
Move-to-Front, Distance Coding, and Inversion Frequencies Revisited∗

Travis Gagie† Giovanni Manzini†

Abstract

Move-to-Front, Distance Coding and Inversion Frequencies are three simple and effective techniques
used to process the output of the Burrows-Wheeler Transform. In this paper we provide the first
complete comparative analyses of these techniques, establishing upper and lower bounds on their
compression ratios.

We describe simple variants of these three techniques that compress any string up to a constant
factor of its kth-order empirical entropy for any k ≥ 0. At the same time we prove lower bounds for
the compression of arbitrary strings which show that these variants are nearly optimal. The bounds
we establish are “entropy-only” bounds in the sense that they do not involve non-constant overheads.

Our analyses provide new insights into the inner workings of these techniques, partially explain
their good behavior in practice, and suggest strategies for improving their performance.

1 Introduction

Burrows-Wheeler compression [7] is important in itself and as a key component of compressed full-text
indices [24]. It is therefore not surprising that this topic has received a great deal of attention (see [15]
and references therein). Despite more than ten years of investigation, however, some important questions
remain open. For example, although it is now well understood why the Burrows-Wheeler Transform helps
compression, it is still unclear which is the best way to process the output of this transformation. In
the original Burrows-Wheeler compression algorithm [7] the output of the Burrows-Wheeler Transform is
processed by Move-to-Front encoding [5, 25] followed by a 0th-order encoder. Extensive experimental work
has investigated the role and usefulness of these two steps and several researchers have proposed variants
of this basic scheme [1, 2, 3, 4, 6, 9, 11]. Unfortunately, these variants mostly rely on clever heuristics to
improve the compression of “typical” strings and usually defy theoretical analysis. More recently, some
researchers have devised new tools for Burrows-Wheeler compression, namely Wavelet Trees [13, 16, 22]
and Compression Boosting [14, 18]. Although these new approaches have nice theoretical properties and
guaranteed compression bounds, so far their behavior in practice does not appear to be substantially
superior to the simpler strategies based on Move-to-Front and 0th-order encoding [12].

Given this state of affairs, it is natural to further investigate the simple and effective techniques
like Move-to-Front with the twofold objective of gaining greater insight into their inner workings and
establishing entropy bounds on their compression performance. Recently, [19] has provided a simple and
elegant analysis of the original Burrows-Wheeler compression algorithm showing that, for any string s,
its output size is upper bounded by µ|s|Hk(s) + O(|s|) bits for any µ > 1 and k ≥ 0, where Hk(s) is the
kth-order empirical entropy of s. [19] also analyzes the compressor in which Move-to-Front is replaced
by Distance Coding [6, 9] and proves that it produces an output bounded by 1.7286|s|Hk(s) + O(log |s|)
bits. These bounds provide an important theoretical complement to the good practical behavior of these
techniques. However, the presence of the terms O(|s|) and O(log |s|) makes it difficult to evaluate how

∗Partially supported by Italian MIUR Italy-Israel FIRB Project “Pattern Discovery Algorithms in Discrete Structures,
with Applications to Bioinformatics”. A preliminary version of this work has appeared in the Proceedings of the 18th
Symposium on Combinatorial Pattern Matching (CPM ’07).

†Department of Computer Science, University of Eastern Piedmont, Italy. {travis,manzini}@mfn.unipmn.it.

1

close the compression ratio is to the entropy of the input, especially when s is highly compressible. For
example, for s = σ1σ

n
2 , for k ≥ 0 it is |s|Hk(s) = O(log |s|) so a bound of the form µ|s|Hk(s) + O(|s|)

tells one nothing about how close the compression ratio is to the entropy of the input string.
The above observation suggests that it is worthwhile to consider entropy-only bounds, that is, bounds

of the form λ|s|H∗
k(s) + O(1), where λ > 1 is a constant independent of k, |s|, and of the alphabet size.

Note that entropy-only bounds are expressed in terms of the modified kth-order entropy H∗
k since they

cannot be established in terms of Hk (see Section 2). Achieving an entropy-only bound guarantees that
even for highly compressible strings, the compression ratio will be proportional to the entropy of the input
string. Note that not every compression algorithm can achieve such bounds since many compressors have
non-constant overheads that become non-negligible when the input string is highly compressible. Indeed,
the capability of achieving entropy-only bounds is one of the features that differentiate Burrows-Wheeler
compression algorithms from the family of Lempel-Ziv compressors [23].

In this paper we analyze Move-to-Front (Mtf), Distance Coding (Dc), and Inversion Frequencies
Coding (If) [2, 3] and we study their effectiveness in compressing the output of the Burrows-Wheeler
transform (bwt from now on). Our main results can be summarized as follows:

1. The procedures Mtf, Dc and If all output sequences of positive integers. These sequences are
usually encoded using either a 0th-order encoder or a prefix-free integer encoder; in this paper we
establish upper bounds for both options without making assumptions on the inner working of the
final encoder. To this end we extend a technique introduced in [19] for the analysis of 0th-order
encoders in terms of integer coders (Lemma 3.3); this extension may be of independent interest.

2. We provide the first theoretical analysis of If when used to compress the output of the bwt (Theo-
rem 6.3).

3. We describe simple variants of Mtf, Dc, and If achieving entropy-only bounds (Corollaries 4.5, 5.9,
and 6.6). The variant of Mtf simply uses Run-Length Encoding (Rle), while the variants of Dc and
If make use of a novel “escape and re-enter” technique.

4. Our best entropy-only bound holds for a variant of Dc that compresses every string s into at most
(2.69 + C0)|s|H

∗
k(s) + log |s|+ Θ(1) bits for any k ≥ 0, where C0 is the per symbol overhead of the

0th-order encoder. We prove (Theorem 7.1) that no compression algorithm (not necessarily based
on the bwt) can achieve an entropy-only bound of the form λ|s|H∗

0 (s) + Θ(1) for a constant λ < 2.
In addition, we prove that, under the mild assumption that concatenations of encoded strings are
uniquely decodable, even λ = 2 is not achievable (Theorem 7.2).

Comparison with Related results. The first entropy-only bound for Mtf as a post-processor of the
bwt has been established in [23]. With a rather complex analysis [23] shows that the compression achieved
by the bwt followed by Mtf, Rle, and a 0th-order encoder is bounded by (5+3C0)|s|H

∗
k(s)+ log |s|+Θ(1)

bits for any string s and for any k ≥ 0 (C0 is again the per symbol overhead of the 0th-order encoder). In
this paper we consider a slightly different version of Rle for which we establish a bound of the same form
with the constant in front of |s|H∗

k(s) reduced to (4.4 + C0). Our analysis is simpler than the one in [23]
and provides upper bounds also for the case in which the 0th-order encoder is replaced by a prefix-free
integer encoder.

In [19] the authors provide the first analysis of Dc combined with the bwt and a 0th-order encoder.
They show that the output of this compressor is bounded by 1.7286|s|Hk(s)+Θ(log |s|) bits. This bound
holds only if the 0th-order encoder is an “ideal” version of Arithmetic Coding for which the overhead per
symbol is (log |s|)/|s|. Using the techniques of this paper it is possible to refine the analysis of [19] and
prove that for a 0th-order encoder with a constant per symbol overhead C0 the output of Dc is bounded
by (1.7286 + C0)|s|Hk(s) + Θ(log |s|) bits. However, this is not an entropy-only bound because of the
Θ(log |s|) term (no tight bounds are known on the size of the constant hidden in the asymptotic notation;
from the analysis in [19] it follows that it is at most hk+1, where h is the alphabet size).

2

No bounds of any kind were previously known for the compression achieved by If when used to
process the bwt. The only known bound for If was the one given in [13] which applies to If used as
a stand-alone compressor. Finally, the lower bounds proven in Section 7 complement previous ones
established in [18, 19, 20] but are not directly comparable to them: the bounds in [19] are not expressed
in terms of the empirical entropy and the bounds in [18, 20] apply only to bwt-based compressors.

For the convenience of the reader, we have confined to Appendix B the proofs of some lemmas that
are purely technical and not related to the inner workings of the algorithms being considered.

2 Notation and Background

Let s be a string drawn from the alphabet Σ = {σ1, . . . , σh}. For i = 1, . . . , |s| we write s[i] to denote
the ith character of s. For each σi ∈ Σ, let ni be the number of occurrences of σi in s. The 0th-order
empirical entropy of the string s is defined as1 H0(s) = −

∑h
i=1(ni/|s|) log(ni/|s|). It is well known that

H0 is the maximum compression we can achieve using a fixed codeword for each alphabet symbol. The
following definition captures the abstract notion of a compressor which is able to achieve H0 up to a
constant overhead per symbol and an additional overhead depending on the alphabet size.

Definition 1 An algorithm A is a 0th-order algorithm if for any input string s we have

|A(s)| ≤ |s|H0(s) + C0|s|+ O(h log h)

where h = |Σ|. The parameter C0 is the per symbol overhead of A.

Examples of 0th-order algorithms are Huffman coding, for which C0 = 1, and Arithmetic coding, for
which the overhead per symbol can in principle be made arbitrarily small (for typical implementations
it is C0 ≈ .01). It is well known that we can often achieve a compression ratio better than H0(s) if the
codeword we use for each symbol depends on the k symbols preceding it. In this case, the maximum
compression is bounded from below by the kth-order entropy Hk(s) (see [23] for a full discussion or
Appendix A for a summary).

In [19] the authors analyze the original Burrows-Wheeler compressor in which the output of the bwt
is processed by Mtf followed by a 0th-order algorithm and they prove that its output is bounded by

µ|s|Hk(s) + (log(ζ(µ)) + C0)|s|+ log |s|+ O
(

hk+1 log h
)

(1)

bits, where ζ(µ) =
∑

j>0 j−µ is the Riemann zeta function and C0 is the per symbol overhead of the
0th-order algorithm. The above bound holds simultaneously for any µ > 1 and k ≥ 0. This means
we can get close to the kth-order entropy for any k ≥ 0. Unfortunately, in (1) there is also a Θ(|s|)
term which becomes dominant when s is highly compressible. For example, for s = σ1σ

n
2 we have

|s|H0(s) = log |s| + O(1). In this case, the bound (1) does not guarantee that the compression ratio is
within a constant factor of the entropy.

In order to get significant bounds for highly compressible strings as well, it would be desirable to prove
entropy-only bounds of the form λ|s|Hk(s) + Θ(1); unfortunately, such bounds cannot be established.
To see this, consider the family of strings s = σn

1 ; we have |s|H0(s) = 0 for all of them and we cannot
hope to compress all strings in this family in Θ(1) space. For that reason, [23] introduced the notion of
0th-order modified empirical entropy:

H∗
0 (s) =







0 if |s| = 0
(1 + ⌊log |s|⌋)/|s| if |s| 6= 0 and H0(s) = 0
H0(s) otherwise.

(2)

1In the following, log means log2 and ln denotes the natural logarithm. We assume 0 log 0 = 0.

