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Engineering a Lightweight Suffix Array
Construction Algorithm1

Giovanni Manzini2 and Paolo Ferragina3

Abstract. In this paper we describe a new algorithm for building the suffix array of a string. This task is
equivalent to the problem of lexicographically sorting all the suffixes of the input string. Our algorithm is
based on a new approach called deep–shallow sorting: we use a “shallow” sorter for the suffixes with a short
common prefix, and a “deep” sorter for the suffixes with a long common prefix.

All the known algorithms for building the suffix array either require a large amount of space or are inefficient
when the input string contains many repeated substrings. Our algorithm has been designed to overcome this
dichotomy. Our algorithm is “lightweight” in the sense that it uses very small space in addition to the space
required by the suffix array itself. At the same time our algorithm is fast even when the input contains many
repetitions: this has been shown by extensive experiments with inputs of size up to 110 Mb.

The source code of our algorithm, as well as a C library providing a simple API, is available under the
GNU GPL [26].

Key Words. Suffix array, Algorithmic engineering, Space-economical algorithms, Full-text index, Suffix
tree.

1. Introduction. In this paper we consider the problem of computing the suffix array
of a text string T [1, n]. This problem consists in sorting the suffixes of T in lexicographic
order. The suffix array [24] (or PAT array [10]) is a simple, easy to code, and elegant data
structure used for several fundamental string matching problems involving both linguistic
texts and biological data [5], [13]. Recently, interest in this data structure has been revi-
talized by its use as a building block for two novel applications: (1) the Burrows–Wheeler
compression algorithm [4], which is a provably [25] and practically [29] effective com-
pression tool; and (2) the construction of succinct [12], [28] or compressed [8], [9], [11]
indexes. In these applications the construction of the suffix array is the computational
bottleneck both in time and space. This motivated our interest in designing yet another
suffix array construction algorithm which is fast and lightweight in the sense that it uses
small working space.

The suffix array consists of n integers in the range [1, n]. This means that in principle
it uses �(n log n) bits of storage. However, in most applications the size of the text
is smaller than 232 and it is customary to store each integer in a 4 byte word; this
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yields a total space occupancy of 4n bytes. For what concerns the cost of constructing
the suffix array, the theoretically best known algorithms run in �(n) time [6]. These
algorithms work by first building the suffix tree and then obtaining the sorted suffixes via
an in-order traversal of the tree. However, suffix tree construction algorithms are both
complex and space consuming since they occupy at least 15n bytes of working space
(or even more, depending on the text structure [22]). This makes their use impractical
even for moderately large texts. For this reason, suffix arrays are usually built directly
using algorithms which run in O(n log n) time but have a smaller space occupancy.
Among these algorithms the current “leader” is the qsufsort algorithm by Larsson and
Sadakane [23]. qsufsort uses 8n bytes4 and it is much faster in practice than the algorithms
based on suffix tree construction.

Unfortunately, the size of our documents has grown much more quickly than the
main memory of our computers. Thus, it is desirable to build a suffix array using as
small space as possible. Recently, Itoh and Tanaka [15] and Seward [30] have proposed
two new algorithms which only use 5n bytes. We call these algorithms lightweight
algorithms to stress their (relatively) small space occupancy. From the theoretical point
of view these algorithms have a �(n2 log n) worst-case time complexity. In practice
they are faster than qsufsort when the average LCP (Longest Common Prefix) is small.
However, for texts with a large average LCP these algorithms can be slower than qsufsort
by a factor of 100 or more.

In this paper we describe and extensively test a new lightweight suffix sorting al-
gorithm. Our main idea is to use a very small amount of extra memory, in addition to
5n bytes, to avoid any degradation in performance when the average LCP is large. To
achieve this goal we make use of engineered algorithms and ad hoc data structures. Our
algorithm uses 5n+ cn bytes, where c can be chosen by the user at run time; in our tests
c was at most 0.03. The theoretical worst-case time complexity of our algorithm is still
�(n2 log n), but its behavior in practice is quite good. Extensive experiments, carried
out on four different architectures, show that our algorithm is faster than any other tested
algorithm. Only on a single instance—a single file on a single architecture— was our
algorithm outperformed by qsufsort.

2. Definitions and Previous Results. Let T [1, n] denote a text over the alphabet �.
The suffix array [24] (or PAT array [10]) for T is an array S A[1, n] such that T [S A[1], n],
T [S A[2], n], etc. is the list of suffixes of T sorted in lexicographic order. For example,
for T = babcc then S A = [2, 1, 3, 5, 4] since T [2, 5] = abcc is the suffix with the
lowest lexicographic rank, followed by T [1, 5] = babcc, followed by T [3, 5] = bcc
and so on.5

Given two strings v,w we write LCP(v,w) to denote the length of their longest
common prefix. The average LCP of a text T is defined as the average length of the LCP

4 Here and in the following the space occupancy figures include the space for the input text, for the suffix
array, and for any auxiliary data structure used by the algorithm.
5 Note that to define the lexicographic order of the suffixes it is customary to append at the end of T a special
end-of-text symbol which is smaller than any symbol in �.
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between two consecutive suffixes, that is,

average LCP =
(

1

n − 1

) n−1∑
i=1

LCP(T [S A[i], n], T [S A[i + 1], n]).

The average LCP is a rough measure of the difficulty of sorting the suffixes: if the average
LCP is large we need—in principle—to examine “many” characters in order to establish
the relative order of two suffixes. Note however that most suffix sorting algorithms do
not compare suffixes with a simple character-by-character comparison, thus the average
LCP is not the only parameter which plays a role in this problem.

