
A Simple and Fast DNA Compressor∗

Giovanni Manzini† Marcella Rastero‡

Abstract

In this paper we consider the problem of DNA compression. It is well known that one
of the main features of DNA sequences is that they contain substrings which are duplicated
except for a few random mutations. For this reason most DNA compressors work by searching
and encoding approximate repeats. We depart from this strategy by searching and encoding
only exact repeats. However, we use an encoding designed to take advantage of the possible
presence of approximate repeats. Our approach leads to an algorithm which is an order of
magnitude faster than any other algorithm and achieves a compression ratio very close to
the best DNA compressors. Another important feature of our algorithm is its small space
occupancy which makes it possible to compress sequences hundreds of megabytes long, well
beyond the range of any previous DNA compressor.

1 Introduction

The compression of DNA sequences is one of the most challenging tasks in the field of data
compression. Since DNA sequences are “the code of life” we expect them to be non-random and
to present some regularities. It is natural to try to take advantage of such regularities in order to
compactly store the huge DNA databases which are routinely handled by molecular biologists.

Although the saving in space is important, it is not the only application of DNA compression.
DNA compression has been used to distinguish between coding and non-coding regions of a DNA
sequence [12], to evaluate the “distance” between DNA sequences and to quantify how close two
organisms are in the evolutionary tree [7, 13], and in other biological applications [1, 4, 17].

It is well known that the compression of DNA sequences is a very difficult problem. Since DNA
sequences only contain the four bases {a, c, g, t} they can be stored using two bits per input symbol.
The standard compression tools, such as gzip and bzip, usually fail to achieve any compression since
they use more than two bits per symbol. Among the “general purpose” compression algorithms
only arithmetic coding [20] is able to consistently use less than two bits per symbol. In [10] was
introduced the first DNA-specific compression algorithm and others followed afterwards [2, 7, 16].
These earlier DNA compressors achieve better compression than arithmetic coding, but they are
extremely slow with respect to data compression standards. In [2] the authors report a running

∗This is the peer reviewed version of the following article: G. Manzini, M. Rastero, A Simple and Fast DNA
Compressor, Software: Practice&Experience 34(14): 1397-1411 (2004), which has been published in final form at
https://doi.org/10.1002/spe.619. This article may be used for non-commercial purposes in accordance with Wiley
Terms and Conditions for Self-Archiving.
†Dipartimento di Informatica, Università del Piemonte Orientale, Italy. Email: manzini@mfn.unipmn.it. Par-

tially supported by the Italian MIUR project “Algorithmics for Internet and the Web (ALINWEB)”.
‡Dipartimento di Scienze e Tecnologie Avanzate, Università del Piemonte Orientale, Italy.

1

time of 2–3 minutes for a 80KB sequence. In [16] the authors report a running time of 8 minutes
for a sequence of length 38KB, and a running time of some hours for a 224KB sequence. We are
therefore very far from the speed of the tools that we use everyday for general purpose compression
(e.g. gzip and bzip).

Recently, a new algorithm called DNACompress [8] has made significant improvements over its
predecessors. Thanks to an extremely fast search engine [15], DNACompress compresses better
and is much faster than the previous algorithms. These features make DNACompress the current
leader in this field. However, since DNA compression is still in its infancy, we can expect further
improvements both in running time and compression ratio.

A common feature of the above compressors, with the exception of [2], is that they encode
approximate repeats. Searching and encoding approximate repeats is a natural approach in DNA
compression since it is well known that DNA sequences contain long strings which are duplicated
except for the substitution, insertion, or deletion of a few bases. Unfortunately, searching for
approximate repeats takes a long time and requires a large amount of memory. For these reasons
we find it natural to investigate how much compression we can achieve working only with exact
matches. Our idea is to search and encode only exact repeats, and to design the codewords
representing exact repeats using the knowledge that some of these exact repeats are “fragments”
of larger approximate repeats.

The strategy of working with exact repeats leads to an algorithm which is extremely fast.
Our compression speed is roughly 2 microseconds per input byte which is only 2.25 times slower
than bzip. Among the previous DNA compressors the fastest is DNACompress which, for large
files, takes roughly 70 microseconds per input byte. In terms of compression ratio our algorithm
uses on average 0.066 more bits per symbol than DNACompress: this means an increase in space
occupancy of 8.25 bytes every 1000 input bases.

Another important feature of our algorithm is its relatively small space occupancy. In order to
detect repetitions which occur far apart in a sequence, DNA compressors usually maintain large
data structures. However, the larger the size of these data structures the smaller is the length
of the sequences that can be processed in main memory. Since DNA sequences of hundreds of
megabytes are nowadays common, a small working space is definitely an important asset. For
a sequence of length N we use ≈ (7N)/5 bytes of working space which is roughly one fourth of
the space used by DNACompress. Thanks to the small working space and to the speed of our
algorithm we have been able to compress sequences of length up to 220MB, which is well beyond
the range of any other DNA compressor.

The idea of compressing DNA sequences using only exact repeats has been explored also by
the algorithm Off-line described in [2, 3]. However, our approach and the one proposed in [2, 3]
are completely different. While we use a simple and fast procedure to find repeats, Off-line is
designed to search for an “optimal” sequence of textual substitutions. Moreover, our algorithm
was designed with DNA compression in mind, whereas Off-line is a general purpose compressor.
Given these premises, it is not surprising that our algorithm is much faster and achieves a better
compression than Off-line (see Section 4.1 for details).