3

Note that if |s| > 0, |s|H∗
0 (s) is at least equal to the number of bits needed to write down the length of s

in binary. The kth-order modified empirical entropy H∗
k is then defined in terms of H∗

0 as the maximum
compression we can achieve by looking at no more than k symbols preceding the one to be compressed
(again, see [23] for a full discussion or Appendix A for a summary). An entropy-only bound in terms of
H∗

k is proven in [23] for the algorithm consisting of the bwt, followed by Mtf and Rle encoding, followed
by 0th-order encoding. A key tool for the analysis in [23] is the notion of local optimality.

Definition 2 A compression algorithm A is locally λ-optimal if there exists a constant ch such that for
any string s and for any partition s1s2 · · · st of s we have

A(s) ≤ λ

[t∑

i=1

|si|H
∗
0 (si)

]

+ cht, (3)

where ch depends only on the alphabet size h. If the bound (3) holds with a parameter λh that depends on
the alphabet size h, we say that the algorithm A is locally pseudo optimal.

The importance of local optimality stems from the following lemma which establishes that processing the
output of the bwt with a locally optimal algorithm yields an algorithm achieving an entropy-only bound.

Lemma 2.1 ([23]) If A is locally λ-optimal then the bound

|A(bwt(s))| ≤ λ|s|H∗
k(s) + log |s|+ chhk (4)

holds simultaneously for any k ≥ 0.

Note that the term log |s| in (4) is due to the fact that bwt(s) consists of a permutation of s—which is
compressed using A—and an integer in [1, |s|] whose encoding takes 1 + ⌊log |s|⌋ bits. Since |s|H∗

k(s) ≥
log(|s| − k) (see Lemma A.1), we could rewrite the right-hand side of (4) as (λ + 1)|s|H∗

k(s) + chhk (this
justifies the expression ‘entropy-only bound’). However, since for many strings it is log |s| ≪ |s|H∗

k(s),
keeping the term log |s| explicit provides a better picture of the performance of bwt-based compressors.

We conclude this section with two lemmas relating the order zero entropy of a string to its length and
the number of runs in it. Given a string s, a run is a substring s[i]s[i + 1] · · · s[i + k] of identical symbols,
and a maximal run is a run which cannot be extended; that is, it is not a proper substring of a larger
run.

Lemma 2.2 ([21, Sect. 3]) The number of maximal runs in a string s is bounded from above by 1 +
|s|H0(s).

Lemma 2.3 Let s be a string containing runs(s) maximal runs and let α, β and ǫ be positive constants;
then

α log |s|+ βruns(s) ≤ max(α, β + ǫ)|s|H∗
0 (s) + O(1).

Proof: See Appendix B.

3 Integer and 0th-order encoders

Move-to-Front, Distance Coding, and Inversion Frequencies all output sequences of positive integers.
These sequences are usually compressed using either a 0th-order encoder (see Definition 1) or a prefix-
free encoding for the integers. Prefix-free encoders of the integers use a fixed codeword for each integer
regardless of its frequency and are therefore faster and easier to implement. 0th-order encoders (especially
arithmetic coders) are slower but usually achieve a significantly better compression. Unfortunately, they

4

are also more difficult to analyze when used in connection with the bwt. In this section we show that the
compression achieved by a generic 0th-order encoder can be bounded in terms of the best compression
achieved by a family of integer coders. This result will make it possible to translate compression bounds
for integer coders into compression bounds for 0th-order encoders. In the following we denote by Enc a
uniquely decodable encoder of the positive integers (not necessarily prefix-free). For any i ≥ 1 we denote
by Enc(i) the fixed codeword encoding the integer i. Note that we admit also “ideal” coders in which
the codewords have fractional lengths. Our only assumption is that there exist two positive constants a
and b such that for any i ≥ 1 we have |Enc(i)| ≤ a log i + b. For example, for γ-coding [10] the above
inequality holds for a = 2 and b = 1. In our analysis we will often make use of the following property.

Lemma 3.1 (Subadditivity) Let a, b be two constants such that for i ≥ 1 it is |Enc(i)| ≤ a log i + b.
Then, there exists a constant dab such that for any sequence of positive integers x1, x2, . . . , xk we have

∣
∣
∣
∣Enc

(∑k

j=1
xj

)
∣
∣
∣
∣ ≤

(∑k

j=1
|Enc(xj)|

)

+ dab.

Proof: See Appendix B.

The next lemma, which follows from the analysis in [19], establishes a connection between integer and
0th-order coders by showing that if we feed a sequence of integers to a 0th-order encoder the output is
essentially no larger than the output produced by an ideal integer encoder with parameters a = µ and
b = log(ζ(µ)) + C0 for any µ > 1.

Lemma 3.2 Let Order0 be a 0th-order encoder with per character overhead C0 and let x1x2 · · · xn be a
sequence of integers such that 1 ≤ xi ≤ h for i = 1, . . . , n. Then, for any µ > 1 we have

|Order0(x1x2 · · · xn)| ≤
∑n

i=1

(

µ log(xi) + log ζ(µ) + C0

)

+ O(h log h) .

Proof: For any µ > 1, consider the probability distribution over the positive integers defined by q(j) =
(ζ(µ) jµ)−1. By the definition of Riemann zeta function it is ζ(µ) =

∑

j>0 j−µ hence
∑

j>0 q(j) = 1. By
Gibb’s inequality it is nH0(x1 · · · xn) ≤ −

∑n
i=1 log(q(xi)). By Definition 1 we get

|Order0(x1x2 · · · xn)| ≤ nH0(x1 · · · xn) + nC0 + O(h log h)

≤ −
∑n

i=1
log(q(xi)) + nC0 + O(h log h)

≤
∑n

i=1
(µ log(xi) + log ζ(µ) + C0) + O(h log h) .

In the following we will also make use of a compression algorithm that combines the advantages
of integer and 0th-order encoders. The reason for introducing a new algorithm is that many of the
procedures considered in this paper produce sequences of positive integers whose magnitude can be as
large as the length of the input string s. This is not a problem when we compress such sequences using
integer encoders since, by definition, such encoders handle arbitrarily large integers. Unfortunately, large
integers can be a problem for 0th-order encoders as typical 0th-order algorithms have an overhead of
O(h log h) bits, where h is the size of the input alphabet (see Definition 1). If we need to encode values
as large as |s| such overhead could make the use of the encoder unprofitable. For example, the run-length
encoding of the string s = 101021031041 · · · 10k1 produces Θ(

√

|s|) distinct integers: if we encode these
integers with a 0th-order algorithm, the overhead deriving from the alphabet size would be much larger
than |s|H0(s).

Researchers are well aware of this phenomenon and circumvent it by using a 0th-order algorithm
for encoding “small” integers and ad-hoc techniques for handling the (usually few) occurrences of large

5

integers. We now describe one such scheme based on δ-coding and show it is equivalent to an ideal
integer coder with parameters a = µ and b = log(ζ(µ)) + C0 + ν for any constants µ > 1 and ν > 0. For
descriptions of more sophisticated techniques, see [26] and references therein.

Recall that δ-coding [10] is a prefix-free encoding of the integers such that for any x ≥ 1 it is
|δ(x)| ≤ 1 + log x + 2 log(1 + log x). Hence, for any µ > 1 and ν > 0 we can find an integer t such that
for x ≥ t it is

|δ(x)| ≤ µ log(x) + log ζ(µ) + ν − log(2ν/(2ν − 1)). (5)

Given an encoder Order0 with per symbol overhead C0 we define a new encoder Order0* that uses δ-coding
for encoding the integers larger than t. Given the sequence x1 · · · xn let y1 · · · yn denote the sequence with
all integers greater than t replaced by copies of t and let z1 · · · zℓ be all the integers at least t. To encode
x1 · · · xn the algorithm Order0* encodes y1 · · · yn with Order0 and z1 · · · zℓ with δ-coding.

Lemma 3.3 Let Order0 be an order zero encoder with per symbol overhead C0. For any sequence of
positive integers x1x2 · · · xn and constants µ > 1 and ν > 0 we have

|Order0*(x1x2 · · · xn)| ≤
∑n

i=1

(

µ log(xi) + log ζ(µ) + ν + C0

)

+ O(1) .

Proof: Note that the sequence y1 · · · yn contains only integers between 1 and t. Assign to each integer in
this range the weight q(·) defined by q(j) = (2νζ(µ)jµ)−1 for j = 1, . . . , t − 1, and q(t) = 1 − 2−ν . Since
∑t

j=1 q(j) ≤ 1, we have nH0(y1 · · · yn) ≤ −
∑n

i=1 log(q(yi)). By Definition 1,

|Order0*(x1 · · · xn)| =
ℓ∑

i=1

|δ(zi)| + Order0(y1 · · · yn)

≤
ℓ∑

i=1

|δ(zi)| + nH0(y1 · · · yn) + nC0 + O(t log t)

≤
∑

xi≥t

|δ(xi)| −
n∑

i=1

log(q(yi)) + nC0 + O(t log t)

≤
∑

xi≥t

(

µ log xi + log ζ(µ) + ν − log(2ν/(2ν − 1))
)

+

∑

xi<t

(

µ log xi + log ζ(µ) + ν
)

−
∑

xi≥t

log(q(t)) + nC0 + O(t log t) .

Observing that log(q(t)) = − log(2ν/(2ν − 1)), we conclude that

|Order0*(x1 · · · xn)| ≤
n∑

i=1

(

µ log xi + log ζ(µ) + ν + C0

)

+ O(t log t) .

The thesis follows since t depends only on the constants µ and ν.

4 Analysis of Move-to-Front encoding

The Move-to-Front (Mtf) procedure encodes a string by replacing each symbol with the number of distinct
symbols seen since its last occurrence plus one. To this end, Mtf maintains a list of the symbols ordered
by recency of occurrence; when the next symbol arrives the encoder outputs its current rank and moves
it to the front of the list. If the input string is defined over the alphabet Σ we assume that ranks are
in the range [1, h], where h = |Σ|. To completely determine the encoding procedure we must specify the
initial status of the recency list. However, changing the initial status increases the output size by at most

6

O(h log h) bits so we will add this overhead and ignore the issue. Let Enc denote an integer coder such that
|Enc(i)| ≤ a log i+b and let Mtf+Enc denote the algorithm in which the ranks produced by Mtf are encoded
using Enc. From the analysis in [5] it follows that for any string s we have |Enc(Mtf(s))| ≤ a|s|H0(s)+b|s|+
O(h log h). In addition, if Order0 is a 0th-order compressor with per character overhead C0, Lemma 3.2
implies that |Order0(Mtf(s))| ≤ µ|s|H0(s) + (log ζ(µ) + C0)|s|+ O(h log h) for any µ > 1. Unfortunately,
the following example shows that Mtf + Enc is not powerful enough to achieve entropy-only bounds.

Example 1 Fix an integer coder Enc and let ℓ denote the length of the shortest codeword produced
by Enc. Let s = σn

1 . Since |bwt(s)| = |s|, we have |Enc(Mtf(bwt(s)))| ≥ ℓ|s|. Since |s|H∗
0 (s) = 1+ ⌊log |s|⌋

it follows that the combined algorithm bwt + Mtf+ Enc cannot achieve an entropy-only bound that holds
for every possible input string.