In the rest of the paper we make the following assumptions which correspond to the
situation most often faced in practice. We assume |�| ≤ 256 and that each alphabet
symbol is stored in 1 byte. Hence, the text T [1, n] occupies precisely n bytes. Further-
more, we assume that n ≤ 232 and that the starting position of each suffix is stored in
a 4 byte word. Hence, the suffix array S A[1, n] occupies precisely 4n bytes. In the fol-
lowing we use the term “lightweight” to denote a suffix sorting algorithm which uses 5n
bytes plus some small amount of extra memory (we are intentionally giving an informal
definition). Note that 5n bytes are just enough to store the input text T and the suffix
array S A. Although we do not claim that 5n bytes are indeed required, we do not know
of any algorithm using less space.

To test the suffix array construction algorithms we use the collection of files shown in
Table 1. These files contain different kinds of data in different formats; they also display
a wide range of sizes and of average LCPs.

2.1. The Larsson–Sadakane qsufsort Algorithm. The qsufsort algorithm [23] is based
on the doubling technique introduced in [18] and first used for the construction of the
suffix array in [24]. Given two strings v,w and t > 0 we write v <t w if the length-t
prefix of v is lexicographically smaller than the length-t prefix ofw. Similarly we define
the symbols ≤t and =t . Let s1, s2 denote two suffixes and assume s1 =t s2 (that is,
T [s1, n] and T [s2, n] have a length-t common prefix). Let ŝ1 = s1 + t denote the suffix
T [s1 + t, n] and similarly let ŝ2 = s2 + t . The fundamental observation of the doubling

Table 1. Files used in our experiments sorted in order of increasing average LCP.

Name Ave. LCP Max. LCP File size Description

sprot 89.08 7,373 109,617,186 Swiss prot database (original file name sprot34.dat)
rfc 93.02 3,445 116,421,901 Concatenation of RFC text files
howto 267.56 70,720 39,422,105 Concatenation of Linux Howto text files
reuters 282.07 26,597 114,711,151 Reuters news in XML format
linux 479.00 136,035 116,254,720 Tar archive containing the Linux kernel 2.4.5 source files
jdk13 678.94 37,334 69,728,899 Concatenation of html and java files from the JDK 1.3 doc.
etext99 1,108.63 286,352 105,277,340 Concatenation of Project Gutemberg etext99/*.txt files
chr22 1,979.25 199,999 34,553,758 Genome assembly of human chromosome 22
gcc 8,603.21 856,970 86,630,400 Tar archive containing the gcc 3.0 source files
w3c 42,299.75 990,053 104,201,579 Concatenation of html files from www.w3c.org
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technique is that

s1 ≤2t s2 ⇐⇒ ŝ1 ≤t ŝ2.(1)

In other words, we can derive the ≤2t order between s1 and s2 by looking at the rank of
ŝ1 and ŝ2 in the ≤t order.

The algorithm qsufsort works in rounds. At the beginning of the i th round the suffixes
are already sorted according to the ≤2i ordering. In the i th round the algorithm looks
at groups of suffixes sharing the first 2i characters and sorts them according to the
≤2i+1 ordering using the Bentley–McIlroy ternary quicksort [1]. Because of (1) each
comparison in the quicksort algorithm takes O(1) time. After at most log n rounds all
the suffixes are sorted. Thanks to a very clever data organization qsufsort only uses 8n
bytes. Even more surprisingly, the whole algorithm fits in two pages of clean and elegant
C code.

The experiments reported in [23] show that qsufsort outperforms other suffix sorting
algorithms based on either the doubling technique or the suffix tree construction. The
only algorithm which runs faster than qsufsort, but only for files with average LCP less
than 20, is the Bentley–Sedgewick multikey quicksort [2]. Multikey quicksort is a direct
comparison algorithm since it considers the suffixes as ordinary strings and sorts them via
a character-by-character comparison without taking advantage of their special structure.
In this paper we did not consider multikey quicksort since it is well known that it is
inefficient when the average LCP is large. However, for inputs with a small average LCP

it is one of the fastest algorithms: see [21] for an efficient suffix sorting algorithm based
on multikey quicksort.

2.2. The Itoh–Tanaka two-stage Algorithm. In [15] Itoh and Tanaka describe a suffix
sorting algorithm called two-stage suffix sort (two-stage from now on). two-stage only
uses the text T and the suffix array S A for a total space occupancy of 5n bytes. To describe
how it works, we assume� = {a,b, . . . ,z} and let S A be initialized as S A[i] = i . Using
counting sort, two-stage initially sorts the array S A according to the ≤1 ordering. Then
it logically partitions S A into |�| buckets Ba, . . . ,Bz. A bucket is a set of consecutive
entries of S A containing the suffixes which start with the same character, from a to z in
our illustrative example. Within each bucket two-stage distinguishes between two types
of suffixes: Type A suffixes in which the second character of the suffix is smaller than the
first, and Type B suffixes in which the second character is larger than or equal to the first
suffix character. Within each bucket two-stage stores Type A suffixes first, followed by
Type B suffixes. This is correct since Type A suffixes lexicographically precede Type B
suffixes.

The crucial observation of algorithm two-stage is that when all Type B suffixes are
sorted, we can easily derive the ordering of the Type A suffixes. This can be done with
a single pass over the array S A: when we meet suffix si = T [i, n] we look at suffix
si−1 = T [i − 1, n], if si−1 is a Type A suffix we move it to the first empty position of
bucket BT [i−1].

Type B suffixes are sorted using textbook string sorting algorithms: in their imple-
mentation the authors use MSD radix sort [27] for sorting large groups of suffixes,
Bentley–Sedgewick multikey quicksort for medium size groups, and insertion sort for
small groups. Summing up, two-stage can be considered an “advanced” direct compar-
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ison algorithm since Type B suffixes are sorted by direct comparison whereas Type A
suffixes are sorted by a much faster procedure which takes advantage of the special
structure of the suffixes.