2 A framework for DNA compression

In the following we use the term DNA sequence to denote a string over the alphabet {a, c, g, t}. We
say that two sequences α, β are complementary if one can be obtained by the other replacing the
symbol a with t (and vice-versa) and the symbol c with g (and vice-versa). We say that a sequence

2

α is a reverse complement of β, and we write α = β̄ if α and the reverse of β are complementary.
For example, the reverse complement of aactgt is acagtt (and vice-versa). Reverse complements
are also called complemented palindromes.1

It is well known that DNA sequences do not present the same regularities which are usually
found in linguistic texts. This explains why the standard tools such as gzip and bzip fail to compress
them. To design a DNA compressor we must take advantage of the regularities which are usually
found in this kind of data. The following three properties have been observed in many sequences
and have been the basis, so far, of every DNA compressor.

dna-1 DNA sequences contain repeated substrings. Repeated substrings in DNA sequences are
often longer than in linguistic texts, but they are less frequent.2 Another important difference
with linguistic texts is that in DNA sequences repeated substrings may appear far apart in the
input sequence, whereas in linguistic texts the occurrences of a substring are often clustered
in a small region of the input.

dna-2 DNA sequences contain repeated complemented palindromes, that is, pairs of substrings
which are the reverse complement of each other. The characteristics of the repeated palin-
dromes are the same as of repeated substrings: they are not very frequent, they can be long,
and they may appear far apart in the input.

dna-3 DNA sequences contain repeated strings/palindromes with errors. With this term we denote
a repetition in which the second occurrence is not identical to the first one (or to the reverse
complement of the first one) because a few symbols have been deleted, inserted, or replaced
by other symbols.

We now show how to design a fast DNA compressor which takes advantage of the above regu-
larities of DNA sequences. Our algorithm only searches and encodes exact repeats/palindromes;
it makes use of property dna-3 implicitly in the design of the codewords which represent the exact
matches.

2.1 Finding exact matches

Let T [1, N] denote a string over the alphabet {a, c, g, t}. Our first building block for the design of
a fast DNA compressor is an efficient procedure for finding the occurrences of repeated substrings.
We know (property dna-1) that repetitions in DNA sequences are less frequent but usually longer
than in linguistic texts. Moreover, repeated substrings may appear far apart in the input sequence.

A technique which naturally matches these features is based on the use of fingerprints. Fin-
gerprints have been introduced in [11] for the problem of finding the occurrences of a pattern P in
a text T . The basic idea is to compute a fingerprint of the pattern by interpreting its symbols as
the coefficients of a polynomial modulo a large prime. The pattern fingerprint is then compared
to the fingerprints of all substrings of T of length |P |: this procedure quickly determines a set of
positions where the pattern does not occur. This is a very efficient technique and fingerprints have
become a common tool in the design of text algorithms. Recently, fingerprints have been used
also for data compression: Bentley and McIlroy [5] have shown how to use them in order to find

1Note that this usage of the term palindrome does not conform to the English dictionary definition of the word.
2To be more precise, we should say that DNA sequences contain less repetitions whose length is statistically

significant. This statement is proven empirically by the fact that traditional compressors which work by succinctly
encoding repeated substrings using one byte per base fail to compress DNA sequences.

3

long common strings which appear far apart in the input text. Our use of fingerprints will follow
very closely the ideas in [5].

We choose a parameter B (in the following we use B = 20) and we scan the input sequence
T computing the fingerprint of each block of B consecutive symbols, that is, T [1, B], T [2, B + 1],
T [3, B + 2] and so on. During this process, the fingerprints of the blocks starting at positions
1, B + 1, 2B + 1 and so on, are stored in a hash table together with their respective starting
position; we call these blocks stored blocks. Each time we compute a new fingerprint, say of the
block T [k+ 1, k+B], we check in the hash table whether the same fingerprint has been previously
stored. If T [k + 1, k + B] has the same fingerprint as a stored block, say T [hB + 1, hB + B], we
check if the two blocks are indeed equal. If there is a match we extend it as far as possible to the
left and to the right. As pointed out in [5] this procedure is not able to detect repeated substrings
of length smaller than B, it will detect some of the repetitions of length between B and 2B − 2,
and it will detect all repeated substrings of length at least 2B − 1 no matter how far apart they
are in the input. This behavior matches our requirements: for DNA compression we are interested
in long repeated substrings which can be far apart in the input sequence.

The above procedure can be easily modified to find also the occurrences of reverse complements.
When we scan the input sequence we compute the fingerprints of the string T [k+ 1, k+B] and of
its reverse complement T [k + 1, k +B]. Using the latter fingerprint we can quickly discover the
presence of a complemented palindrome of length B which can be later extended as far as possible.
Note that we do not need to store in the hash table the fingerprints of reverse complements. Hence,
for an input sequence of length N we store N/B items overall.

We implemented the hash table as an integer array of size equal to the smallest prime larger
than 2N/B. We used the fingerprint of each block as its hash value, and we used double hashing
to handle collisions (the fingerprint of the reverse complement of each block was used as secondary
hash value). The hash table and the input sequence T are the only data structures in our algorithm
which depend on the size of the input N . Hence, the space occupancy of our algorithm (including
the parts discussed in the next sections) is N + 8N/B bytes plus lower order terms. In our tests
we set B = 20, so the working space of our algorithm is 7N/5 bytes plus lower order terms.

2.2 Encoding the matches

Having established a procedure for finding repeated strings and complemented palindromes, we
now show how to use it for the actual compression of DNA sequences. Suppose we have already
compressed an initial portion T [1, z] of the input sequence. Using the procedure outlined in the
previous section we check whether the block T [z + 1, z + B] (or its reverse complement) matches
a stored block. If not, we try with T [z + 2, z + B + 1], T [z + 3, z + B + 2] and so on, until we
find a block T [z + b, z + b+B − 1] which matches. Then, we extend this match as far as possible
and we get a sequence β = T [z+ a+ 1, z+ a+ `] which is a copy—or the reverse complement—of
a substring starting in T [1, z]. We are now ready to encode the string T [z + 1, z + a + `] which
consists of an unmatched prefix α = T [z+1, z+a], and of a matched suffix β = T [z+a+1, z+a+`].