The above example shows that if we feed to the final encoder Θ(|s|) symbols it is unlikely we can achieve
an entropy-only bound. This observation suggests the algorithm Mtf rle that combines Mtf with Rle.
Assume σ = s[i + 1] is the next symbol to be encoded. Instead of simply encoding the Mtf rank r of σ,
Mtf rle finds the maximal run s[i + 1] · · · s[i + ℓ] of consecutive occurrences of σ and encodes the pair2

〈r, ℓ〉. We define the algorithm Mtf rle + Enc as the algorithm which encodes each such pair with Enc.
Since the Mtf rank r is always greater than one, to save space we encode each pair as follows: If ℓ = 1,
we encode 〈r, ℓ〉 with the codewords 〈Enc(1),Enc(r)〉, while if ℓ > 1 we encode 〈r, ℓ〉 with the codewords
〈Enc(r),Enc(ℓ− 1)〉.

Lemma 4.1 Let A0 = Mtf rle + Enc. For any string s we have

|A0(s)| ≤ 2a|s|H∗
0 (s) + a log ℓ + (2b− a)runs(s) + O(h log h) .

where runs(s) is the number of runs in s, and ℓ is the length of the last run.

Proof: Assume H0(s) 6= 0 (otherwise s = σn and the proof follows by an easy computation). Let
〈r1, ℓ1〉, 〈r2, ℓ2〉, . . . , 〈rt, ℓt〉 denote the set of pairs generated by Mtf rle. Because of the way A0 encodes
the pairs 〈rj , ℓj〉, if we define |Enc(0)| to be equal to |Enc(1)| the encoding of each pair 〈rj , ℓj〉 takes
precisely |Enc(rj)|+ |Enc(ℓj − 1)| bits. Hence, we can write

|A0(s)| =
t∑

j=1

(|Enc(rj)|+ |Enc(ℓj − 1)|) + O(h log h) .

To bound |A0(s)| we charge each term in the above summation to a character σ ∈ Σ as follows: we charge
the term |Enc(rj)| to the character forming the jth run and the term |Enc(ℓj−1)| to the character forming
the j + 1-st run. Note that this leaves out the last run length ℓt: its corresponding cost |Enc(ℓt − 1)| is
accounted for explicitly in the statement of the lemma.

For any given character σ let (α1, β1), (α2, β2), . . ., (αk, βk) denote the starting and ending positions
of the runs of σ. For i = 1, . . . , k let 〈r′i, ℓ

′
i〉 denote the pair encoding the run (αi, βi) (so we have

ℓ′i = βi − αi + 1). Finally, let mi denote the length of the run immediately preceding the run (αi, βi).
The total cost charged to σ is therefore

k∑

i=1

(

|Enc(r′i)|+ |Enc(mi − 1)|
)

. (6)

Define β0 = 0. We now show that for i ≥ 1 we have

|Enc(r′i)|+ |Enc(mi − 1)| ≤ 2 log(αi − βi−1) + 2b− a. (7)

2Here and in the following we use angle brackets to show that certain values form a pair or a triple with a particular
meaning: such brackets are not part of the output.

7

Assume first mi > 1. Recall r′i is the number of distinct characters in the substring from s[βi−1 + 1] to
s[αi]. If, immediately before s[αi], there is a run of mi equal symbols, we have r′i ≤ αi− βi−1 − (mi− 1).
Hence

|Enc(r′i)|+ |Enc(mi − 1)| = a(log(r′i) + log(mi − 1)) + 2b

≤ 2a log((r′i + mi − 1)/2) + 2b

≤ 2a log(αi − βi−1) + 2b− a.

If mi = 1, then |Enc(mi − 1)| = b. Since 2 ≤ r′i ≤ αi − βi−1, we have

|Enc(r′i)|+ |Enc(mi − 1)| = a log(r′i) + 2b

≤ 2a log(αi − βi−1) + 2b− a

thus establishing (7). Using (7), the total cost (6) charged to σ can be bounded by

2a [log(α1 − β0) + log(α2 − β1) + · · ·+ log(αk − βk−1)] + k(2b − a) (8)

bits. Summing the cost k(2b−a) over all characters in Σ yields a total of (2b−a) runs(s) bits. To complete
the proof we bound the content of the square brackets in (8). Since log(1) = 0, the content of the square
brackets is equal to

log(α1 − β0) + · · · + log(αk − βk−1) + (β1 − α1 + β2 − α2 + · · ·+ βk − αk) log(1). (9)

The sum of the coefficients of the logarithms in (9) is k +
∑k

i=1(βi − αi) =
∑k

i=1(βi − αi + 1) which is
equal to the number nσ of occurrences of σ in s. Hence, by Jensen’s inequality, (9) is bounded by

nσ log

(
(α1 − β0) + · · ·+ (αk − βk−1) + (β1 − α1 + · · ·+ βk − αk)

nσ

)

= nσ log((βk − β0)/nσ)

which is at most nσ log(|s|/nσ). Summing nσ log(|s|/nσ) over all σ’s yields |s|H0(s) and the lemma
follows.

Since the length of the last run is bounded by |s|, combining Lemmas 4.1 and 2.3 we get

Corollary 4.2 Let A0 = Mtf rle + Enc. For any string s and ǫ > 0 we have

|A0(s)| ≤ max(3a, a + 2b + ǫ)|s|H∗
0 (s) + O(h log h) .

Theorem 4.3 The algorithm A0 = Mtf rle + Enc is locally max(3a, a + 2b + ǫ)-optimal for any ǫ > 0.

Proof: By Corollary 4.2 it suffices to prove that

|A0(s1s2)| ≤ |A0(s1)|+ |A0(s2)|+ O(h log h).

To prove this inequality observe that compressing s2 independently of s1 changes the encoding of the Mtf
rank of only the first occurrence of each character in s2. This gives an O(h log h) overhead. In addition,
there could be a run of equal characters crossing the boundary between s1 and s2. In this case the length
of the first part of the run will be encoded in s1 and the length of the second part in s2. By Lemma 3.1
this produces an O(1) overhead and the theorem follows.

Note that combining the above theorem with Lemma 2.1 we immediately get an entropy-only bound for
bwt + Mtf rle + Enc with parameter λ = max(3a, a + 2b + ǫ). In addition, using Lemma 3.3, we can
extend Theorem 4.3 to the case in which the output of Mtf rle is compressed with the algorithm Order0*
described at the end of Section 3.

8

Procedure Distance Coding

1. Write the first character in s;

2. For each other character σ ∈ Σ, write the distance to the first σ in s, or 1 if σ does not occur (notice no
distance is 1, because we do not reconsider the first character in s);

3. For each maximal run of a character σ, write the distance from the ending position of that run to the starting
position of the next run of σ’s, or 1 if there are no more σ’s (again, no distance is 1);

4. Encode the length ℓ of the last run in s.

Figure 1: Distance coding of a string s over the alphabet Σ = {σ1, . . . , σh}.

Theorem 4.4 The algorithm Mtf rle + Order0* is locally (4.40 + C0)-optimal.

Proof: By Lemma 3.3 we know that for any µ > 1 and ν > 0 the output of Order0* on input Mtf rle(s)
is bounded by the output of an integer coder with parameters a = µ and b = log(ζ(µ)) + ν + C0. The
thesis follows by Theorem 4.3 taking µ = 22/15 and ν = ǫ = 0.001.

Corollary 4.5 For any string s and k ≥ 0 we have

|Order0*(Mtf rle(bwt(s)))| ≤ (4.40 + C0)|s|H
∗
k(s) + log |s|+ O

(

hk+1 log h
)

.

Proof: Immediate by Theorem 4.4 and Lemma 2.1.

5 Analysis of Distance Coding

Distance Coding (Dc) is an encoding procedure which is relatively little-known, probably because it was
originally described only on a Usenet post [6]. The basic idea of Dc is to encode the starting position of
each maximal run. The details of the algorithm are given in Figure 1. Note that Dc does not encode the
length of the runs since the ending position of the current run is determined by the starting position of
the next run. The distance between two characters is defined as the number of characters between them
plus one (so the distance is one if the two characters are consecutive). The distance of a character from
the beginning of s is defined as the number of characters preceding it plus one (so the distance is one for
the first character of the string s). We define Dc + Enc as the algorithm in which the integers produced
by Dc are encoded using the integer coder Enc.

Lemma 5.1 Let A1 = Dc + Enc. For any string s and for any ǫ > 0 we have

|A1(s)| ≤ max(2a, a + b + ǫ)|s|H∗
0 (s) + O(h).

Proof: Assume H0(s) 6= 0 (otherwise s = σn and the proof follows by an easy computation). Writing
the first character in s takes O(log h) bits; we write h copies of 1 while encoding s (or h + 1 if the first
character is a 1), which takes O(h) bits. Writing the length of the last run takes |Enc(ℓ)| which is at most
a log ℓ + b bits. We are left with the task of bounding the cost of encoding: 1) the starting position of
the first run of each character, 2) the distance between the ending position of each run and the starting
position of the next run of the same character. We account these costs separately for each σ ∈ Σ. Let
(α1, β1), (α2, β2), . . ., (αk, βk) denote the starting and ending positions of the runs of σ. Dc encodes these
runs with the sequence of codewords

Enc(α1),Enc(α2 − β1),Enc(α3 − β2), . . . ,Enc(αk − βk−1)

9

whose overall size is bounded by (setting β0 = 0)

a [log(α1 − β0) + log(α2 − β1) + · · · + log(αk − βk−1)] + bk (10)

bits. Summing the above term over all σ and reasoning as in the proof of Lemma 4.1 (compare (10)
with (8)) we get

|A1(s)| ≤ a log ℓ + a|s|H0(s) + b runs(s) + O(h),

where runs(s) is the number of runs in s. The thesis follows by Lemma 2.3.

The above lemma tells us that Dc+Enc compresses any string up to its 0th-order entropy. Unfortunately,
our next result shows that this algorithm combined with the bwt cannot achieve an entropy-only bound
in terms of H∗

k for k ≥ 1.

Theorem 5.2 For any integer encoder Enc, there exists an infinite number of strings s such that

|Enc(Dc(bwt(s)))| ≥ (h− 2)|s|H∗
1 (s)−Θ(h2),

where h is the size of the input alphabet.

Proof: Every uniquely decodable integer encoder Enc must satisfy the extended Kraft’s inequality [8,
Theorem 5.2.2]:

∑

i≥1
2−|Int(i)| ≤ 1.

Hence, there exists an infinite number of integers m such that |Enc(m)| ≥ log m. For each such integer
m let n = m− (h− 1). Note that

|Enc(n + (h− 1))| = |Enc(m)| ≥ log m ≥ log n. (11)

Consider the string

s = σ1σ3 σ1σ4 σ1σ5 · · · σ1σh−1 σ1σh σ1σ
n
2 σ3 σ3σ4 σ3σ5 · · · σ3σh−1 σ3σh.