In [15] the authors compare two-stage with three direct-comparison algorithms (quick-
sort, multikey quicksort, and MSD radix sort) and with an earlier version of qsufsort.
two-stage turns out to be roughly four times faster than quicksort and MSD radix sort,
and from two to three times faster than multikey quicksort and qsufsort. However, the
files used for the experiments have an average LCP of at most 31, and we know that
the advantage of doubling algorithms (like qsufsort) with respect to direct comparison
algorithms becomes apparent for much larger average LCPs.

Some improvements to algorithm two-stage have been recently described in [16].
Although these improvements are based on some interesting algorithmic ideas, we do
not describe them here since they lead to an algorithm which is not lightweight—its
space requirement being 9n bytes.

2.3. Seward copy Algorithm. Independently of Itoh and Tanaka, Seward describes
in [30] a lightweight algorithm, called copy, which is based on a concept similar to the
Type A/Type B suffixes used by algorithm two-stage.

Using counting sort, copy initially sorts the array S A according to the ≤2 ordering.
As before we use the term bucket to denote the contiguous portion of S A containing
a set of suffixes sharing the same first character. We use the term sub-bucket to denote
the contiguous portion of S A containing suffixes sharing the first two characters. There
are |�| buckets, each one consisting of |�| sub-buckets. One or more (sub-)buckets can
be empty. In the following we use the symbol Bα to denote the bucket containing the
suffixes starting with character α, and we use the symbol bαβ to denote the sub-bucket
containing the suffixes starting with the character-pair αβ.

copy sorts the buckets one at a time starting with the one containing the fewest suffixes,
and proceeding up to the largest one. Assume for simplicity that � = {a,b, . . . ,z}. To
sort a bucket, say Bp, copy sorts the sub-buckets bpa, bpb, . . . , bpz individually. The
crucial point of algorithm copy is that when bucket Bp is completely sorted, with a simple
pass over it copy sorts all the sub-buckets bap, bbp, . . . , bzp. These sub-buckets are
marked as sorted and copy skips them when their “parent” bucket is sorted. In other
words, assuming Ba is sorted after Bp, when we sort Ba we skip bap and any other
already sorted sub-bucket within Ba.

As a further improvement, Seward shows that even the sorting of the sub-bucket bpp
can be avoided since its ordering can be derived from the ordering of the sub-buckets
bpa, . . . , bpo and bpq, . . . , bpz. This trick, first suggested in [4], is extremely effective
when working on files containing long runs of identical characters.

Algorithm copy sorts the sub-buckets using the Bentley–McIlroy ternary quicksort.
During this sorting the suffixes are considered atomic, that is, each comparison consists
of the scanning of two entire suffixes. The standard trick of sorting the largest side of the
partition last and eliminating tail recursion ensures that the amount of space required by
the recursion stack grows, in the worst case, logarithmically with the size of the input text.

In [30] Seward compares a tuned implementation of copy with the qsufsort algorithm
on a set of files with average LCP up to 400. In these tests copy outperforms qsufsort for
all files but one. However, Seward reports that copy is much slower than qsufsort when
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the average LCP exceeds 1000, and for this reason he suggests the use of qsufsort as a
fallback in that case.

2.4. Seward cache Algorithm. In [30] Seward describes how to improve algorithm
copy in order to deal better with files with large average LCP. The new algorithm, called
cache, uses an auxiliary array R[1, n] of 16 bit integers. Initially all entries in R are set
to zero. When the sorting of a bucket B is completed, for each suffix T [k, n] in B we
write in R[k] the most significant 16 bits of its rank (the rank r of T [k, n] is its position
in the sorted suffix array, that is, S A[r ] = k).

If at any point in the algorithm we are comparing the suffixes T [i, n] and T [ j, n] we
can proceed as follows. If T [i] = T [ j] we compare R[i] and R[ j]: if they differ we have
the correct ordering of T [i, n] and T [ j, n]. If R[i] = R[ j], we next compare T [i + 1]
and T [ j + 1]; if they are equal we can compare R[i + 1] and R[ j + 1], and so on. Note
that we use R to determine the ordering of suffixes which have the same first character.
Hence, we can store in R[i] the rank of T [i, n] relative to its bucket. That is, we do not
need the absolute rank of T [i, n], but only its rank among the suffixes starting with the
character T [i].

In the experiments reported in [30], copy was faster than qsufsort and cache for files
with small average LCP (up to 30). cache was the fastest algorithm for files with large
average LCP, and qsufsort was the fastest only for a single file with an average LCP of
33.77. However, in the experiments of [30] the input files were split in blocks of size
106 bytes, and the maximum average LCP was 383.17; this explains the relatively poor
performance of qsufsort which is efficient when the average LCP is large.

Algorithm cache as described above uses 7n bytes: 5n for T and S A plus 2n for R.
Since we are interested in lightweight algorithms we have modified it in order to reduce
its space occupancy to 6n bytes. This has been achieved by defining R[1, n] as an array
of eight bit integers. Clearly, this reduces the effectiveness of R: now we can only store
the eight most significant bits of the ranks, and therefore ties are more likely when we
compare the values stored in R. To compensate for this, we store in R ranks relative to
the sub-buckets. Hence, as soon as the sub-bucket bT [k]T [k+1] is sorted, we store in R[k]
the eight most significant bits of the rank of T [k, n] within bT [k]T [k+1]. In the following
we write cache 6n to denote this modified cache algorithm.

2.5. Preliminary Experimental Results. We have tested the three algorithms qsufsort,
copy, and cache 6n (our space economical version of cache) on our suite of test files
(see Table 1). We have used two machines with different architectures: a 1000 MHz
Pentium III with 256 KB L2 cache, and a 933 MHz PowerPC G4 with 256 KB L2 cache
and 2 Mb L3 cache (the L3 cache runs at half the processor speed). The results of our
experiments are reported in the top three rows of Table 2 for the Pentium and Table 3
for the PowerPC. The same data are represented as histograms in Figure 1. Note that the
test files are ordered by increasing average LCP.