Note, however, that the current block T [z + b, z + b + B − 1] could match more than one
stored block. When this happens we extend all matches and we select the one with the longest
matched suffix β; in case of ties, we select the match with the shortest unmatched prefix α. When
a match has been finally selected, we represent the string αβ = T [z+1, z+a+`] by the quintuplet
〈U, α, r, P,M〉 where:

1. U = |α| is the length of the unmatched prefix;

4

2. α is the unmatched prefix;

3. r is a boolean value determining whether β is a plain copy (r = 0) or a reverse complement
(r = 1) of a string in T [1, z + a];

4. P is the starting position in T [1, z] of the copy of β (or of β̄ if r = 1);

5. M = |β| is the length of the matched suffix.

Our algorithm computes a proper encoding of the quintuplet 〈U, α, r, P,M〉, then sets z ← z +
|α|+ |β| and starts over the search for another repeated string or complemented palindrome.

It should be clear that the compression of the input T [1, N] amounts to finding a compact
encoding of the sequence of quintuplets generated by the above procedure. In this section we
concentrate on the encoding of the values U , P and M ; we assume that the values r and α are
stored without any compression using 1 bit for r and 2U bits for α.

The design of a compact encoding for the values U , P and M is a rather difficult task. The
distribution of these parameters for a typical DNA file apparently shows very little regularity. For
example, the parameter P appears to be uniformly distributed within its allowable range (recall
that P denotes a position within the already compressed portion of the input). However, a closer
look at the data shows that some regularity is induced by the presence of approximate matches
in the input DNA sequence. In other words, although our search procedure only discovers exact
matches, the presence of approximate matches in the input sequence induces some regularity in
values of the parameters U , P and M .

To show how this is possible, assume that a string σ of length 1000 appears as T [2000, 2999]
and that the same string with one symbol removed appears again as T [7000, 7998]. For example
assume that σ = σ1aσ2 with |σ1| = 300 and |σ2| = 699 and that T [7000, 7998] = σ1σ2. Since our
search procedure only finds exact matches, σ1 and σ2 will be encoded by two different quintuplets
q1 and q2. In q1 the string σ1 is encoded as a copy of T [2000, 2299]; in q2 the string σ2 is encoded
as a copy of T [2301, 2999]. We observe that the quintuplet q2 has the following features: 1) the
parameter U is zero, 2) the parameter P is equal to two plus the position where the copy of σ1
ends. More in general, an approximate match induces in the quintuplet q2 a small U and a value
of P which is very close to the position of the last symbol copied in the previous quintuplet.

These observations suggest that the parameter P be encoded as an offset with respect to the
last copied symbol. For example, suppose that the last quintuplet has encoded the fact that
T [900, 1000] is a copy of T [200, 300]. Then we find that T [1010, 1050] is a copy of T [320, 360].
Instead of encoding P = 320 we encode the offset ∆P = P − 300 = 20. To be able to address
any position in the already scanned input we assume that the offset ∆P wraps around the last
encoded position, in our example T [1000]. Hence, if we had P = 100 the corresponding offset
would be ∆P = (P − 300) mod 1000 = 800. The definition of the offset ∆P must be modified
in the obvious way when we are working with reverse complements. For example, suppose that
T [900, 1000] is a reverse complement of T [200, 300] and that T [1010, 1050] is a reverse complement
of T [150, 190]. In this case the offset ∆P is defined as ∆P = 200 − 190 = 10. When working
with reverse complements we assume that the offset ∆P wraps around the position T [1]. In the
previous example, if we find that T [1010, 1050] is a reverse complement of T [450, 490] the offset
would be ∆P = 200− 490 mod 1000 = 710.3

3Obviously, if a quintuplet with r = 1 (reverse complement) follows a quintuplet with r = 0 (plain copy), or
vice-versa, the above reasoning does not hold and we cannot hope ∆P be small. However, experiments show that
we lose nothing in using ∆P rather than P even in these cases.

5

In the rest of the paper we will make use of the parameter ∆P defined above, and we will use
it—instead of P—when we encode a quintuplet. As we observed in the previous paragraph each
approximate match in the input file will generate a quintuplet with a small ∆P .

3 A simple one pass algorithm

In this section we describe a first, simple, DNA compression algorithm called dna0. This algorithm
will be later improved in Sect. 4. dna0 uses the framework described in the previous section, that
is, it encodes the sequence of quintuplets generated by our fingerprint-based search procedure.
dna0 only encodes the parameters U , ∆P and M of each quintuplet. The parameters r and α are
stored without any compression using 1 bit for r and 2U bits for α.

3.1 Encoding of the matched suffix length M

First we notice that by construction the length of the matched suffix is at least equal to the
block size B = 20 used for computing the fingerprints (see Sect. 2.1). Hence, in our algorithm
we encode the difference M − 20. We observed the distribution of the parameter M for some
DNA files, and we found that the probability that M = n is slowly decreasing as n increases. We
have tried several textbook algorithms for the encoding of the integers (Elias, Golumb, etc.) but
none of them performed satisfactorily. We have obtained the best results with a technique called
continuation bit encoding.4 To encode an integer n ≥ 0 using this encoding we choose a parameter
k > 1 and we split the binary representation (n)2 of n into ` = d|(n)2|/(k−1)e blocks of k−1 bits
each. Then, we append in front of each block a continuation bit which is zero for all blocks except
for the last one. Finally, we concatenate the blocks obtaining an encoding of n of length k`. In
the following we use Ck(n) to denote this encoding. For example, for k = 4 we have (continuation
bits are in boldface):

C4(3) = 1011, C4(8) = 0001 1000, C4(15) = 0001 1111.