The string s consists of the concatenation of the pairs σ1σi, for i = 3, . . . , h, followed by σ1σ
n
2 σ3, followed

by the concatenation of the pairs σ3σi for i = 4, . . . , h. bwt(s) is obtained by sorting the characters of
s using the substring s[0, i − 1] as the sorting key for the character s[i].3 A tedious computation shows
that

bwt(s) = σ1 σ3σ4σ5 · · · σhσ2
︸ ︷︷ ︸

w1

σn−1
2 σ3
︸ ︷︷ ︸

w2

σ1σ3σ4σ5 · · · σh
︸ ︷︷ ︸

w3

σ1σ3
︸ ︷︷ ︸

w4

σ1σ3
︸ ︷︷ ︸

w5

· · · σ1σ3
︸ ︷︷ ︸

wh−1

σ1
︸︷︷︸

wh

.

In the above representation of bwt(s), for i = 1, . . . , h we have highlighted the string wi containing the
set of characters immediately following σi in s (the initial σ1 in bwt(s) corresponds to the initial σ1 in s
and therefore does not belong to any wi). Thus, we have

|s|H∗
1 (s) ≤

h∑

i=1

|wi|H
∗
0 (wi) ≤ log n + 2h log h + 2(h − 3). (12)

At the same time we notice that Dc applied to bwt(s) generates h−2 times the integer n+h−1 since there
are exactly that many characters between the first two occurrences of the characters σ1, σ4, σ5, . . . , σh.
By (11) and (12) we have

|Enc(Dc(bwt(s)))| ≥ (h− 2)|Enc(n + h− 1)| ≥ (h− 2) log(n) ≥ (h− 2)|s|H∗
1 (s)−Θ(h2 log h)

as claimed.
3We are assuming substrings are compared in right-to-left lexicographic order. Note that the bwt is more often defined

using the substring s[i + 1, n − 1] as the sorting key for s[i]: the two definitions can be made equivalent by reversing the
input string. See [14] for details.

10

Although it is possible that the above result does not hold if we replace the integer encoder Enc with
a 0th-order encoder, the above theorem suggests that the repeated encoding of large distances could be
a cause of inefficiency for Dc. For this reason, we introduce a new algorithm called Distance Coding
with escapes (Dc esc). The main difference between Dc and Dc esc is that, whenever Dc would write a
distance, Dc esc compares the cost of writing that distance to the cost of escaping and re-entering later,
and does whichever is cheaper.

Whenever Dc would write 1, Dc esc writes 〈1, 1〉; this lets us use 〈1, 2〉 as a special re-entry sequence.
To escape after a run of σ’s, we write 〈1, 1〉; to re-enter at the next run of σ’s, we write 〈1, 2, ℓ, σ〉, where
ℓ is the length of the preceding run (necessarily of some other character). To see how Dc esc works,
suppose we are encoding the string

s = · · · σj
1 σk

2 σℓ
3 σm

1 · · · .

When Dc reaches the run σj
1 it encodes the value k + ℓ + 1 which is the distance from the last σ1 in σj

1 to
the first σ1 in σm

1 . Instead, Dc esc compares the cost of encoding k + ℓ + 1 with the cost of encoding an
escape (sequence 〈1, 1〉) plus the cost of re-entering. In this case the re-entry sequence would be written
immediately after the code associated with the run σℓ

3 and would consist of the sequence 〈1, 2, ℓ, σ1〉.
When the decoder finds such a sequence it knows that the current run (in this case of σ3’s) will only last
for ℓ characters and, after that, there is a run of σ1’s. (Recall that Dc only encodes the starting position
of each run: the end of the run is induced by the beginning of a new run. When we re-enter an escaped
character we must explicitly provide the length of the ongoing run).

Notice we do not distinguish between instances in which 〈1, 1〉 indicates a character does not occur,
cases in which it indicates a character does not occur again, and cases in which it indicates an escape;
we view the first two types of cases as escapes without matching re-entries.

Lemma 5.3 Let A1 = Dc + Enc and let A2 = Dc esc + Enc. For any string s and for any partition
s = s1 · · · st

|A2(s)| ≤
t∑

i=1

|A1(si)| + O(ht log h).

Proof: Fix a partition s = s1 · · · st and consider the algorithm Dc esc* that, instead of choosing at each
step whether to escape or not, escapes if and only if the current distance crosses the boundary between
two different partition elements. That is, Dc esc* uses the escape sequence every time it encodes the
distance between a run ending in si and a run starting in sj with j > i. Let A∗

2 = Dc esc* + Enc. Since
Dc esc always performs the most economical choice, we have |A2(s)| ≤ |A

∗
2(s)|; we prove the lemma by

showing that

|A∗
2(s)| ≤

t∑

i=1

|A1(si)| + O(ht log h).

Clearly Dc esc* escapes at most th times. The parts of an escape/re-enter sequence that cost Θ(log h)
(that is, the codewords for 〈1, 1〉, 〈1, 2〉 and the encoding of the escaped character σ) are therefore included
in the O(ht log h) term. Thus, for each escape sequence we have only to take care of the cost of encoding
the value ℓ that provides the length of the run immediately preceding the re-entry point. We now show
that the cost of encoding the run lengths ℓs is bounded by costs paid by Dc and not paid by Dc esc*. Let
σ denote the escaped character. Let sj denote the partition element containing the re-entry point and
let m denote the position in sj where the new run of σ’s starts (that is, at position m of sj there starts
a run of σ’s; the previous one ended in some si with i < j so Dc esc* escaped σ and is now re-entering).
Let σp denote the character immediately preceding the re-entry point: with our notation we have that
the re-entry point is preceded by the run σℓ

p. We consider two cases:

ℓ ≤ m. In this case the run σℓ
p starts within sj. This implies that the cost |Enc(ℓ)| paid by Dc esc* is no

greater than the cost |Enc(m)| paid by Dc for encoding the first position of σ in sj.

11

ℓ > m. In this case the run σℓ
p starts in a partition element preceding sj. Let m′ = ℓ−m. If m′ < |sj−1|

the run σℓ
p starts within sj−1. Under this assumption, by Lemma 3.1, the cost |Enc(ℓ)| paid by

Dc esc* is at most dab plus the cost |Enc(m)| paid by Dc for encoding the first position of σ in sj,
plus the cost |Enc(m′)| paid by Dc to encode the length of the last run in sj−1. If m′ > |sj−1| then
the run σℓ

p spans several partition elements sj−k, sj−k+1, . . . , sj. In this case, again by Lemma 3.1,
the cost |Enc(ℓ)| is bounded by dab plus the cost paid by Dc for encoding the following items: 1)
the last run in sj−k, 2) the last (and only) run in sj−k+1, . . . , sj−1, 3) the first position of σ in sj.

Combining Lemma 5.3 with Lemma 5.1 and Lemma 2.1 we immediately get

Theorem 5.4 The algorithm A2 = Dc esc+Enc is locally max(2a, a+b+ ǫ)-optimal for any ǫ > 0, hence
for any string s and k ≥ 0 it is |A2(bwt(s))| ≤ max(2a, a + b + ǫ)|s|H∗

k(s) + log |s|+ O(hk+1 log h).

We now consider the case in which the output of Dc esc is compressed with the encoder Order0*. The
main tool for our analysis will again be Lemma 3.3, which establishes a relationship between the output
size of Order0* of that of an integer coder. However, there is the technical difficulty that for a generic
0th-order we do not necessarily have the concept of a codeword assigned to each input symbol. The
concept of a codeword is well-defined for Huffman coding, for example, but not for Arithmetic coding.
This could be a problem for Dc esc because, in order to decide whether to escape or not, it compares the
cost of encoding two different set of symbols.

Theorem 5.5 The algorithm Dc esc + Order0* is locally (2.94 + C0)-optimal.

Proof: Fix µ > 1 and ν > 0. Let Encµ ν be the ideal integer coder such that |Encµ ν(i)| = µ log i +
log(ζ(µ)) + ν + C0 (see Lemma 3.3). Let Dc escµ ν denote the algorithm that decides whether to es-
cape or not on the basis of the costs given by Encµ ν . By Theorem 5.4 Dc escµ ν + Encµ ν is locally
max(2µ, µ+ log(ζ(µ))+ ν + ǫ+ C0)-optimal for any ǫ > 0. Since by Lemma 3.3 |Order0*(Dc escµ ν(s))| ≤
|Encµ ν(Dc escµ(s))|+O(1) the local optimality result stated in Theorem 5.4 holds for Dc escµ ν +Order0*
as well. The theorem follows taking µ = 1.47 and ν = ǫ = 0.001.

5.1 Using an explicit escape symbol

We now show how to improve the performance of Dc esc by using a special escape symbol to introduce
escape/re-enter sequences. The rationale is that escape/re-enter sequences are relatively rare so it pays
to use a special low-probability symbol for them. This escape symbol will be used also by our variant of
the Inversion Frequencies algorithm.

Lemma 5.6 Let Enc be a code for the integers such that for i > 0 it is |Enc(i)| ≤ a log i + b. For any
δ > 0 there exists a code Encδ such that: 1) for i > 0 it is |Encδ(i)| ≤ (1 + δ)(a log i) + b, 2) in addition
to the positive integers Encδ can encode a special escape symbol esc.

Proof: Given δ > 0 let iδ denote the smallest integer such that log(i + 1) ≤ (1 + δ) log i. We define the
code Encδ as follows: Encδ(esc) = Enc(iδ) and

Encδ(i) =

{
Enc(i) for i < iδ,
Enc(i + 1) for i ≥ iδ.

The lemma follows since the concavity of log x ensures |Encδ(i)| ≤ (1 + δ)(a log i) + b for any i ≥ 1.

12

Let Esc1 denote the procedure that, given a sequence of positive integers, replaces every occurrence
of 1 with the symbol esc. For example: Esc1(2113314) = 2 esc esc 3 3 esc 4. Let B2 = Dc esc+Esc1 +Encδ.
Note that in B2 every occurrence of the symbol 1 produced by Dc esc is eventually encoded with the
codeword Encδ(esc). We assume that Dc esc assigns the cost |Encδ(esc)| to the symbol 1 when it has to
decide whether to escape or not.

Lemma 5.7 For any positive constants ǫ, δ, the algorithm B2 = Dc esc+Esc1 +Encδ is locally λ-optimal
with λ = max(2a′, a′ + b + ǫ), a′ = a(1 + δ).

Proof: Let B1 = Dc + Esc1 + Encδ. Since Dc outputs the symbol 1 at most 2h times, replacing it with
esc introduces an O(h) overhead. Replacing Enc with Encδ introduces a multiplicative overhead of (1+δ)
to each log term; repeating the proof of Lemma 5.1 we get

|B1(s)| ≤ max(2a′, a′ + b + ǫ)|s|H∗
0 (s) + O(h). (13)

Consider now B∗
2 = Dc esc* + Esc1 + Encδ, where Dc esc* is defined as in the proof of Lemma 5.3.

Reasoning as in Lemma 5.3 we have that for any partition s = s1 · · · st

|B2(s)| ≤ |B
∗
2(s)| ≤

t∑

i=1

|B1(si)| + O(ht log h)

where the second inequality follows by the fact that Dc esc* outputs the esc symbol at most O(ht) times.
The lemma follows combining the above inequality with (13).

Theorem 5.8 The algorithm Dc esc + Esc1 + Order0* is locally (2.69 + C0)-optimal.