Concerning the relative performances of the three algorithms our results are in accor-
dance with Seward’s observations reported in [30]. copy is faster than qsufsort when the
average LCP is small, and it is slower when the average LCP is large. cache 6n is faster
than qsufsort roughly half of the times but there is no clear relationship between their
relative speed and the average LCP of the input files.
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Table 2. Running times (in seconds) for a 1000 MHz Pentium III processor, with 1 Gb main memory and
256 Kb L2 cache.∗

sprot rfc howto reuters linux jdk13 etext99 chr22 gcc w3c

qsufsort 233.0 245.4 64.3 297.1 214.7 173.8 229.8 42.8 164.9 325.1
cache 6n 238.1 202.1 49.2 424.7 233.2 222.3 213.8 54.2 3,533.5 271.7
copy 208.1 174.3 62.5 509.0 302.8 509.4 838.3 41.2 35,577.4 23,180.7

ds0 L = 500 121.6 113.8 47.3 245.5 189.1 217.4 571.5 25.9 3,018.0 18,137.0
ds0 L = 1000 121.1 113.4 47.4 242.8 191.6 221.3 571.4 26.1 3,021.6 18,107.7
ds0 L = 2000 121.1 113.0 47.0 241.4 192.8 221.8 571.3 25.8 3,038.1 18,290.6
ds0 L = 5000 121.0 112.7 47.5 241.1 190.6 226.1 578.9 25.8 3,042.4 18,024.2

ds1 L = 500 126.6 121.6 34.6 261.7 126.3 149.7 307.0 26.0 331.2 982.6
ds1 L = 1000 121.8 118.8 34.5 247.4 122.5 173.2 232.3 25.9 325.3 507.0
ds1 L = 2000 121.3 114.1 35.3 240.0 123.5 174.4 197.3 25.9 343.0 405.6
ds1 L = 5000 121.2 113.3 37.4 239.5 131.1 189.8 227.1 25.9 410.0 488.0

ds2 d = 500 121.1 112.2 30.9 238.7 101.6 131.7 126.8 25.9 248.8 269.0
ds2 d = 1000 121.1 111.7 32.0 231.9 105.3 152.2 139.7 25.9 261.5 228.9
ds2 d = 2000 121.2 112.9 33.6 234.7 110.3 162.1 162.3 25.9 286.9 270.1
ds2 d = 5000 120.9 113.0 36.5 238.7 120.6 186.5 212.2 25.9 356.4 409.1

∗The operating system was GNU/Linux Red Hat 7.1. The compiler was gcc ver. 2.96 with options -O3 -fomit-frame-pointer.
The table reports (user + system) time averaged over five runs. The running times do not include the time spent reading the
input files. The test files are ordered by increasing average LCP.

Table 3. Running times (in seconds) for a 933 MHz PowerPC G4 processor, with 1 Gb main memory, 256 Kb
L2 cache and 2 Mb L3 cache.∗

sprot rfc howto reuters linux jdk13 etext99 chr22 gcc w3c

qsufsort 401.8 397.1 83.7 509.5 330.0 232.7 360.2 53.0 213.0 507.1
cache 6n 301.9 249.7 61.5 524.6 278.7 279.9 273.6 66.8 3,393.6 322.8
copy 257.4 215.1 77.7 592.0 347.3 533.4 774.0 51.3 28,288.7 18,006.3

ds0 L = 500 170.6 152.0 56.6 343.0 207.3 233.4 491.7 38.1 1,922.6 12,587.5
ds0 L = 1000 170.2 151.9 56.3 339.4 206.3 242.1 495.3 38.1 1,915.1 12,569.4
ds0 L = 2000 170.0 151.3 56.2 337.6 206.2 243.1 498.9 38.1 1,926.1 12,580.5
ds0 L = 5000 169.9 151.1 56.1 336.9 206.0 245.1 511.5 38.1 1,952.4 12,565.1

ds1 L = 500 175.7 160.5 44.5 362.5 152.6 188.1 316.8 38.2 255.5 777.6
ds1 L = 1000 171.0 157.5 44.3 346.7 148.8 216.8 267.6 38.1 250.4 454.9
ds1 L = 2000 170.1 152.4 44.7 337.0 149.6 215.0 247.0 38.1 265.9 391.7
ds1 L = 5000 170.0 151.0 46.3 335.4 156.6 222.0 275.3 38.1 318.1 465.0

ds2 d = 500 170.3 151.4 41.0 341.4 131.2 176.2 187.5 40.3 210.2 301.4
ds2 d = 1000 179.8 150.7 42.0 329.5 131.0 194.3 195.1 38.1 212.5 250.0
ds2 d = 2000 170.0 151.2 43.2 331.7 135.6 200.9 215.1 38.1 230.7 284.8
ds2 d = 5000 170.0 151.0 45.5 334.6 144.6 218.3 260.3 38.1 284.4 396.3

∗The operating system was GNU/Linux Mandrake 8.2. The compiler was gcc ver. 2.95.3 with options -O3 -fomit-frame-
pointer. The table reports (user + system) time averaged over five runs. The running times do not include the time spent
reading the input files. The test files are ordered by increasing average LCP.
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Fig. 1. Graphical representations of the running times of qsufsort, copy, and cache 6n reported in Tables 2
and 3. Note that the histograms for copy on gcc and w3c and for cache 6n on gcc have been truncated since the
running times are well beyond the upper limit of the Y-axis. The test files are ordered by increasing average LCP.

If we compare the data in Tables 2 and 3 we see that all algorithms run faster on the
Pentium than on the PowerPC with the exception of algorithm copy on the files with the
largest average LCP. This is again in accordance with Seward’s analysis of the algorithms
qsufsort, copy, and cache. In Section 5.3 of [30] Seward has shown that qsufsort does
many random accesses to the memory and therefore does not fully benefit from the
processor cache. This is true, to a lesser extent, also for cache; whereas copy was the
algorithm generating the smallest number of cache misses. Thus, it is to be expected that
copy benefits of the large L3 cache of the PowerPC; and indeed the phenomenon is more
noticeable when the average LCP is large, since in this case most of the work of copy
consists in comparing pairs of suffixes by means of sequential scans.