After experimenting with k ranging from 3 to 8, we found that the best overall performance is
obtained with k = 4. Summing up, in the algorithm dna0 we encode the matched suffix length M
with the binary string C4(M − 20).

3.2 Encoding of the unmatched prefix length U

Also for this parameter experiments show that the probability that U = n is slowly decreasing as
n increases. However, the distribution of U differs from the distribution of M : the smallest values
(U = 0 and U = 1) are relatively more frequent. This is not surprising since we know that an
approximate match in the input file generates a quintuplet with a small U (see Sect. 2.2). In our
experiments we found that U = 0 with probability ≈ 0.25, U = 1 with probability ≈ 0.12 and that
U was smaller than 10 with probability ≈ 0.5. This data suggests that we should use (roughly) 2
bits for encoding the event U = 0, three bits for U = 1, and that half of the code space should be
used for the event U < 10. Accordingly, we decided to encode the integers in the range [0, 9] with

4We have not been able to trace the origin of this technique. We know that it has been used many times under
many different names, see for example [18].

6

the following codewords:

0→ 00, 1→ 010, 2→ 011 000, 3→ 011 001, · · · 9→ 011 111 (1)

(the bits in boldface only show the logic of the encoding, they have no other special meaning).
Note that the codewords for the integers 0–9 all start by 0. For the encoding of the values U ≥ 10
we use codewords starting with 1, in accordance with the experimental observation that U ≥ 10
with probability ≈ 0.5. After a few tests, we found that the greatest compression is obtained
encoding the values U ≥ 10 with the bit 1 followed by the continuation bit encoding of U − 10
with k = 4. Summing up, in algorithm dna0 we encode the unmatched prefix length U using the
codewords in (1) when U < 10, and using the bit 1 followed by C4(U − 10) when U ≥ 10.

3.3 Encoding of the offset ∆P

Recall that this parameter denotes a position in the already compressed portion of the input,
say T [1, z]. As we observed in Sect. 2.2 each approximate match in T generates a quintuplet in
which ∆P is a small positive integer. Unfortunately, most of the times we are not encoding an
approximate match and in these cases the parameter ∆P is uniformly distributed in the range [1, z].
We are therefore faced with the problem of encoding a parameter whose distribution is uniform
with the exception of the smaller values (say ∆P ≤ 5) which are relatively more frequent.

It is well known that an integer uniformly distributed in [1, z] is optimally encoded using for
each value a codeword of length dlog2 ze or blog2 zc bits. If we assign shorter codewords to the
smaller values we are then forced to use more that dlog2 ze bits for the larger values. We have
tested several algorithms for assigning shorter codewords to the smaller values of ∆P . It turned
out that in most cases there was an increase of the overall output size with respect to the simple
encoding which uses dlog2 ze bits for each value. This means that the saving achieved in the
encoding of the smaller values is more than compensated by the extra bits required for the larger
values.

After some experiments, we found that the greatest space saving was obtained using a very
conservative encoding which never uses more that dlog2 ze bits, and at the same time uses less
bits for the smaller values whenever this is possible. To see how this encoding works consider the
following example. Suppose we have to encode a parameter t which can assume 76 possible values,
say from 0 to 75. We have dlog2 76e = 7. We use 7-bit codewords for the higher 64 values in the
range [0,75]. That is, if t ∈ [12, 75] we encode t with a codeword consisting of the bit 1, followed
by the 6-bit binary representation of t− 12 (notice that t− 12 ∈ [0, 63]). If t ∈ [0, 11] we encode
it with a codeword consisting of the bit 0 followed by the encoding of t computed applying the
above procedure recursively. That is, since dlog2 12e = 4, we use a 4-bit codeword for the values
in the range [4, 11]: the bit 1 followed by the 3-bit binary representation of t− 4. If t ∈ [0, 3] we
encode it using the bit 0 followed by the 2-bit binary representation of t. Summing up, we have
the following encoding:

0→ 0000, 4→ 01 000, 12→ 1000000,
1→ 0001, 5→ 01 001, 13→ 1000001,

...
...

...
3→ 0011, 11→ 01 111, 75→ 1111111,

(the bits in boldface only show the logic of the encoding, they have no other special meaning).
Note that we are encoding the values smaller than 12 using less than blog2 76c bits. We call this

7

Algorithm encode(t, n)

1. let k ← dlog2(n)e;
2. if (n == 2k)

3. write(t, k);

4. else

5. let δ ← n− 2k−1;

6. if (t ≥ δ)
7. write(1, 1);

8. write(t− δ, k − 1);

9. else

10. write(0, 1);

11. encode(t, δ);

Figure 1: Pseudo code for log-skewed encoding. The procedure write(a, n) writes to the output stream the
binary representation of a using n bits; it must be called with 0 ≤ a < 2n.

yeast mouse arabidopsis human

Name Size Name Size Name Size Name Size
y-4 1,531,929 m-11 49,909,125 at-1 29,830,437 h-2 236,268,154
y-14 784,328 m-7 5,114,647 at-3 23,465,336 h-13 95,206,001
y-1 230,203 m-19 703,729 at-4 17,550,033 h-22 33,821,688
y-mit 85,779 m-x 17,430,763 h-x 144,793,946

m-y 711,108 h-y 22,668,225

Table 1: Collection of DNA sequences used for testing our compression algorithms. The complete dataset,
including the files used for the tests in Table 2, is available at http://www.mfn.unipmn.it/˜manzini/dnacorpus/.

encoding log-skewed and we show pseudo code computing it in Fig 1; notice that the recursion
stops when the current range is a power of two.

Summing up, in algorithm dna0 we encode the offset ∆P using the log-skewed encoding de-
scribed in Fig. 1. Note that if U = 0, then ∆P cannot be zero; in this case we encode the value
∆P − 1 using log-skewed encoding.