Proof: Fix µ > 1 and ν > 0. Since

∑

j≥2
((ζ(µ)− 1)jµ)−1 = (ζ(µ)− 1)−1

(∑

j≥2
j−µ

)

= 1,

by repeating the proof of Lemma 3.3 one can show that applying Order0* to a sequence of integers greater
than one produces an output size bounded by the output size of an ideal integer coder Encµ ν for the set
{j | j ≥ 2} such that |Encµ ν(i)| = µ log i + log(ζ(µ)− 1) + ν + C0.

Let Encδ
µ ν be the coder for the set {esc} ∪ {2, 3, 4, . . .} obtained by applying Lemma 5.6 to Encµ ν .

By Lemma 5.7, for any ǫ, δ > 0, the algorithm Dc esc + Esc1 + Encδ
µ ν is λ-optimal with λ = max(2µ(1 +

δ), µ(1+δ)+log(ζ(µ)−1)+ν +C0 +ǫ). Since Encδ
µ ν is defined in terms of Encµ ν and Order0* produces at

most O(1) more bits than Encµ ν , the same local optimality result holds for Order0* as well. The theorem
follows taking µ = 1.343, and ν = ǫ = δ = 0.001.

Corollary 5.9 For any string s and k ≥ 0 we have

|Order0*(Esc1(Dc esc(bwt(s))))| ≤ (2.69 + C0)|s|H
∗
k(s) + log |s|+ O

(

hk+1 log h
)

.

Proof: Immediate by Theorem 5.8 and Lemma 2.1.

6 Analysis of Inversion Frequencies Coding

Inversion Frequencies coding (If for short) is a coding strategy first proposed in [3] as an alternative to Mtf.
Given a string s over an ordered alphabet Σ = {σ1, σ2, . . . , σh}, in its original formulation If works in
h − 1 phases. In the ith phase If encodes the distance between every pair of consecutive occurrences of
σi: in the computation of such distances If ignores the characters smaller than σi. In other words, in

13

Inversion Frequencies with Run-Length Encoding (If rle)

1. Write h = |Σ| bits to indicate which characters are actually present in s (from now on we assume all characters
are present);

2. For i = 1, . . . , h − 1: write the number ℓi of characters greater than σi preceding the first occurrence of σi

in s; if ℓi = 0 write esc instead.

3. Set j = 1 and repeat while j ≤ |s|:

(a) Let σi = s[j]. Let s[m] be the first occurrence of a symbol greater than σi to the right of s[j], and let
s[p] be the first occurrence of the symbol σi to the right of s[m].

(b) Write the pair 〈k, ℓ〉 where k is the number of occurrences of σi in s[j] · · · s[m− 1] and ℓ is the number
of occurrences of symbols greater than σi in s[m] · · · s[p− 1].

(c) Set j to be the next position in s containing a character different from σi and σh.

4. Write the pair 〈esc, esc〉.

Figure 2: Inversion Frequencies with Run Length Encoding.

the ith phase If conceptually builds the string s(i) removing from s the characters smaller than σi and
encodes the distances between consecutive occurrences of σi in s(i). Note that If does not encode explicitly
the occurrences of σh. The output of If consists of the concatenation of the output of the single phases
prefixed by an encoding of the number of occurrences of each symbol σi (this information is needed by
the decoder to determine when a phase is complete). For example, if s = σ2σ2σ1σ3σ3σ1σ3σ1σ3σ2, the
first phase encodes the occurrences of σ1 in s, producing the sequence 〈3, 3, 2〉, and the second phase
encodes the occurrences of σ2 in s(2) = σ2σ2σ3σ3σ3σ3σ2, producing the sequence 〈1, 1, 5〉. The output of
If is an encoding of the number of occurrences of σ1, σ2, and σ3 (3, 3, and 4 in our example), followed by
the sequence 〈3, 3, 2, 1, 1, 5〉.

Recently, [13, Sect. 3.2] has shown that If is equivalent to coding the string s with a skewed wavelet
tree combined with Gap Encoding. The analysis in [13] shows that, if the alphabet is reordered so that
σh is the most frequent symbol, the output of If + Enc is bounded by

|Enc(If(s))| ≤ max(a, b)|s|H0(s) + (|Σ|+ a) log |s|+ O(1). (14)

Unfortunately, the following example shows that If+Enc is not powerful enough to achieve an entropy-only
bound.

Example 2 Consider the string s = (σ2σ1)
n. It is bwt(s) = σn

2 σn
1 . No matter how we order the

alphabet, If applied to bwt(s) produces n − 1 copies of the symbol 1, hence |Enc(If(bwt(s)))| = Θ(n)
which is exponentially larger than |s|H∗

1 (s) ≈ 2 log n.

To prove entropy-only bounds for If we develop two variants and we show they are locally optimal
according to Definition 2. The first variant, called If rle, simply combines If with Run Length Encoding.
If rle produces a sequence over the set {esc} ∪ {1, 2, . . .} so its output will be compressed using the Encδ

encoder described in Lemma 5.6.
The outline of the procedure If rle is described in Figure 2. Note that in the main body of If rle (Step 3)

we are essentially encoding the following information: “starting from the current character σi = s[j] there
are k occurrences of σi before we reach the first character greater than σi; after that there are ℓ characters
greater than σi before we find another occurrence of σi”. Note also that, similarly to If, the procedure
If rle does not encode explicitly the occurrences of σh. In Step 3a we are assuming that the characters
s[p] and s[m] always exist: this is not the case for the last run of each character that is handled using the
escape symbol. If s[m] or s[p] does not exist (there are no characters greater than σi to the right of s[j],

14

Decoding Procedure for If rle

1. Read h = |Σ| bits to determine which characters are actually present in s (from now on we assume all
characters are present);

2. For i = 1, . . . , h − 1, read ℓi and set To be skipped[i] ← ℓi and To be written[i] ← 0 (if ℓi = esc set
To be skipped[i]← 0 instead);

3. Repeat until the pair 〈esc, esc〉 has been read:

(a) Let i be the smallest index such that To be skipped[i] = 0, read the next pair 〈k, ℓ〉 and set
To be written[i]← k, To be skipped[i]← ℓ (if all To be skipped[i] are nonzero do nothing);

(b) Let i be the smallest index such that To be written[i] 6= 0; if all To be written[i] are zero, let i = h;

(c) Write σi to the output file;

(d) For j = 1, 2, . . . , i− 1 set To be skipped[j]← To be skipped[j]− 1;

Figure 3: Decoding procedure for Inversion Frequencies with Run Length Encoding.

or there are no occurrences of σi to the right of s[m]), then If rle writes the pair 〈k, esc〉 and the character
σi is no longer considered.4

The procedure for decoding the output of If rle is shown in Figure 3. The decoder maintains two
arrays To be written[1, . . . , h − 1] and To be skipped[1, . . . , h − 1] such that To be written[i] stores how
many σi’s have to be written before we find a character greater than σi and To be skipped[i] stores how
many characters greater than σi there are between the end of the current run of σi’s and the next one
(again runs and distances for σi are defined ignoring smaller characters). For a single character σi the
decoding procedure works as follows. While To be written[i] > 0 the decoder outputs σi and decreases
To be written[i] by one. When To be written[i] reaches zero the decoder decreases To be skipped[i] by
one each time it outputs a character greater than σi. When To be skipped[i] also reaches zero the
decoder needs new instructions for σi so it reads a new pair 〈k, ℓ〉 from the compressed file and sets
To be written[i] ← k and To be skipped[i] ← ℓ. The actual decoding procedure is more complex since
it has to work on all characters σ1, . . . , σh at the same time. So it is often the case that more than
one To be written[i] is greater than zero: in this case the smallest i wins; the reason for this is that,
if i < j, the encoding of σj ignores the occurrences of σi so σi must take precedence. Note that the
decoder outputs a character σh every time To be skipped[j] > 0 for every j < h. The last run of each
character is handled as follows: if the decoder reads the pair 〈k, esc〉 it sets To be written[i] ← k and
To be skipped[i]←∞, meaning there are k more occurrences of σi and no more.

As a preliminary to the analysis of If rle, we establish the following two technical lemmas. Note that
Lemma 6.1, which we restate here for completeness, is a known property of wavelet trees [17].5

Lemma 6.1 For i = 1, 2, . . . , h−1 let z(i) denote the binary string obtained from s deleting all characters
smaller than σi, replacing the occurrences of σi with 1, and replacing the occurrences of characters greater
than σi with 0. We have

h−1∑

i=1

|z(i)|H0(z
(i)) = |s|H0(s). (15)

Proof: See Appendix B.

4There is an exception to this rule: if the input string ends with a run σℓ
h, then the penultimate run σk

i must be encoded
with the pair 〈k, ℓ〉 rather than with the escape sequence 〈k, esc〉. This is necessary since otherwise the output would contain
no information on the last run since σh’s occurrences are not explicitly encoded.

5An attentive reader might have already noticed that there is a relationship between If rle and a skewed wavelet tree [13,
Sec. 3.2] whose internal nodes are compressed with Run Length Encoding. This is true even if the two algorithms have a
completely different structure.

15

Lemma 6.2 Let z be a binary string of the form z = 0ℓ11ℓ2 · · · σℓm , where σ = 0 if m is odd, and σ = 1
if m is even. Define

RLE(z) =
m∑

i=1

|Encδ(ℓi)|. (16)

If |Encδ(ℓ)| ≤ (1 + δ)(a log ℓ) + b as in Lemma 5.6, then setting a′ = a(1 + δ) we have

RLE(z) ≤ a′|z|H0(z) + a′ log |z|+ b runs(z).

Proof: See Appendix B.

Let A3 = If rle + Encδ. For i = 1, . . . , h − 1, let s(i) denote the string obtained by removing from s
the characters smaller than σi. If in s(i) we replace σi with 1 and σi+1, . . . , σh with 0 we get precisely the
string z(i) defined in Lemma 6.1. Let RLE be defined by (16). We first observe that

|A3(s)| ≤
h−1∑

i=1

RLE(z(i)) + O(h) . (17)

Indeed, apart from h bits at Step 1 and O(h) esc symbols, If rle’s output consists precisely of the lengths
of the runs of zeros and ones in z(i) for i = 1, . . . , h − 1. Consider, for example, the encoding of the
character σi. At Step 2 If rle encodes the number ℓi of characters greater than σi preceding the first
occurrence of σi in s: this is precisely the length of the first run of 0’s in z(i). Then, each pair 〈k, ℓ〉
written at Step 3 represents a run of σi in s(i)—corresponding to a run of 1’s in z(i)—followed by a run of
characters greater than σi—corresponding to a run of 0’s in z(i) (note that, except for the case mentioned
in Footnote 4, the last run of each character σi is encoded with the escape sequence 〈k, esc〉; in other
words If rle does not explicitly encode the length of the last run of 0’s in z(i)).

Having established (17) we are now ready to prove that A3 is locally pseudo optimal.

Theorem 6.3 Let Enc denote an integer encoder such that |Enc(i)| ≤ a log i+ b. For any pair of positive
constants ǫ, δ the algorithm A3 = If rle+Encδ is locally pseudo optimal with parameter λh = max(ha′, a′ +
b + ǫ), where a′ = a(1 + δ).