The data in Tables 2 and 3 also show that the hardness of building the suffix array
does not depend on the average LCP and file size alone. For example, the file reuters has
an average LCP smaller than linux and roughly the same size. Nevertheless, building the
suffix array for reuters takes more time for all algorithms. On the PowerPC, building the
suffix array for reuters with qsufsort and cache 6n takes more time than for the file w3c
which has an average LCP 150 times larger.

Another phenomenon worth mentioning is the behavior of copy and cache 6n on the
files gcc and w3c. w3c is 20% larger than gcc and its average LCP is five times larger.
Surprisingly, building the suffix array for gcc seems to be a more difficult task for copy and
cache 6n; for cache 6n the running time for gcc is more than ten times larger than the time
taken on w3c (note that in Figure 1 the histograms for copy and cache 6n on gcc have been
truncated). A few experiments have shown that the performances of copy and cache 6n
on gcc can be improved using a better pivot selection strategy in the Bentley–McIlroy
ternary quicksort (which is used to sort the sub-buckets). However, we have not been
able to disclose this apparently counterintuitive behavior fully.6 Note that qsufsort shows

6 As we have already pointed out, algorithms copy and cache were conceived and engineered to work on
blocks of data of size at most 1 Mb. They are not to be blamed if they are occasionally inefficient on inputs of
size 80 Mb and more!
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the expected behavior: its running time for gcc is roughly half the running time for w3c.
Summing up, the data in Tables 2 and 3 show that qsufsort is a very fast and robust

algorithm. Its only downside is that it uses 8n space. cache 6n—which only uses 6n
space—is also quite fast, but its behavior on gcc suggests that it is not as robust as
qsufsort. Finally, if we are tight on space and we are forced to use copy we must be
prepared to wait a long time for files with a large average LCP: for gcc and w3c copy is
100–150 times slower than qsufsort.

In the next section we describe a new lightweight algorithm which retains the nice
features of copy—small space occupancy and good performance for files with moderate
average LCP—without suffering from a significant slowdown when the average LCP is
large.

3. Our Contribution: Deep-Shallow Suffix Sorting. Our starting point for the design
of an efficient lightweight suffix array construction algorithm is Seward’s copy algorithm.
Within this algorithm we replace the procedure used for sorting the sub-buckets, i.e.,
the groups of suffixes having the first two characters in common. Instead of using the
Bentley–McIlroy ternary quicksort we use a more sophisticated technique. We sort the
sub-buckets using the Bentley–Sedgewick multikey quicksort, stopping the recursion
when we reach a predefined depth L , that is, when we have to sort a group of suffixes
with a length-L common prefix. At this point we switch to a different string sorting
algorithm (to be described next). This approach has several advantages:

1. it provides a simple and efficient means to detect the groups of suffixes with a long
common prefix;

2. because of the limit L , the size of the recursion stack is bounded by a predefined
constant which is independent of the size of the input text and can be tuned by the
user;

3. if the suffixes in the sub-bucket have common prefixes which never exceed L , their
sorting is done by multikey quicksort which is an extremely efficient string sorting
algorithm when the average LCP is small (see the last paragraph of Section 2.1).

We call this approach deep–shallow suffix sorting since we mix an algorithm for sorting
suffixes with short LCP (shallow sorter) with an algorithm (actually more than one, as
we shall see) for sorting suffixes with long LCP (deep sorter). In the next sections we
describe several deep sorting strategies, that is, algorithms for sorting suffixes having a
common prefix longer than L .

3.1. Blind Sorting. Let s1, s2, . . . , sm denote a group of m suffixes with a length-L
common prefix that we need to deep sort. If m is small (we discuss later what this
means) we sort them using an algorithm, called blind sort, which is based on the blind
trie data structure introduced in Section 2.1 of [7] (see Figure 2). Blind sorting simply
consists of inserting the strings s1, . . . , sm one at a time in an initially empty blind trie;
then we traverse the trie from left to right thus obtaining the strings sorted in lexicographic
order. Obviously in the construction of the trie we ignore the first L characters of each
suffix since we know that they are identical.
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Fig. 2. A standard compacted trie (left) and the corresponding blind trie (right) for the strings abaaba, abaabb,
abac, bcbcaba, bcbcabb, bcbcbba, and bcbcbbba. Each internal node of the blind trie contains an integer
and a set of outgoing labeled arcs. A node containing the integer k represent a set of strings which have a
length-k common prefix and differ in the (k + 1)st character. The outgoing arcs are labeled with the different
characters that we find in position k + 1. Note that since the outgoing arcs are ordered alphabetically, by
visiting the trie leaves from left to right we get the strings in lexicographic order.

The insertion of string si in the trie consists of a first phase in which we scan si and
simultaneously traverse the trie top-down until we reach a leaf �. Then we compare si

with the string, say sj , associated to leaf � and we determine the length of their common
prefix. This length and the mismatching character allow us to identify the position in the
trie where the new leaf corresponding to si has to be inserted (see [7] for details). The
crucial point of the algorithm is that for the insertion of si in the trie the only operations
involving the suffixes s1, . . . , si are:7

1. a sequential access to si during the traversal of the trie, and
2. the sequential scan of si and sj during their comparison.

Thus, our algorithm sorts the suffixes using only “cache-friendly” sequential string scans.
Note that we are neglecting in this analysis the cost of trie traversal because the trie is
small, since m is chosen to be small, and thus the cost of suffix comparisons dominates
the cost of trie percolation.