3.4 Preliminary experimental results

To test our compression algorithms we have built a collection of DNA sequences using four different
organisms: yeast (Saccharomyces Cerevisiae), mouse (Mus Musculus), arabidopsis (Arabidopsis
Thaliana), and human. We have downloaded the complete genome of these organisms from [9], and
we have extracted from each chromosome the sequence of bases {a, c, g, t} discarding everything
else. Then, we have taken the largest, the smallest, and the median chromosome of each organism
together with the X and Y chromosomes (which are usually more compressible than the autosomes)
and the mitochondrial DNA of yeast. The resulting test suite is summarized in Table 1. All tests
have been carried out on a 1GHz Pentium III with 1GB of main memory running GNU/Linux.
The compiler was gcc ver. 3.2 with options -O3 -fomit-frame-pointer -march=pentium3.

In Fig. 2 we report the compression ratio and compression speed achieved by several known
compression tools and by the algorithms described in this paper. The compression ratio is ex-
pressed in terms of bits per symbol. Since the input files only contain four different symbols, we
achieve a real compression when the number of bits per symbol is less than 2.

8

The first two rows of each table show the performance of the standard compression tools gzip
and bzip. We can see that these tools use more than two bits per symbol for all files except y-mit.
Their running times (expressed in microseconds per input byte) show the usual behavior: gzip is
faster than bzip in compression and much faster in decompression.

The next two rows of each table (labelled ac-o2 and ac-o3) report the performance of the order 2
and order 3 arithmetic coding routines described in [20]. We can see that order 2 and order 3
arithmetic coding both compress to less than two bits per symbol. They are roughly two times
slower than gzip in compression and their decompression speed is very close to their compression
speed.

Since the tools considered so far are general purpose compressors, we can try to “help” them
in the compression of DNA sequences with a preprocessing step in which we store four bases in
one byte. We then feed the output of this “4-in-1 preprocessing” to gzip, bzip and arithmetic
coding. As a result, these tools now operate on input files which have already achieved a two bits
per symbol compression. In Fig. 2 we report the performance of gzip and bzip with the 4-in-1
preprocessing under the labels gzip-4 and bzip-4. We can see that gzip-4 is extremely fast and
consistently uses less than 2 bits per symbol. Compared to arithmetic coding it is roughly eight
times faster and achieves a better average compression ratio for mouse, arabidopsis, and human.
The performance of bzip-4 is less spectacular. Note that although bzip compresses significantly
better than gzip, gzip-4 outperforms bzip-4 on all files except m-x, h-22, h-x, and h-y. We do
not report in Fig. 2 the performance of arithmetic coding with the 4-in-1 preprocessing since this
combination consistently produced more that two bits per symbol. In other words, the 4-in-1
preprocessing degraded the performance of order 2 and order 3 arithmetic coding. Note that in
some sense the 4-in-1 preprocessing turns order 2 and order 3 arithmetic coding into order 8 and
order 12 encoding respectively.

The results for our algorithm dna0 show that it compresses better than arithmetic coding for
all files except the smallest ones (the yeast chromosomes and m-19). The comparison between
dna0 and gzip-4 is less straightforward. If we consider the average compression ratio for each
collection we can see that: (1) gzip-4 is marginally better for yeast, (2) the two algorithms have
the same performance for arabidopsis, and (3) dna0 is superior for mouse and human. If we look
at the compression of the individual sequences we notice that dna0 is usually superior for the more
compressible ones, but this rule has the exception of the highly compressible sequence y-mit for
which gzip-4 outperforms dna0.

The data in Fig. 2 show that dna0 has roughly the same compression speed as gzip and bzip.
Note that the time per input byte spent by dna0 grows very slowly with the size of the input; this
is a remarkable feature in an algorithm that can find repetitions occurring anywhere in the already
scanned portion of the input. In terms of decompression speed dna0 is the fastest algorithm after
gzip and gzip-4.

4 Improving the compression

In this section we show how to improve the compression ratio of dna0 at the cost of a small increase
in the running time. Our first improvement consists in doing two passes over the data. In the
first one we compute some statistics on the distribution of the parameters M and U , and in the
second pass we do the actual compression. Consider for example the parameter U . Our idea is
to encode the values U = i for i = 0, 1, . . . , 254 using a properly designed Huffman code, and to
encode the values U ≥ 255 using the continuation bit encoding (see Sect. 3.1) implemented as

9

y-4 y-14 y-1 y-mit Ave. Speed

gzip 2.313 2.333 2.303 1.920 2.305 0.65 0.03
bzip 2.163 2.172 2.170 1.787 2.154 0.86 0.34
ac-o2 1.946 1.951 1.953 1.560 1.936 1.28 1.28
ac-o3 1.944 1.950 1.955 1.547 1.934 1.28 1.27

gzip-4 1.950 1.961 1.951 1.597 1.942 0.16 0.13
bzip-4 1.994 2.002 2.006 1.686 1.987 0.43 0.23

dna0 1.975 1.908 1.935 1.905 1.943 0.72 0.14
dna1 1.975 1.911 1.936 1.912 1.944 0.71 0.14
dna2 1.928 1.869 1.884 1.526 1.884 1.90 1.33
dna3 1.926 1.871 1.881 1.523 1.882 1.91 1.33

m-11 m-7 m-19 m-x m-y Ave. Speed

gzip 2.257 2.257 2.259 2.248 2.218 2.254 0.62 0.03
bzip 2.087 2.091 2.095 2.036 2.001 2.075 0.89 0.33
ac-o2 1.920 1.918 1.923 1.911 1.904 1.918 1.27 1.27
ac-o3 1.920 1.919 1.926 1.912 1.908 1.918 1.28 1.27

gzip-4 1.916 1.916 1.924 1.882 1.881 1.908 0.15 0.11
bzip-4 1.923 1.930 1.951 1.865 1.903 1.910 0.40 0.22