Proof: We need to prove that for any partition s = s1s2 · · · st it is

|A3(s)| ≤ max(ha′, a′ + b + ǫ)
t∑

j=1

|sj|H
∗
0 (sj) + O(th) . (18)

For i = 1, . . . , h− 1 let s(i) and z(i) be defined as above. The partition s = s1 · · · st naturally induces the

partitions s(i) = s
(i)
1 · · · s

(i)
t and z(i) = z

(i)
1 · · · z

(i)
t (note that if sj contains only symbols smaller than σi

then s
(i)
j and z

(i)
j are both empty). If RLE is defined by (16), by Lemma 3.1 it is

RLE(z(i)) ≤
t∑

j=1

RLE(z
(i)
j) + O(t) (19)

that, combined with (17), yields

|A3(s)| ≤
h−1∑

i=1

t∑

j=1

RLE(z
(i)
j) + O(th)

≤
t∑

j=1

(
h−1∑

i=1

RLE(z
(i)
j)

)

+ O(th) .

16

Hence, to prove (18) it suffices to show that for any partition element sj it is

h−1∑

i=1

RLE(z
(i)
j) ≤ max(ha′, a′ + b + ǫ)|sj|H

∗
0 (sj) + O(h). (20)

Fix sj and let dj denote the number of distinct characters appearing in sj. To prove (20) we distinguish
three cases according to the size of dj (clearly 1 ≤ dj ≤ h).

Case dj = h. In this case for every character σi it is H0(z
(i)
j) 6= 0 which implies H0(z

(i)
j) = H∗

0 (z
(i)
j).

By Lemmas 6.2 and 2.3, for any ǫ > 0 we have

RLE(z
(i)
j) ≤ max(2a′, a′ + b + ǫ)|z

(i)
j |H0(z

(i)
j) + O(1). (21)

Combining the above inequality with Lemma 6.1, we get

h−1∑

i=1

RLE(z
(i)
j) ≤ max(2a′, a′ + b + ǫ)

h−1∑

i=1

|z
(i)
j |H0(z

(i)
j) + O(h)

≤ max(2a′, a′ + b + ǫ)|sj |H0(sj) + O(h)

which proves (20).

Case dj = 1. Let σf denote the only symbol appearing in sj. In this case we have

z
(i)
j =







0|sj | for i = 1, . . . , f − 1,
1|sj | for i = f ,
empty for i > f .

(22)

Since |sj |H
∗
0 (sj) = 1 + ⌊log |sj|⌋, (20) follows observing that

h−1∑

i=1

RLE(z
(i)
j) ≤ (h− 1)Encδ(|sj |) ≤ (h− 1)(a′ log |sj|+ b) ≤ (h− 1)a′|sj|H

∗
0 (sj) + b(h− 1).

Case 1 < dj < h. This is the most complex case. Let σe, σf denote, respectively, the smallest and
the largest symbols appearing in sj. Let ℓj = |sj| and let mj denote the number of occurrences of σf in
sj. For i = 1, . . . , h− 1, it is

z
(i)
j =







0ℓj for i < e,
1mj for i = f ,
empty for i > f .

Note that for σe < σi < σf we can still have z
(i)
j = 0ri (this happens when sj does not contain σi), however

our hypothesis ensures that H0(z
(e)
j) 6= 0 and |z

(e)
j | = ℓj. Let Wj denote the subset of {σ1, σ2, . . . , σh−1}

such that z
(i)
j consists of a single non-empty run of 0’s or 1’s. By Lemma 6.2 it is

h−1∑

i=1

RLE(z
(i)
j) ≤

∑

i6∈Wj

(

a′|z
(i)
j |H0(z

(i)
j) + a′ log |z

(i)
j |+ b runs(z

(i)
j)
)

+
∑

i∈Wj

a′ log |z
(i)
j | + O(h). (23)

Note that for i ∈ Wj it is |z
(i)
j | ≤ |z

(e)
j |. In addition, since σe 6∈ Wj it is |Wj| ≤ h − 2. Combining these

facts we get
∑

i∈Wj

a′ log |z
(i)
j | ≤ a′(h− 2) log |z

(e)
j | (24)

17

which, plugged into (23) yields

h−1∑

i=1

RLE(z
(i)
j) ≤

∑

i6∈Wj

(

a′|z
(i)
j |H0(z

(i)
j) + a′(h− 1) log |z

(i)
j |+ b runs(z

(i)
j)
)

+ O(h).

By Lemma 2.3 and the fact that for i 6∈Wj it is H0(z
(i)
j) = H∗

0 (z
(i)
j), for any ǫ > 0 we have

h−1∑

i=1

RLE(z
(i)
j) ≤

∑

i6∈Wj

max(a′h, a′ + b + ǫ)|z
(i)
j |H0(z

(i)
j) + O(h).

Finally, since for i ∈Wj it is H0(z
(i)
j) = 0, we have

h−1∑

i=1

RLE(z
(i)
j) ≤

h−1∑

i=1

max(a′h, a′ + b + ǫ)|z
(i)
j |H0(z

(i)
j) + O(h),

and (20) follows by Lemma 6.1.

Theorem 6.3 proves that If rle is locally pseudo optimal since the factor in front of the entropy grows
linearly with the alphabet size. This appears to be an intrinsic limitation of the If rle algorithm. To
see this, we observe that If rle sometimes pays for the encoding of the same substring more than once.
Consider for example the string: s = σ1σ2σ

n
3 σ2σ1. Assuming σ1 < σ2 < σ3 we see that, because of the

presence of the σn
3 substring, If rle pays an Θ(log n) cost for the encoding of both σ1 and σ2. Generalizing

this argument, the following example suggests that the bound in Theorem 6.3 cannot be substantially
improved.

Example 3 Consider the partition s = s1s2 · · · s2h where

s1 = σ1σ2 · · · σh s2 = σn
1 s3 = s1 s4 = σn

2 s5 = s1 s6 = σn
3

and so on up to s2h = σn
h . We have

∑2h
i=1 |si|H

∗
0 (si) = O(h log n), whereas, no matter how we order the

alphabet it is |A3(s)| = |Encδ(If rle(s))| = Θ
(
h2 log n

)
.

To overcome the limitations of If rle, we now introduce an escape and re-enter mechanism. The new
algorithm, called Inversion Frequencies with RLE and Escapes (If rle esc), works as follows. Assume that
s[j] = σi is the next character to be encoded, and let s[m], s[p], k, and ℓ be defined as for the algorithm
If rle: s[m] is the first symbol greater than σi to the right of s[j], s[p] is the first occurrence of σi to the
right of s[m], k is the number of occurrences of σi in s[j] · · · s[m−1], and ℓ is the number of occurrences of
symbols greater than σi in s[m] · · · s[p− 1]. Moreover, let o denote the largest index such that m < o < p
and s[o−1] > s[o] (o does not necessarily exist). If o does not exist, If rle esc behaves as If rle and outputs
the pair 〈k, ℓ〉. If o exists, If rle esc chooses the most economical option between 1) encoding 〈k, ℓ〉 and
2) escaping σi (which means encoding the pair 〈k, esc〉) and re-entering it at the position o. It is possible
to re-enter at o since the condition s[o − 1] > s[o] implies that when the decoder reaches the position o
it will need to read new data from the compressed file. To see this, let s[o] = σe and observe that when
the decoder outputs s[o− 1] > σe we must have To be written[e] = 0 (see Step 3b in Fig. 3). Since the
decoder can output s[o] = σe only if To be written[e] > 0, it must be that after outputting s[o − 1] the
variable To be skipped[e] has reached zero and the decoder has read a new pair from the compressed file.

The code for re-entering is the triple 〈esc, ℓ′ + 1, σi〉, where σi is the re-entering character and ℓ′ is
the number of characters greater than σi in s[o] · · · s[p − 1]: we encode ℓ′ + 1 since it is possible that
ℓ′ = 0. Note however that ℓ′ + 1 is never larger than the value ℓ that would have been written if we had
not escaped. After reading the re-enter triple 〈esc, ℓ′ + 1, σi〉, the decoder sets To be written[i] = 0 and
To be skipped[i] = ℓ′ and reads the next pair from the compressed file (that would be the To be written,
To be skipped pair for s[o] unless there is another re-enter sequence).

18

sj−1

︷ ︸︸ ︷
· · · σ1 σ1 σ2 σ2 σ3 σ3 σ3

sj
︷ ︸︸ ︷
σ4 σ4 σ4 σ4 σ4 σ4 σ5 σ4

sj+1

︷ ︸︸ ︷
σ4 σ4 σ4 σ2 σ2 σ1 σ1 σ3 · · ·

· · · 〈2, esc〉
︸ ︷︷ ︸

σ1

〈2, esc〉
︸ ︷︷ ︸

σ2

〈3, esc〉
︸ ︷︷ ︸

σ3

〈6, 1〉
︸ ︷︷ ︸

σ4

〈1, ?〉
︸ ︷︷ ︸

σ5

〈esc, 4, σ2〉
︸ ︷︷ ︸

σ2 re-enter

〈4, ?〉
︸ ︷︷ ︸

σ4

〈esc, 3, σ1〉
︸ ︷︷ ︸

σ1 re-enter

〈2, ?〉
︸ ︷︷ ︸

σ2

〈esc, 1, σ3〉
︸ ︷︷ ︸

σ3 re-enter

〈2, ?〉
︸ ︷︷ ︸

σ1

· · ·

Figure 4: The escape mechanism at work in If rle esc*. The top row shows the portion of the string
s = s1s2 · · · st around sj and the bottom row shows the corresponding encoding. Some of the values in
the encoding are marked with ? since they depend on the forthcoming portion of the string. Note that
the last runs of σ1, σ2, and σ3 in sj−1 are escaped, but only σ1 and σ3 are totally escaped in sj according
to the definition given in the proof of Theorem 6.4. Since its re-entry point is inside sj, σ2 is not totally
escaped in sj .

Example 4 Consider the string s = · · · σ1σ
2
2σ

3
3σ

n
4 σ4

2σ3σ1σ
5
2 · · · over the alphabet Σ = {σ1, σ2, σ3, σ4}. If

n is sufficiently large If rle esc escapes the characters σ1 and σ3 and produces the output

· · · 〈1, esc〉
︸ ︷︷ ︸

σ1

〈2, n + 3〉
︸ ︷︷ ︸

σ2

〈3, esc〉
︸ ︷︷ ︸

σ3

〈esc, 6, σ1〉
︸ ︷︷ ︸

σ1 re-enter

〈esc, 1, σ3〉
︸ ︷︷ ︸

σ3 re-enter

〈4, 1〉
︸ ︷︷ ︸

σ2

· · ·

(recall σ4’s occurrences are not explicitly encoded). If rle esc cannot escape σ2 since between the runs σ2
2

and σ4
2 there is no position o such that s[o− 1] > s[o].

Notice If rle esc does not distinguish between cases in which 〈k, esc〉 indicates a character does not
occur again, as in If rle, and cases in which it indicates an escape sequence: the former is seen as an escape
without a matching re-enter. Note also that the decoder can always distinguish a re-enter sequence from
a normal pair 〈k, ℓ〉, an escape/end-of-character pair 〈k, esc〉, and an end-of-file pair 〈esc, esc〉. We define
A4 = If rle esc + Encδ as the algorithm that encodes the output of If rle esc with Encδ.