We point also out that the string-based Bentley–McIlroy ternary quicksort algorithm,
used within copy, sorts the suffixes by means of sequential scans. However, ternary
quicksort executes on average �(m log m) sequential scans, whereas our blind sorting
algorithm executes only �(m) sequential accesses to the suffixes. This improvement

7 In the following we use the expression “sequential access to s” when an algorithm reads the characters
s[ j1], s[ j2], . . . , s[ jk ] with j1 < j2 < · · · < jk . We use the expression “sequential scan” when an algorithm
reads consecutive characters: s[0], s[1], . . . , s[k].
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over ternary quicksort is paid for in terms of the extra memory required for storing the
trie data structure. This means that we cannot use blind sorting for an arbitrarily large
group of suffixes.

Our implementation of blind sort uses at most 36m bytes of memory. We use it when
the number of suffixes to be sorted is less than B = n/2000. With this choice the space
overhead of using blind sort is at most 9n/500 bytes. If the text is 100 Mb long, this
overhead is 1.8 Mb which should be compared with the 500 Mb required by the text and
the suffix array.8

If the number of suffixes to be sorted is larger than B = n/2000, we sort them using
the Bentley–McIlroy ternary quicksort. However, with respect to the ternary quicksort
algorithm used by copy for sorting the sub-buckets, we introduce the following two
improvements:

1. As soon as we are working with a group of suffixes smaller than B we stop the
recursion and we sort them using blind sort.

2. During each ternary quicksort partitioning phase, we compute LS (resp. LL) which is
the LCP between the pivot and the strings which are lexicographically smaller (resp.
larger) than the pivot. When we sort the strings which are smaller (resp. larger) than
the pivot, we can skip the first LS (resp. LL) characters since we know they constitute
a common prefix.

We call ds0 the suffix sorting algorithm which uses multikey quicksort up to depth L
and then switches to the blind-sort/ternary-quicksort combination described above. The
performance of ds0 is reported in Tables 2 and 3 for several values of the parameter L .

We can see that ds0 is faster than qsufsort and cache 6n on chr22 and on the five
files with the smallest average LCP. We can also see that ds0 is always faster than copy
and that for the file gcc ds0 achieves a tenfold running time reduction. This is certainly
a good start. We now show how to reduce the running time further by taking advantage
of the fact that the strings we are sorting are all suffixes of the same text.

3.2. Induced Sorting. One of the nice features of the algorithms two-stage, copy, and
cache 6n is that some of the suffixes are not sorted by direct comparison: their relative
order is derived in constant time from the ordering of other suffixes which have already
been sorted. We use a generalization of this technique in the deep-sorting phase of our
algorithm.

Assume we need to sort the suffixes s1, . . . , sm which have a length-L common prefix.
We scan the first L characters of s1 looking at each pair of consecutive characters, namely
T [s1+ i]T [s1+ i + 1] for i = 0, . . . , L − 1. As soon as we find a pair of characters, say
αβ, belonging to an already sorted sub-bucket bαβ , we derive the ordering of s1, . . . , sm

from the ordering of bαβ as follows.
Let α = T [s1 + t] and β = T [s1 + t + 1] for some t < L − 1. Since s1, . . . , sm have

a length-L common prefix, every si contains the character-pair αβ starting at position t .
Hence bαβ contains m suffixes “corresponding” to s1, . . . , sm , that is, bαβ contains the

8 Although we believe this is a small overhead, we point out that the limit B = n/2000 was chosen somewhat
arbitrarily. Experimental results show that there is only a marginal degradation in performance when we take
B = n/3000 or B = n/4000.
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suffixes starting at s1+t, s2+t, . . . , sm+t . The good news is that the first t−1 characters
of s1, . . . , sm are identical, so that the ordering of s1, . . . , sm can be derived from the
ordering of the corresponding suffixes in bαβ . The bad news is that these corresponding
suffixes are not necessarily consecutive in bαβ , even if they are expected to be close
to each other because of their long common prefix. Combining these observations we
derive the ordering of s1, . . . , sm as follows:

1-is We sort the suffixes s1, . . . , sm according to their starting position in the input text
T [1, n]. This is done so that in Step 3-is below we can use binary search to answer
membership queries in the set s1, . . . , sm .

2-is Let ŝ denote the suffix starting at the text character T [s1 + t]. We scan the sub-
bucket bαβ in order to find the position of ŝ within bαβ .

3-is We scan the suffixes preceding and following ŝ in the sub-bucket bαβ . For each
suffix s we check whether the suffix starting at the character T [s − t] is in the set
s1, . . . , sm ; if so we mark the suffix s.9

4-is When m suffixes in bαβ have been marked, we scan them from left to right. Since
bαβ is sorted this gives us the correct ordering of s1, . . . , sm .

The effectiveness of the above procedure depends on how many suffixes are scanned
at Step 3-is before all the suffixes corresponding to s1, . . . , sm are found and marked. We
expect that this number is small since, as we already observed, the suffixes corresponding
to s1, . . . , sm are expected to be close to each other in bαβ .

Obviously there is no guarantee that in the length-L common prefix of s1, . . . , sm

there is a pair of characters belonging to an already sorted sub-bucket. In this case we
cannot use induced sorting and we resort to the blind-sort/quicksort combination.

We call ds1 the algorithm which uses induced sorting and we report its performance
for several values of L in Tables 2 and 3. ds1 appears to be slightly slower than ds0 for
files with small average LCP but it is clearly faster for the files with large average LCP:
for w3c it is more than ten times faster. We can see that ds1 with L = 2000 runs faster
than qsufsort and cache 6n for all files except gcc and w3c.

3.3. Anchor Sorting. Profiling shows that the most costly operation of induced sorting
is the scanning of the sub-bucket bαβ to search for the position of suffix ŝ (Step 2-is
above). We show how to avoid this operation using a small amount of extra memory.
We partition the text T [1, n] into n/d segments of length d: T [1, d], T [d + 1, 2d], and
so on (for simplicity we assume that d divides n). We define two arrays Anchor[·] and
Offset[·] of size n/d such that:

• Offset[i] contains the position of the leftmost suffix which starts in the i th segment and
belongs to an already sorted sub-bucket. If no suffix belonging to an already sorted
small bucket starts in the i th segment, then Offset[i] = 0.
• Let s̃i denote the suffix whose starting position is stored in Offset[i]. Anchor[i] contains

the position of s̃i within its sub-bucket.

