn ) I/Os. For all algorithms the total disk usage is Θ(n) bits.

Proof. See Appendix. ut



6 Lower bounds
Our scan-based algorithms to compute or invert the bwt have a product “memory’s size × number
of passes” which is O(n log n) bits. We prove in this section that we cannot reduce them to o(n)
bits via any algorithm that uses only one single disk (accessed sequentially). Hence our algorithms
are an O(log n)-factor from the optimal. We note that our lower bound is best-possible because,
if we have Ω(n) bits of memory, then we can read the input into internal memory with one pass
over the disk and then compute the BWT there using, e.g., Theorem 2.

In a recent paper [14] we observed that, if the repeated substring is larger than the product
of the size of the memory and the number of passes, then an algorithm that uses multiple passes
but only one disk still cannot take full advantage of the string’s periodicity. Using properties of
De Bruijn sequences we proved that, with polylogarithmic memory and polylogarithmic passes
over one disk, we cannot achieve entropy-only bounds and, therefore, we also cannot compute
the BWT. In that paper, however, we were mostly concerned with low-entropy bounds, and only
considered the BWT as a means to achieve them. Our new lower bound for the BWT alone is
stronger, with a simple and direct proof. Our previous lower bound was based on a technical
lemma that we can restate as follows:

Lemma 3. Consider an invertible function from strings to strings and a machine that computes
(or inverts) that function using only one disk. We can compute any substring of an input string
given 1) for each pass, the machine’s memory configurations when it reaches and leaves the part
of the disk that initially (resp., eventually) holds that substring, and 2) the eventual (resp., initial)
contents of that part of the disk. ut

Our new lower bound is based on the same lemma but, instead of combining it with properties
of De Bruijn sequences, we now combine it with a property of the BWT itself, demonstrated by
Mantaci, Restivo and Sciortino [20]: it turns periodic strings with relatively short periods into
strings consisting of relatively few runs.

Lemma 4. If T is periodic and its minimum period r divides n, then bwt(T ) consists of r runs,
each of length n/r and containing only one distinct character.

Lemma 3 implies that, if the initial contents of some part of the disk are much more complex
than its eventual contents (or vice versa), then the product of the memory’s size and the number
of passes must be at least linear in the initial (resp., eventual) contents’ complexity. To see why,
consider that we can compute the initial contents from the eventual contents (or vice versa) and
two memory configurations for each pass; therefore, the product of the memory’s size and the
number of passes must be at least the difference between the complexities. Lemma 4 implies that,
if T is periodic, then short substrings of bwt(T ) are simple. Combining these ideas in a fairly
obvious way gives us our lower bound.

Theorem 7. In the worst case, we can neither compute nor invert the BWT using only one disk
when the product of the memory’s size in bits and the number of passes is o(n).

Proof. See Appendix. ut
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A Appendix: Proofs omitted for space constraints

Proof of Lemma 1: Obviously T [k − 1, n] is larger than the new suffixes that start with a
character smaller than c (they are C[c]), and is smaller than all new suffixes starting with a
character greater than c. The crucial point is now to compute how many new suffixes T [`, n]
starting with c = T [k − 1] are smaller than T [k − 1, n]. (Recall that T [`, n] starts in Th+1, and
T [k, n] starts in Th · · ·T1.)

Consider first the case c 6= Th+1[m]. Since T [`] = c 6= Th+1[m], we have that T [`+ 1, n] is also
a new suffix (i.e. it lies in Th+1) and T [`, n] ≺ T [k − 1, n] iff T [` + 1, n] ≺ T [k, n]. Furthermore,
T [`] = T [k − 1] = c so that the sorting of the rows in BWT implies that, counting how many
new suffixes starting with c are smaller than T [k − 1, n] is equivalent to counting how many c’s
occur in bwtint[1, i]. This is precisely Rank(T [k − 1], i). Assume now that c = Th+1[m]. Among
the new suffixes starting with c there is also the one starting at position Th+1[m], call it T [`′, n].
We cannot use the above trick to compare T [k−1, n] with T [`′, n] since T [`′+1, n] coincides with
Th · · ·T1 and is therefore an old suffix, not a new one and thus not occurring in saint. However,
it is still true that T [`′, n] ≺ T [k− 1, n] iff T [`′ + 1, n] ≺ T [k, n] and since T [`′ + 1, n] = Th · · ·T1