dna0 1.857 1.907 1.952 1.777 1.782 1.841 0.88 0.14
dna1 1.853 1.905 1.952 1.772 1.781 1.838 0.90 0.14
dna2 1.789 1.834 1.884 1.702 1.704 1.772 1.93 1.18
dna3 1.790 1.835 1.888 1.703 1.707 1.772 1.95 1.18

at-1 at-3 at-4 Ave. Speed

gzip 2.266 2.266 2.259 2.264 0.63 0.03
bzip 2.129 2.129 2.129 2.129 0.89 0.33
ac-o2 1.923 1.926 1.923 1.924 1.27 1.27
ac-o3 1.921 1.924 1.922 1.922 1.28 1.27

gzip-4 1.917 1.921 1.916 1.918 0.15 0.11
bzip-4 1.975 1.970 1.973 1.973 0.41 0.22

dna0 1.917 1.913 1.924 1.918 0.87 0.14
dna1 1.916 1.911 1.923 1.916 0.88 0.14
dna2 1.845 1.844 1.853 1.847 2.01 1.28
dna3 1.844 1.843 1.851 1.845 2.02 1.29

DnaC 1.783 1.769 1.787 1.779 71.34 —

h-2 h-13 h-22 h-x h-y Ave. Speed

gzip 2.260 2.264 2.222 2.252 2.198 2.253 0.62 0.03
bzip 2.079 2.087 2.017 2.051 2.007 2.066 0.89 0.33
ac-o2 1.912 1.908 1.920 1.910 1.898 1.911 1.27 1.27
ac-o3 1.910 1.906 1.915 1.909 1.895 1.909 1.28 1.27

gzip-4 1.909 1.909 1.885 1.898 1.860 1.902 0.15 0.11
bzip-4 1.913 1.919 1.867 1.889 1.855 1.902 0.40 0.22

dna0 1.869 1.904 1.835 1.808 1.478 1.840 0.97 0.14
dna1 1.863 1.900 1.829 1.801 1.472 1.834 0.99 0.15
dna2 1.790 1.818 1.767 1.732 1.411 1.762 1.97 1.13
dna3 1.790 1.818 1.767 1.732 1.411 1.762 1.98 1.13

Figure 2: Compression ratio and speed for the DNA sequences shown in Table 1. From top to bottom we have the
results for yeast, mouse, arabidopsis, and human. Each row displays the result for a single algorithm showing the
compression ratio for each sequence and the average compression ratio in bits per symbol. The last two columns
show the average compression and decompression speed in microseconds per input byte (average computed over
five runs for each sequence).

10

follows: for encoding a value U ≥ 255 we use the Huffman code for the event U ≥ 255 followed by
the codeword Ck(U − 255) for a properly chosen k. More in detail, in the first pass we compute:

1. the number of quintuplets with U = i, for i = 0, 1, . . . , 254; and the number of quintuplets
with U ≥ 255;

2. for the quintuplets with U ≥ 255 the cost (number of bits) of encoding Ck(U − 255) for
k = 3, . . . , 8.

At the end of the first pass, we compute a Huffman code for the events {U = 0, U = 1, . . . , U =
254, U ≥ 255}, and the parameter k that minimizes the cost of encoding the values U ≥ 255.
The optimal k and a canonical Huffman tree [19, Sect. 2.3] representing the codewords for the
events {U = 0, . . . , U = 254, U ≥ 255} are then written to the output file. In the second pass
we encode the parameter U using the combination of Huffman and continuation bit encoding
described above.

For the parameter M we follow the same approach. The only difference is that by construction
M ≥ 20; hence we apply the above procedure to the value M − 20. In other words, we encode the
values M = i for i = 20, 21, . . . , 274 using a properly designed Huffman code, and we encode the
values M ≥ 275 using the continuation bit encoding with the parameter k which minimizes the
overall codeword length. Again, at the end of the first pass we write to the output file the optimal
k and a canonical Huffman tree representing the chosen codewords.

We call dna1 the algorithm which encodes U and M with this two-pass procedure and encodes
the parameter ∆P using the log-skewed encoding described in Sect. 3.3. The performance of dna1
is reported in Fig. 2. We can see that dna1 achieves a better compression than dna0 for all files
except the smallest ones (the yeast sequences). We can also see that the difference in compression
ratio is not spectacular: this suggests that the hand-tuned codewords used in dna0 have been well
chosen. The good news is that although dna1 is a two pass algorithm it is almost as fast as dna0
both in compression and decompression.

To further improve the compression ratio we observe that so far we considered only the encoding
of the parameters U, P and M which appear in each quintuplet 〈U, α, r, P,M〉. In other words,
our algorithms do not compress the bit r and the unmatched prefix α. Since unmatched prefixes
can be rather long and we know that arithmetic coding can compress DNA sequences to less than
two bits per symbol, it makes sense to compress all unmatched prefixes using arithmetic coding.
This idea was already present in the first paper on DNA compression [10] and has been used also
in other algorithms. We call dna2 (resp. dna3) the algorithm which encodes the parameters U,∆P

and M as in dna1 and compresses the unmatched prefixes using order 2 (resp. order 3) arithmetic
coding. In our implementation we have used the arithmetic coding routines described in [20],
whose performance is reported in Fig. 2 under the labels ac-o2 and ac-o3.

Fig. 2 shows the performance of dna2 and dna3 on our suite of test files. We can see that the
introduction of arithmetic coding greatly improves the compression: for every file of the collection
dna2 and dna3 achieve a better compression than dna1, ac-o2, ac-o3, and gzip-4. The advantage
of dna2 and dna3 over ac-o2, ac-o3, and gzip-4 is roughly 0.15 bits per symbol, and the advantage
over dna1 is roughly 0.07 bits per symbol. Concerning the compression and decompression speed,
we observe that dna2 and dna3 are slower that the other algorithms but their performance is still
close to the standard compressors of everyday use. For example, dna2 and dna3 are roughly two
times slower in compression and four times slower in decompression than bzip. Finally, we note
that the difference between dna2 and dna3 is very small, both in terms of compression ratio and
in terms of compression/decompression speed.