9 We mark the suffixes by setting the most significant bit of the integer which represent the suffix s. This
means that our algorithm can work with texts of size at most 231 bytes. Note that the same restriction holds
for qsufsort as well.
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Note that the arrays Offset and Anchor provide a sort of partial inverse of the (already
computed portion of the) suffix array. In this sense they are similar to the array R[·] used
by cache and cache 6n which stores the most significant bits of the ranks of the already
sorted suffixes.

The use of the arrays Anchor[·] and Offset[·] within induced sorting is fairly simple.
Assume that we need to sort the suffixes s1, . . . , sm which have a length-L common
prefix. For j = 1, . . . ,m, let zj denote the segment containing the starting position of
sj . If s̃zj (that is, the leftmost already sorted suffix in segment zj ) starts within the first
L characters of sj (that is, sj < s̃zj < sj + L), then we can sort s1, . . . , sm using the
induced sorting algorithm described in the previous section. However, we can now skip
Step 2-is since the position of s̃zj within its sub-bucket is stored in Anchor[zj ].

Obviously it is possible that, for some j , s̃zj does not exist or cannot be used because
it precedes sj or follows sj + L . However, since the suffixes s1, . . . , sm usually belong to
different segments, we have m possible candidates. In our implementation, among the
available sorted suffixes s̃zj ’s, we use the one whose starting position is closest to the
corresponding sj , that is, we choose j which minimizes s̃zj − sj > 0. This choice helps
Step 3-is of the induced sorting since—using the notation of Step 3-is—it maximizes
L− t and thus minimizes the number of suffixes s such that the suffix starting at T [s− t]
is not in the set s1, . . . , sm . If, for j = 1, . . . ,m, s̃zj does not exist or cannot be used,
then we resort to the blind-sort/quicksort combination.

For updating the arrays Offset and Anchor we use the following strategy. The straight-
forward approach is to update them each time we complete the sorting of a sub-bucket.
Instead we update them at the end of each call to deep sorting, that is, each time we
complete the sorting of a set of suffixes which share a length-L common prefix. This
approach has a twofold advantage:

• Updates are done only when we have useful data. As an example, if a sub-bucket is
sorted by shallow sorting alone, that is, all suffixes differ within the first L characters,
the suffixes in that small bucket are not used to update Offset and Anchor. The rationale
is that these suffixes are not very useful for induced sorting. It is easy to see that they
can be used only for determining the ordering of suffixes which differ within the first
d+ L characters while we know that induced sorting is advantageous only when used
for suffixes which have a very long common prefix.
• Updates are done as early as possible. When we complete the sorting of a set of

suffixes s1, . . . , sm which share a length-L common prefix, we use them to update the
arrays Offset and Anchor without waiting for the completion of the sorting of their
sub-bucket. This means that anchor sorting can use s1, . . . , sm to determine the order
of a set of suffixes which are in the same sub-bucket as s1, . . . , sm .

Concerning the space occupancy of anchor sorting, we observe that in Offset[i] we
can store the distance between the beginning of the i th segment and the leftmost sorted
suffix in the segment. Hence Offset[i] is always smaller than the segment length d. If
we take d < 216 we can store the array Offset in 2n/d bytes. Since each entry of Anchor
requires 4 bytes, the overall space occupancy is 6n/d bytes. In our tests d was at least 500
which yields an overhead of 6n/500 bytes. If we add the 9n/500 bytes required by blind
sorting with B = n/2000, we get a maximum overhead of at most 3n/100 bytes. Hence,
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Table 4. Running times (in seconds) for a 1400 MHz Athlon XP and a 1700 MHz Pentium 4.∗

sprot rfc howto reuters linux jdk13 etext99 chr22 gcc w3c

1400 MHz Athlon XP

qsufsort 280.6 305.6 73.2 348.9 245.7 197.7 301.0 49.0 182.7 345.7
cache 6n 257.4 225.2 51.9 424.4 240.9 221.6 236.8 58.4 2601.7 269.2

ds2 d = 500 150.9 134.9 35.8 274.1 116.1 154.9 156.8 31.5 189.2 237.4
ds2 d = 1000 150.4 132.9 36.3 261.5 117.9 173.1 164.5 31.7 202.6 199.8
ds2 d = 2000 150.3 132.9 37.0 261.1 120.8 172.6 178.4 31.4 223.0 221.7
ds2 d = 5000 150.2 132.9 38.6 263.2 127.4 186.9 210.1 31.3 286.4 296.0

1700 MHz Pentium 4

qsufsort 340.0 367.6 90.4 430.4 311.0 243.4 344.2 55.4 228.1 442.0
cache 6n 265.8 237.6 61.9 415.4 245.9 407.8 256.5 61.6 2171.1 464.3

ds2 d = 500 163.6 137.5 39.3 305.3 120.8 186.3 165.4 33.3 162.4 219.6
ds2 d = 1000 163.1 135.9 39.4 294.4 121.1 203.7 172.1 33.0 169.6 189.7
ds2 d = 2000 163.2 135.7 39.9 292.7 122.5 204.6 191.5 33.3 189.8 203.2
ds2 d = 5000 163.1 134.5 41.2 293.3 126.4 213.9 218.3 33.0 221.6 245.6

∗Both machines were equipped with with 1 Gb main memory and 256 Kb L2 cache. The operating system on the Athlon
was GNU/Linux Debian 2.2; the compiler was gcc ver. 2.95.2 with options -O3 -fomit-frame-pointer. The operating system
on the Pentium 4 was GNU/Linux Mandrake 9.0; the compiler was gcc ver. 3.2 with options -O3 -fomit-frame-pointer
-march=pentium4. The table reports (user + system) time averaged over five runs. The running times do not include the
time spent reading the input files. The test files are ordered by increasing average LCP.

for a 100 Mb text the overhead is at most 3 Mb, which we consider a “small” amount
compared with the 500 Mb used by the text and the suffix array.