we know that this holds iff gt[k] = 1. ut

Proof of Theorem 6: A round of the algorithm is implemented as follows. We sort the
substrings according to their headers’ second components (i.e. positions in bwt of their following
character in T ), extract the headers into a separate file, and then fill in their third components.
To do this with one disk, we need at most O(n/(M log n)) passes over the headers and bwt;
with more than one disk, we can do it with O(1) passes. Whenever we reach a character in bwt
which is pointed to by some header (i.e. follows the substring of S corresponding to that header),
then we copy this character in the (third component of the) header and then update its second
component to make it point to the position in bwt of the new character’s successor in T . (This is
done by keeping track of distinct characters’ frequencies in bwt as we go.) When we are finished
filling in the third components, we append the new (single) characters to the substrings of S,
update bwtMark by marking bwtMark[i] if the character in position i has just been appended,
and reinsert the headers. All these steps have total cost O(sort(n/ log n)).

The two major difficulties we face are, first, that the starting position of a substring in bwt
does not tell anything about its position in T ; second, that the first n/ log n characters in bwt
will usually not be spread evenly throughout T . Therefore, we will eventually need to sort the
substrings into the order in which they appear in T ; in the meantime, we need to prevent them
overlapping. The first of these problems is easier, and will help us with the second. Assume that,
after the last round, the substrings cover T and do not overlap. Because the first character in each
substring is the successor in T of the last character in some other substring (we consider T [1] to
be T [n]’s successor), we can sort the substrings by list ranking, as follows. We extract the headers
and apply list ranking to their first and second components, which has cost O(sort(n/ log n)).
We store each header’s rank as the header’s third component, then reinsert the headers into the
substrings. The headers’ third components now tell us in what order the substrings appear in T ,
so we can sort the substrings by them to obtain T .

The second difficulty we face is in preventing the substrings overlapping during the rounds:
if we simply stop appending to some substrings because the characters we would append are
already in other substrings, then the number of characters we append per round decreases and
we may use more than O(log n) rounds; on the other hand, if we start new substrings without
reducing the number of old ones, then we may store more than O(n/ log n) substrings and so,
because each has three Θ(log n)-bit pointers, use more than O(n) bits of disk space. Our solution



is to sort the substrings by list ranking (as described above) during every round, to find maximal
sequences of adjacent substrings; we merge adjacent substrings into one longer substring, which
is inserted in S, and delete the others; pointers can easily be kept correctly. Again, these steps
take a cost of O(sort(n/ log n)).

At each round, n/ log n new characters are appended to the substrings of S. Since these
substrings are guaranteed not to overlap we are guaranteed that O(log n) rounds suffice to append
all characters in T to S’s substrings. The proof follows recalling that each round requires a
constant number of sort/scan primitives over O(n) items and that, in our model, sort(x) takes
O(x/M) passes on one disk, O(log x) passes on two or more disks, or O

(
x
B logM/B

x
M

)
non-

sequential I/Os. ut

Proof of Theorem 7: Suppose T is periodic with minimum period r, where r is sublinear in
n but still larger than the product of the memory’s size and the number of passes, and consider
any algorithm A that computes bwt(T ) using only one disk. Without loss of generality, we can
assume A completely overwrites T . Therefore, by Lemma 4, A replaces each copy of T ’s repeated
substring, which has length r, by a substring of bwt(T ) consisting of runs of length n/r (except
possibly for the first and last). Notice each new substring consists of at most r/(n/r) + 1 = o(r)
runs, so we can store it in o(r) bits, whereas storing T ’s repeated substring takes Ω(r) bits in
the worst case. Lemma 3 says we can compute T ’s repeated substring from one of these new
substrings and two memory configurations for each pass A makes; it follows that two times the
memory’s size times the number of passes must be Ω(r) bits in the worst case. Since r can be
any integer-valued function in o(n), it follows that we cannot compute the BWT using only one
disk when the product of the memory’s size and the number of passes is o(n).

Now consider any algorithm A′ that inverts bwt(T ) using only one disk. Again without loss
of generality, we can assume A′ completely overwrites bwt(T ). Therefore, by Lemma 4, with each
copy of T ’s repeated substring, A replaces on the disk a substring of bwt(T ) consisting of o(r)
runs. It follows, by the same arguments as above, that we cannot invert the BWT using only one
disk when the product of the memory’s size and the number of passes is o(n). ut