11

chmpxx chntxx hehcm humdy humgh humhb humhd humhp mpom mtpa vaccg
size→ 121024 155844 229354 38770 66495 73308 58864 56737 186609 100314 191737

gzip 2.2818 2.3345 2.3275 2.3618 2.0648 2.2450 2.2389 2.2662 2.3288 2.2919 2.2518
bzip 2.1218 2.1845 2.1685 2.1802 1.7289 2.1481 2.0678 2.0944 2.1701 2.1225 2.0949
ac-o2 1.8364 1.9333 1.9647 1.9235 1.9377 1.9176 1.9422 1.9283 1.9654 1.8723 1.9040
ac-o3 1.8425 1.9399 1.9619 1.9446 1.9416 1.9305 1.9466 1.9352 1.9689 1.8761 1.9064

gzip-4 1.8635 1.9519 1.9817 1.9473 1.7372 1.8963 1.9141 1.9207 1.9727 1.8827 1.8741
bzip-4 1.9667 2.0090 2.0091 2.0678 1.8697 1.9957 1.9921 2.0045 2.0117 1.9847 1.9520

dna0 1.8320 1.6758 1.8815 2.0034 1.3860 1.9398 1.9441 1.9691 1.9567 1.9936 1.8429
dna1 1.8333 1.6765 1.8819 2.0057 1.3946 1.9451 1.9512 1.9760 1.9599 1.9956 1.8440
dna2 1.6733 1.6162 1.8487 1.9326 1.3668 1.8677 1.9036 1.9104 1.9275 1.8696 1.7634
dna3 1.6782 1.6223 1.8463 1.9533 1.3750 1.8807 1.9130 1.9199 1.9312 1.8735 1.7645

off-line 1.9022 1.9985 2.0157 2.0682 1.5993 1.9697 1.9740 1.9836 1.9867 1.9155 1.9075
BioC 1.6848 1.6172 1.848 1.9262 1.3074 1.88 1.877 1.9066 1.9378 1.8752 1.7614
GenC 1.673 1.6146 1.847 1.9231 1.0969 1.8204 1.8192 1.8466 1.9058 1.8624 1.7614
ctw+lz 1.6690 1.6129 1.8414 1.9175 1.0972 1.8082 1.8218 1.8433 1.9000 1.8555 1.7616
DnaC 1.6716 1.6127 1.8492 1.9116 1.0272 1.7897 1.7951 1.8165 1.8920 1.8556 1.7580

Table 2: Compression ratios (bits per input symbol) for gzip, bzip, arithmetic coding, gzip and bzip with the
4-in-1 preprocessing, our algorithms, and for the following DNA compression algorithms: Off-line [2] (off-line),
Biocompress2 [10] (BioC), Gencompress-2 [7] (GenC), CTW+LZ [16] (ctw+lz), DNACompress [8] (DnaC).

4.1 Comparison with other DNA compressors

The most natural benchmark for our algorithms is a comparison with the other algorithms designed
to compress DNA sequences. Unfortunately, such a comparison turned out to be a rather difficult
task. The first reason is that the source or executable code of DNA compressors are usually not
available (the only exception being Off-line whose source code is available under GNU GPL [14]).
The second reason is that the huge space and time requirements of most DNA compressors make
it difficult (or impossible) to test them on sequences of significant length.

Table 2 shows the compression ratios of several algorithms on a set of DNA sequences which
have been used for testing in almost every paper on DNA compression. From Table 2 we can see
that dna2 and dna3 achieve a compression which is slightly worse that the other DNA compres-
sors. However, the difference is rather small with the only exception of the file humgh (sequence
HUMGHCSA). Table 2 also tells us that DNACompress [8] is the algorithm with the best com-
pression performance: only for three files it is outperformed by CTW+LZ [16] and only by a very
narrow margin.

We do not have complete data on the running times. In [8] the authors report some compression
times for the file hehcm (229354 bases) on a 700MHz Pentium III. According to [8] the compression
of hehcm takes a few hours for CTW+LZ, 51 seconds for GenCompress-2 [7], and 4 seconds for
DNACompress. According to our tests, on a 1GHz Pentium III the compression of hehcm takes
1719.79 seconds for Off-line and 0.42 seconds for dna2 which was the slowest of our algorithms.

This data shows that the current leader in DNA compression is the algorithm DNACompress.
It achieves the best compression ratios and, together with our algorithms, it is the only one
with “reasonable” compression times. Unfortunately, we could not test in depth the performance
of DNACompress since it is based on the PatternHunter [15] search engine which is not freely
available. One of the authors of DNACompress has kindly provided the compression ratios and
speed for the arabidopsis sequences [6]. This data is reported in the last row of the third table of
Fig. 2. We can see that on average DNACompress uses 0.066 bits per symbol less than dna3. This

12

translates to a smaller space occupancy of 8.25 bytes every 1000 input bytes. This space saving
is achieved at the cost of a much greater compression time. On a 2GHz Pentium 4 the average
compression speed of DNACompress is 71.34µs per input byte. This is an order of magnitude
larger than the 2.02µs per input byte achieved by dna3 on a 1GHz Pentium III. It is interesting to
compare also the working space of the two algorithms. For a sequence of length N DNACompress
uses 6N bytes of working space whereas our algorithms only use 7N/5 bytes (see Sect. 2.1). This
smaller space occupancy makes it possible to handle much larger files.