In Tables 2 and 3 we report the running time of anchor sorting—under the name ds2—
for d ranging from 500 to 5000 and L = d+50. In Table 4 we report the running time of
qsufsort, cache 6n, and ds2 on an Athlon XP and a Pentium 4. A first observation is that
decreasing the parameter d (that is, increasing the number of anchors) within ds2 does
not always yield a reduction of the running time. Indeed, for the file sprot the best results
are obtained for d = 5000; for the files rfc, reuters, and w3c the best results are obtained
for d = 1000; for the other files the fastest algorithm is the one with d = 500. Note that
there is not an obvious relationship between the optimal value of d and the average LCP

of the input file. This behavior has been confirmed by some additional experiments: for
example, using d = 200 we get a 20% reduction in the running time for jdk13 but for
the other files the running times are very close to those obtained for d = 500.

To compare ds2 with the other algorithms, in addition to the data in Tables 2–4, in
Figure 3 we show a graphical comparison of the running times of qsufsort, cache 6n,
and ds2 with d = 500 on the four different architectures used in our tests. We can see
that for the files with moderate average LCP ds2 with d = 500 is significantly faster than
copy and cache 6n and roughly twice as fast as qsufsort. For the files with a large average
LCP, ds2 is always faster than cache 6n and it is faster than qsufsort for all files except
gcc. For gcc ds2 is faster than qsufsort on the Pentium 4 and slower on the Pentium III;
on the PowerPC and the Athlon the two algorithms have roughly the same speed.

A comment on the performance on the Pentium 4 is in order. We can see that most of the
times the 1700 MHz Pentium 4 is significantly slower than the 1000 MHz Pentium III.
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Fig. 3. Graphical representations of the running times of qsufsort, cache 6n, and ds2 (with d = 500, L = 550)
reported in Tables 2–4. Note that the histograms for cache 6n on gcc have been truncated since the running
times are well beyond the upper limit of the Y-axis. The test files are ordered by increasing average LCP.

Remarkable exceptions are cache 6n on gcc and ds2 on gcc and w3c for which the
Pentium 4 is clearly faster. These data show once more that the architectures of modern
CPUs can have significant and unexpected impacts on the execution speed of the different
algorithms.10

In order to have a different perspective on the performances of ds2, in Figure 4 we
report the ratios between the running times of ds2 and qsufsort on the four different
machines used in our tests. These ratios represent the reduction in running time achieved
by ds2 over qsufsort. We observe that for all files except gcc the ratios for the Pentium III
and the Athlon are quite close. We can also see that—for all files except chr22—the
smallest ratios are achieved on the PowerPC and the Pentium 4. This means that ds2
is “more efficient” than qsufsort on these architectures; however, the difference is not
marked and does not appear to be related to the average LCP of the input files.

10 Another peculiarity of the Pentium 4 is that the use of the compiler option -march=pentium4 greatly enhanced
the performances of cache 6n and ds2 (it did not affect the performances of qsufsort). On the other machines,
the -march option did not bring a clear improvement and therefore it was not used.
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Fig. 4. Running time reduction achieved by ds2 over qsufsort. Each bar represents the ratio between the running
time of ds2 (with d = 500, L = 550) over the running time of qsufsort.

Overall, the data reported in this section show the validity of our deep–shallow suffix
sorting approach. We have been able to improve the already impressive performances
of copy and cache 6n for files with moderate average LCP. At the same time we have
avoided any significant degradation in performances for files with large average LCP:
we are faster than any other algorithm with the only exception of the file gcc on the
Pentium 3. We stress that this improvement in terms of running time has been achieved
with a simultaneous reduction of the space occupancy. ds2 with d = 500 uses 5.03n
space, cache 6n uses 6n space, and qsufsort uses 8n space.

4. Concluding Remarks. In this paper we have presented a lightweight algorithm for
building the suffix array of a text T [1, n]. We have been motivated by the observation
that the major drawback of most suffix array construction algorithms is their large space
occupancy. Our algorithm uses 5.03n bytes and is faster than any other tested algorithm.
Only on a single file on a single machine is our algorithm outperformed by qsufsort,
which however uses 8n bytes.

The C source code of all algorithms described in this paper, and the complete collection
of test files, are publicly available on the web [26]. For our lightweight suffix sorting
algorithm we provide a simple API which makes the construction of the suffix array as
simple as calling two C procedures.

Finally, we point out that suffix sorting is a very active area of research. All algorithms
described in this paper are less than 4 years old and new ones are under development.
During the review of this paper some �(n) time suffix sorting algorithms not based on
the suffix tree have appeared in the literature [14], [17], [19], [20]. At the moment it is
too early to evaluate their practical impact, although their engineering and experimen-
tal evaluation is certainly a worthwhile research goal. Also during the review of this
paper, a new lightweight suffix sorting algorithm has been proposed by Burkhardt and
Kärkkäinen [3]. This new algorithm runs in O(n log n) time in the worst case and uses
O(n/
√

log n) space in addition to the input text and the suffix array. Preliminary experi-
mental results reported in Section 7 of [3] show that on real-world files this algorithm is



Engineering a Lightweight Suffix Array Construction Algorithm 49

roughly three times slower than ds2 and uses 17% more space; however, its O(n log n)
worst-case running time makes it an attractive option thus deserving further investiga-
tion. Finally, we know of a new suffix sorting algorithm [31] which, like qsufsort, uses
8n space and runs in O(n log n) time in the worst case. Preliminary tests show that this
new algorithm is roughly two times faster than qsufsort and slightly faster than ds2 [31].
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