Theorem 6.4 Let Enc denote an integer encoder such that |Enc(i)| ≤ a log i+ b. For any pair of positive
constants ǫ, δ the algorithm A4 = If rle esc + Encδ is locally λ-optimal for λ = max(4a′, a′ + b + ǫ), where
a′ = a(1 + δ).

Proof: We need to prove that for any partition s = s1s2 · · · st we have

|A4(s)| ≤ max(4a′, a′ + b + ǫ)
t∑

i=1

|si|H
∗
0 (si) + O(th log h) . (25)

Fix a partition s = s1s2 · · · st and consider the algorithm If rle esc* that, instead of choosing at each step
whether to escape or not, considers the possibility of escaping the symbol σi only if the characters s[m] and
s[p] belong to two different partition elements (recall that whether If rle esc* actually escapes σi depends
on the existence of a position o, such that m < o < p and s[o − 1] > s[o]). Let A∗

4 = If rle esc* + Encδ.
Since If rle esc always performs the most economical choice, we have |A4(s)| ≤ |A

∗
4(s)|. We prove the

theorem by showing that (25) holds with A4(s) replaced by A∗
4(s).

As a preliminary, we establish that the escape mechanism in A∗
4 yields an overhead of at most

O(th log h) bits with respect to A3. For i = 1, . . . , h − 1, let s(i) and z(i) be defined as in Theorem 6.3.
We have already observed in the proof of Theorem 6.3 that, apart from O(h) bits at Step 1, the output
of If rle consists of the lengths of the runs of zeros and ones in z(i) for i = 1, . . . , h − 1. Each pair 〈k, ℓ〉
written at Step 3 of If rle represents a run of σi in s(i)—corresponding to a run of 1’s in z(i)—followed by

19

a run of characters greater than σi—corresponding to a run of 0’s in z(i). For the algorithm If rle esc* the
only difference is that, instead of the pair 〈k, ℓ〉 sometimes we encode the escape sequence 〈k, esc〉 later
followed by the re-enter sequence 〈esc, ℓ′ +1, σi〉. Since ℓ′+1 ≤ ℓ each escape sequence introduces at most
a O(log h) bits overhead. Since by construction If rle esc* escapes at most th times we conclude that
the escape mechanism introduces an overhead of at most O(th log h) bits with respect to the strategy of
simply encoding all run lengths as in A3.

Now we turn to analyzing the savings introduced by the escape mechanism. As in the proof of
Theorem 6.3, we observe that for i = 1, . . . , h − 1, the partition s = s1 · · · st naturally induces the

partitions s(i) = s
(i)
1 · · · s

(i)
t and z(i) = z

(i)
1 · · · z

(i)
t . We say that a character σi is totally escaped in sj if the

following three conditions hold simultaneously (see also Figure 4):

(e1) z
(i)
j = 0ℓ, that is, sj contains only characters larger than σi;

(e2) the last run of σi’s before the beginning of sj produces an escape sequence;

(e3) the corresponding re-entry point is at a position s[o] which is after the end of sj.

The crucial observation is that, if σi is totally escaped in sj, then the algorithm If rle esc* does not “pay”

for the encoding of z
(i)
j . To see this, observe that z

(i)
j = 0ℓj is a substring of a larger run 0mj in z(i).

Because of the escape mechanism, instead of the length mj , If rle esc* only encodes a length nj with
nj ≤ mj − ℓj. So If rle esc* only pays for the encoding of a run 0nj which starts after the end of sj and

pays nothing for the encoding of z
(i)
j = 0ℓj .

Let Uj ⊆ {σ1, . . . , σh−1} denote the set of characters not totally escaped in sj. Using the above
observations, and reasoning as in the proof of Theorem 6.3, we have

|A∗
4(s)| ≤

t∑

j=1

∑

i∈Uj

RLE(z
(i)
j) + O(th log h) , (26)

where RLE is defined by (16). We conclude the proof by showing that for j = 1, . . . , t

∑

i∈Uj

RLE(z
(i)
j) ≤ max(4a′, a′ + b + ǫ)|sj|H

∗
0 (sj) + O(h) (27)

which combined with (26) proves (25). The crucial observation for proving (27) is that the set Uj contains

at most one character σk such that z
(k)
j = 0ℓk . Indeed, if for both σi and σk it is z

(i)
j = 0ℓi and z

(k)
j = 0ℓk

one of them—the one that occurs later after the end of sj—will certainly be escaped. For example, if
the first occurrence of σi (resp. σk) after the end of sj is at position s[pi] (resp. s[pk]) with pi > pk then
σi will be escaped at sj. To see this, observe that condition (e1) trivially holds and conditions (e2)–(e3)
hold as well since there is certainly a position o with s[o− 1] > s[o] between the end of sj and s[pk] given
that sj contains only characters larger than σk = s[pk].

To prove (27) we follow closely the proof of Theorem 6.3. Let dj denote the number of distinct
characters appearing in sj . If dj = h then (21) holds for every i ∈ {1, . . . , h − 1}, and (27) follows by

Lemma 6.1. If dj = 1 then (22) holds but, since Uj contains at most one character σk such that z
(k)
j = 0ℓk ,

it is |Uj | ≤ 2 and therefore

∑

i∈Uj

RLE(z
(i)
j) ≤ 2Encδ(|sj|) ≤ 2 (a′ log |sj |+ b) ≤ 2a′|sj |H

∗
0 (sj) + 2b.

Finally, if 1 < dj < h we reason again as in the proof of Theorem 6.3. We define σe and Wj as in that
proof and, instead of (23), we get

∑

i∈Uj

RLE(z
(i)
j) ≤

∑

i∈Uj ∧ i6∈Wj

(

a′|z
(i)
j |H0(z

(i)
j) + a′ log |z

(i)
j |+ b runs(z

(i)
j)
)

+
∑

i∈Uj∩Wj

a′ log |z
(i)
j |+ O(h).

20

Since Uj contains at most one character such that z
(i)
j = 0ℓi it is |Uj ∩Wj | ≤ 2 so instead of (24) we have

∑

i∈Uj∩Wj

a′ log |z
(i)
j | ≤ 2a′ log |z

(e)
j |

which plugged into the above inequality yields
∑

i∈Uj ∧ i6∈Wj

RLE(z
(i)
j) ≤

∑

i∈Uj

(

a′|z
(i)
j |H0(z

(i)
j) + 3a′ log |z

(i)
j |+ b runs(z

(i)
j)
)

+ O(h)

and (27) follows by Lemmas 2.3 and 6.1.

Note that combining the above theorem with Lemma 2.1 we get that for any string s it is |A4(bwt(s))| ≤
max(4a′, a′ + b + ǫ)|s|H∗

k(s) + log |s|+ O(hk+1 log h) for any k ≥ 0. Finally, repeating verbatim the proof
of Theorem 5.5 with µ = 1.105, ν = ǫ = δ = 0.001, we get a bound for the output size of If rle esc followed
by Order0*.

Theorem 6.5 The algorithm If rle esc + Order0* is locally (4.45 + C0)-optimal.

Corollary 6.6 For any string s and k ≥ 0 we have

|Order0*(If rle esc(bwt(s)))| ≤ (4.45 + C0)|s|H
∗
k(s) + log |s|+ O

(

hk+1 log h
)

.

Proof: Immediate by Theorem 6.5 and Lemma 2.1.

7 Lower bounds for entropy-only compression

In this section we show that no compression algorithm A can compress every string s in less than
2|s|H∗

0 (s) + Θ(1) bits. We prove this result assuming only that A is non-singular; that is, for any pair of
strings s1 6= s2 we have A(s1) 6= A(s2). An immediate consequence of this result is that there cannot be
an algorithm which is locally λ-optimal for λ < 2 (consider the trivial partition with t = 1 in Definition 2).

Theorem 7.1 If A is a non-singular compressor, then the bound

|A(s)| ≤ λ|s|H∗
0 (s) + η for every string s

can hold only with a constant λ ≥ 2.

Proof: For i = 1, 2, . . . let Ti denote the set of binary strings such that s ∈ Ti if and only if 2i−1 < |s| ≤ 2i

and s contains exactly one 1 and (|s| − 1) 0’s. Elementary calculus shows that

|Ti| =
2i(2i + 1)

2
−

2i−1(2i−1 + 1)

2
≥

3

8
· 4i. (28)

In addition, recalling that t ≥ 1 implies (1 + 1
t
)t < e, for s ∈ Ti it is

|A(s)| ≤ λ|s|H∗
0 (s) + η

= λ
(

log |s|+ (|s| − 1) log
(

|s|
|s|−1

))

+ η

≤ λ(log 2i + log e) + η

= λ i + η′ (29)

with η′ = η + λ log e. Since there are at most 2z+1 − 1 distinct binary codewords of length at most z, we
have that less than

2λi+η′+1 = 2η′+1(2λ)i (30)

are available for encoding the strings in Ti. Comparing (28) and (30) implies that, for sufficiently large i,
if every s ∈ Ti must be assigned a different codeword, then we must have 2λ ≥ 4 and therefore λ ≥ 2.

21

We now show that even λ = 2 is not achievable if A induces a uniquely decodable code over the set of all
strings, that is, if there are no two sequences of strings s1, . . . , st and w1, . . . , wk such that A(s1) · · ·A(st) =
A(w1) · · ·A(wk).

Theorem 7.2 If A induces a uniquely decodable code over the set of all strings, then the bound

|A(s)| ≤ λ|s|H∗
0 (s) + η for every string s

can hold only with a constant λ > 2.

Proof: Let Ti be defined as in the proof of Theorem 7.1. Since A is uniquely decodable it must satisfy
the McMillan-Kraft Inequality [8, Sect. 5.5]. Applying this inequality to the set ∪i≥1Ti yields

∑

i≥1

∑

s∈Ti

2−|A(s)| ≤ 1. (31)

By (29) and (28) we get

∑

i≥1

∑

s∈Ti

2−|A(s)| ≥
∑

i≥1
2−λi−η′

|Ti| ≥
∑

i>0

2−η′ 3

8

(4

2λ

)i
.

Hence, to satisfy (31) we must have λ > 2 as claimed.

References

[1] J. Abel. Incremental frequency count—a post BWT-stage for the Burrows-Wheeler compression
algorithm. Software: Practice and Experience, 37:247–265, 2007.

[2] Z. Arnavut. Inversion coding. The Computer Journal, 47:46–57, 2004.

[3] Z. Arnavut and S. Magliveras. Block sorting and compression. In Proc. of IEEE Data Compression
Conference (DCC), pages 181–190, 1997.

[4] B. Balkenhol, S. Kurtz, and Y. M. Shtarkov. Modification of the Burrows and Wheeler data com-
pression algorithm. In Proc. of IEEE Data Compression Conference (DCC), pages 188–197, 1999.

[5] J. Bentley, D. Sleator, R. Tarjan, and V. Wei. A locally adaptive data compression scheme. Com-
munications of the ACM, 29(4):320–330, 1986.

[6] E. Binder. Distance coder, 2000. Usenet group: comp.compression,
http://groups.google.com/group/comp.compression/msg/27d46abca0799d12.