Note that we can further reduce the space occupancy of our algorithms by increasing the
parameter B (the size of the blocks stored in the hash table). For example, if we set B = 24 the
space occupancy drops to 4N/3 bytes. A larger block size B means that our algorithms run faster
(we access less frequently the hash table) but also that they detect a smaller number of repeated
substrings. This usually reduces the compression ratio, but not for every sequence: for the human
chromosomes we get a better average compression for B = 24 rather than for B = 20. A possible
explanation of this phenomenon is that when we use a larger B we miss some shorter repetitions
but we also need less bits to encode the matched suffix length of each quintuplet (see Sect. 3.1).

Finally, we would like to comment on the performance of Off-line which, like our algorithms,
only encodes exact repeats. While we use a simple and fast procedure to find repeats, Off-line is
designed to search for an “optimal” sequence of textual substitutions. It is therefore not surprising
that Off-line is much slower than our algorithms (for the yeast sequences the difference is by a
factor 1000 or more). The relatively poor compression achieved by Off-line (see Table 2) is due to
the fact that Off-line does not consider complemented palindromes and does not use arithmetic
coding. Indeed, the comparison between our algorithms and Off-line is somewhat unfair since
Off-line is not a DNA-specific compressor but rather a general purpose compressor which works
reasonably well also for DNA sequences.

5 Conclusions and further work

In this paper we have investigated the possibility of compressing DNA sequences working only
with exact matches. In other words, our algorithms only search and encode repeated substrings
and complemented palindromes with no errors. This is a departure from the common practice in
DNA compression of searching and encoding also approximate repeats.

The experimental results show that our algorithms are an order of magnitude faster than the
other DNA compressors and that their compression ratio is very close to the best compressors.
Thanks to the speed of our algorithms and to their small working space we have been able to
compress sequences of length up to 220MB, which are well beyond the range of any other DNA
compressor.

In developing our algorithms we had to face several design decisions, especially concerning the
encoding of the exact matches (Sect. 3). In most cases our decisions were guided by our intuition
and by preliminary experimental results. However, we are aware that other (better) strategies are
possible. In particular, we believe that one could improve the compression ratio by using two sets
of codes: one for “isolated” repeats, and the other for exact repeats that are likely to belong to
a larger approximate repeat. The compressor should estimate, on the basis of the recent history,
the probability that it is currently encoding an approximate repeat and use the appropriate code
accordingly.

13

Acknowledgments

We thank Xin Chen and Stefano Lonardi for their assistance in the testing of their compression
algorithms. The constructive criticisms of the anonymous referees greatly improved the quality of
the presentation.

References

[1] L. Allison, L. Stern, T. Edgoose, and T. I. Dix. Sequence complexity for biological sequence
analysis. Computers and Chemistry, 24(1):43–55, 2000.

[2] A. Apostolico and S. Lonardi. Compression of biological sequences by greedy off-line textual
substitution. In J. A. Storer and M. Cohn, editors, Proceedings Data Compression Conference,
pages 143–152, Snowbird, UT, 2000. IEEE Computer Society Press.

[3] A. Apostolico and S. Lonardi. Off-line compression by greedy textual substitution. Proceedings
of the IEEE, 88(11):1733–1744, November 2000.

[4] C. Bennet, M. Li, and B. Ma. Chain letters and evolutionary histories. Scientific American,
pages 32–37, June 2003.

[5] J. Bentley and D. McIlroy. Data compression with long repeated strings. Information Sci-
ences, 135:1–11, 2001.

[6] X. Chen. Personal communication.

[7] X. Chen, S. Kwong, and M. Li. A compression algorithm for DNA sequences and its applica-
tions in genome comparison. In Proceedings of the 4th Annual International Conference on
Computational Molecular Biology (RECOMB-00). ACM Press, 2000.

[8] X. Chen, M. Li, B. Ma, and J. Tromp. DNACompress: Fast and effective DNA sequence
compression. Bioinformatics, 18(12):1696–1698, 2002.

[9] National Center for Biotechnology Information. http://www.ncbi.nih.gov.

[10] S. Grumbach and F. Tahi. A new challenge for compression algorithms: genetic sequences.
Inf. Proc. and Management, 30(6):875–886, 1994.

[11] R. Karp and M. Rabin. An efficient randomized pattern-matching algorithms. IBM Journal
of Research and Development, 31(2):249–260, 1987.

[12] J. K. Lanctot, M. Li, and E. Yang. Estimating DNA sequence entropy. In Proc. 11th ACM-
SIAM Symposium on Discrete Algorithms (SODA ’00), pages 409–418, 2000.

[13] M. Li, J. H. Badger, X. Chen, S. Kwong, P. Kearney, and H. Zhang. An information-based
sequence distance and its application to whole mitochondrial genome phylogeny. Bioinfor-
matics, 17(2):149–154, February 2001.

[14] S. Lonardi. Off-line home page. http://www.cs.ucr.edu/~stelo/Offline.

14

[15] B. Ma, J. Tromp, and M. Li. PatternHunter—fast and more sensitive homology search.
Bioinformatics, 18:440–445, 2002.

[16] T. Matsumoto, K. Sadakane, and H. Imai. Biological sequence compression algorithms. In
Proc. Genome Informatics Workshop, pages 43–52. Universal Academy Press, Tokyo, 2000.

[17] A. Milosavjevic. Discovering by minimal length encoding: A case study in molecular evolution.
Machine Learning, 12:68–87, 1993.

[18] H. Williams and J. Zobel. Compressing integers for fast file access. The Computer Journal,
42(3):193–201, 1999.

[19] I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes: Compressing and Indexing
Documents and Images. Morgan Kaufmann Publishers, Los Altos, CA 94022, USA, second
edition, 1999.

[20] I. H. Witten, R. M. Neal, and J. G. Cleary. Arithmetic coding for data compression. Com-
munications of the ACM, 30(6):520–540, 1987.

15