[7] M. Burrows and D. Wheeler. A block-sorting lossless data compression algorithm. Technical Report
124, Digital Equipment Corporation, 1994.

[8] T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley Interscience, 1991.

[9] S. Deorowicz. Second step algorithms in the Burrows-Wheeler compression algorithm. Software:
Practice and Experience, 32(2):99–111, 2002.

[10] P. Elias. Universal codeword sets and representations of the integers. IEEE Transactions on Infor-
mation Theory, 21(2):194–203, 1975.

[11] P. Fenwick. Burrows-Wheeler compression with variable length integer codes. Software: Practice
and Experience, 32:1307–1316, 2002.

22

[12] P. Ferragina, R. Giancarlo, and G. Manzini. The engineering of a compression boosting library:
Theory vs practice in BWT compression. In Proc. 14th European Symposium on Algorithms (ESA),
Lecture Notes in Computer Science vol. 4168, pages 756–767. Springer, 2006.

[13] P. Ferragina, R. Giancarlo, and G. Manzini. The myriad virtues of wavelet trees. Information and
Computation, pages 849–866, 2009.

[14] P. Ferragina, R. Giancarlo, G. Manzini, and M. Sciortino. Boosting textual compression in optimal
linear time. Journal of the ACM, 52:688–713, 2005.

[15] P. Ferragina, G. Manzini, and S. Muthukrishnan (Eds). Special issue on the Burrows-Wheeler
transform and its applications. Theoretical Computer Science, 387(3), 2007.

[16] L. Foschini, R. Grossi, A. Gupta, and J. Vitter. When indexing equals compression: Experiments
on compressing suffix arrays and applications. ACM Transactions on Algorithms, 2:611–639, 2006.

[17] R. Grossi, A. Gupta, and J. Vitter. High-order entropy-compressed text indexes. In Proc. 14th
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 841–850, 2003.

[18] A. Gupta, R. Grossi, and J. Vitter. Nearly tight bounds on the encoding length of the Burrows-
Wheeler transform. In Proc. ALENEX/ANALCO ’08, pages 191–202, 2008.

[19] H. Kaplan, S. Landau, and E. Verbin. A simpler analysis of Burrows-Wheeler based compression.
Theoretical Computer Science, 387:220–235, 2007.

[20] H. Kaplan and E. Verbin. Most Burrows-Wheeler based compressors are not optimal. In Proc. of
the 18th Symposium on Combinatorial Pattern Matching (CPM ’07), LNCS 4580, pages 107–118.
Springer-Verlag, 2007.

[21] V. Mäkinen and G. Navarro. Succinct suffix arrays based on run-length encoding. Nordic Journal
of Computing, 12(1):40–66, 2005.

[22] V. Mäkinen and G. Navarro. Implicit compression boosting with applications to self-indexing. In
Proc. of the 14th Symposium on String Processing and Information Retrieval (SPIRE ’07), pages
214–226. Springer-Verlag LNCS n. 4726, 2007.

[23] G. Manzini. An analysis of the Burrows-Wheeler transform. Journal of the ACM, 48(3):407–430,
2001.

[24] G. Navarro and V. Mäkinen. Compressed full-text indexes. ACM Computing Surveys, 39(1), 2007.

[25] B. Y. Ryabko. Data compression by means of a ’book stack’. Prob.Inf.Transm, 16(4):16–21, 1980.

[26] E. Yang and Y. Jia. Universal lossless coding of sources with large or unbounded alphabets. In
Numbers, Information and Complexity, I. Althöfer et al., editors. Kluwer, 2000.

A Empirical entropies

For any length-k word w ∈ Σk, let ws denote the string consisting of the concatenation of the single
characters following each occurrence of w inside s. Note that the length of ws is equal to the number of
occurrences of w in s, or to that number minus one if w is a suffix of s. The k-th order empirical entropy
of s is defined as

Hk(s) =
1

|s|

∑

w∈Σk

|ws|H0(ws) .

23

The value |s|Hk(s) represents a lower bound to the compression we can achieve using codes which depend
on the k most recently seen symbols. For any string s and k ≥ 0, we have Hk+1(s) ≤ Hk(s).

Starting from H∗
0 we define the k-th order modified empirical entropy H∗

k using a formula similar to
the one above. Unfortunately, if we simply replace H0 with H∗

0 , then the resulting entropy H∗
k does not

satisfy the inequality H∗
k+1(s) ≤ H∗

k(s) for every string s. In other words, when H0 is replaced by H∗
0 ,

the use of a longer context for the prediction of the next symbol does not always yield an increase in
compression. For this reason, we define H∗

k as the maximum compression ratio we can achieve using for
each symbol a codeword which depends on a context of size at most k (instead of always using a context
of size k). We use the following notation. Let Sk denote the set of all k-letter substrings of s. Let Q be a
subset of S1 ∪ · · · ∪ Sk. We write Q � Sk if every string w ∈ Sk has a unique suffix in Q. The k-th order
modified empirical entropy of s is defined as

H∗
k(s) = min

Q�Sk







1

|s|

∑

w∈Q

|ws|H
∗
0 (ws)






. (32)

It is straightforward to verify that with the above definition H∗
k+1(s) ≤ H∗

k(s) for every string s. The
following lemma establishes an useful lower bound for H∗

k(s).

Lemma A.1 For any string s and k ≥ 0 it is

|s|H∗
k(s) ≥ log(|s| − k).

Proof: Let Q � Sk denote the subset for which the minimum (32) is achieved. It is

|s|H∗
k(s) =

∑

w∈Q

|ws|H
∗
0 (ws) ≥

∑

w∈Q

max(1, log(|ws|)) =
∑

w∈Q

log max(2, |ws|).

Since
∑

i(log xi) ≥ log(
∑

i xi) whenever mini xi ≥ 2, we have

|s|H∗
k(s) ≥ log

(
∑

w∈Q
|ws|

)

≥ log(|s| − k).

B Proofs of the technical lemmas

Proof of Lemma 2.3: First suppose runs(s) ≤ 2α/ǫ + 2 = O(1); since log |s| ≤ |s|H∗
0 (s) we have

α log |s|+ βruns(s) ≤ α|s|H∗
0 (s) + O(1). (33)

Now suppose runs(s) > 2α/ǫ + 2. This assumption implies that the frequency of the most common
character in s is at most |s| − ⌊runs(s)/2⌋ < |s| −α/ǫ, with equality if and only if all odd-numbered runs
contain the same character and every even-numbered run has length 1. Since H0(s) is minimized when
the distribution of characters is as skewed as possible, we have

|s|H0(s) > (|s| − α/ǫ) log

(
|s|

|s| − α/ǫ

)

+ (α/ǫ) log

(
|s|

α/ǫ

)

≥ (α/ǫ) log

(
|s|

α/ǫ

)

= (α/ǫ) log |s| −O(1) ,

so log |s| ≤ (ǫ/α)|s|H0(s) + O(1). Combining this inequality with Lemma 2.2 we get

α log |s|+ βruns(s) ≤ (β + ǫ)|s|H∗
0 (s) + O(1)

which, together with (33) proves the lemma.

24

Proof of Lemma 3.1: Using elementary calculus it is easy to show that Enc(x1+x2) ≤ Enc(x1)+Enc(x2)
whenever min(x1, x2) ≥ 2. Hence we need only take care of the case in which some of the xj’s are 1. For
x ≥ 1 we have:

|Enc(x + 1)| − |Enc(x)| − |Enc(1)| = a log(1 + (1/x)) − b (34)

= (a log e) ln(1 + (1/x)) − b

≤ (a log e)/x − b, (35)

where the last inequality holds since t ≥ 0 implies ln(1 + t) ≤ t. Let cab = (a log e)/b. From (34) we get
that x ≥ 1 implies Enc(x + 1) ≤ Enc(x) + Enc(1) + (a − b) and from (35) we get that x ≥ cab implies
Enc(x + 1) ≤ Enc(x) + Enc(1). Combining these inequalities we get

∣
∣
∣
∣Enc

(∑k

j=1
xj

)
∣
∣
∣
∣ ≤

(∑k

j=1
|Enc(xj)|

)

+ cab max(a− b, 0),

and the lemma follows with dab = cab max(a− b, 0).

Proof of Lemma 6.1: For i = 1, 2, . . . , h let ni denote the number of occurrences of σi in s and let
wi = ni + · · · + nh. Note that |z(i)| = ni + wi+1 = wi. We have

h−1∑

i=1

|z(i)|H0(z
(i)) =

h−1∑

i=1

[ni log (wi/ni) + wi+1 log (wi/wi+1)]

=
h−1∑

i=1

[wi log(wi)− ni log(ni)− wi+1 log(wi+1)]

= w1 log(w1)−
h−1∑

i=1

ni log(ni) − wh log(wh)

= |s| log |s| −
h∑

i=1

ni log(ni) = |s|H0(s).

Proof of Lemma 6.2: Observe first that m = runs(z). Assume 1 is the less frequent symbol (otherwise
the proof is symmetrical) and let n1 denote the number of occurrences of 1 in z. We distinguish three
cases according to the size of n1.

Case n1 = 0. We have m = 1, z = 0ℓ1 and RLE(z) = |Encδ(ℓ1)| ≤ a′ log ℓ1 + b.

Case 1 ≤ n1 ≤ (|z|/e). We prove that RLE(z) =
∑m

i=1 |Encδ(ℓi)| ≤ a′|z|H0(z) + bm assuming that
m is even. If m is odd, the cost |Encδ(ℓm)| of the last run is accounted for by the term a′ log |z| in the
statement of the lemma. We have

RLE(z) =
m∑

i=1

|Encδ(ℓi)| ≤
m∑

i=1

a′ log ℓi + bm. (36)

Let t denote the number of nonzero logarithms in (36) (that is, we do not count the logarithms for which
ℓi = 1). We show that t ≤ n1 by charging each nonzero logarithm to a different 1 in z as follows. For
k = 1, . . . ,m/2, if ℓ2k > 1 we charge both log(ℓ2k−1) and log(ℓ2k) to the the ones in 1ℓ2k ; if ℓ2k = 1 then
log(ℓ2k) is zero and we charge log(ℓ2k−1) to the single 1 in 1ℓ2k . Using Jensen’s inequality and the fact
that the function x log(|z|/x) is increasing for x ≤ n1 ≤ (|z|/e) we get

m∑

i=1

log(ℓi) =
∑

ℓi>1

log(ℓi) ≤ t log

(∑

ℓi>1 ℓi

t

)

≤ t log(|z|/t) ≤ n1 log(|z|/n1) ≤ |s|H0(s).

Combining the above inequality with (36) yields the thesis.

25

Case (|z|/e) < n1 ≤ (|z|/2). From Jensen’s inequality we get

m∑

i=1

|Encδ(ℓi)| =
m∑

i=1

a′ log ℓi + bm ≤ a′m log(|z|/m) + bm .

Since the function x log(|z|/x) has its maximum for x = (|z|/e) the above inequality becomes

m∑

i=1

|Encδ(ℓi)| ≤ a′|z|(log e)/e + bm.

The lemma follows since the hypothesis (|z|/2) ≥ n1 > (|z|/e) implies |z|H0(z) ≥ |z|(log e)/e.

26

