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Synonyms
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ProblemDefinition

The problem of lossless data compression is the problem

of compactly representing data in a format that admits the
faithful recovery of the original information. Lossless data

compression is achieved by taking advantage of the redun-

dancy which is often present in the data generated by ei-
ther humans or machines.

Dictionary-based data compression has been “the so-
lution” to the problem of lossless data compression for

nearly 15 years. This technique originated in two theoret-

ical papers of Ziv and Lempel [15,16] and gained popu-
larity in the “80s” with the introduction of the Unix tool

compress (1986) and of the gif image format (1987). Al-

though today there are alternative solutions to the problem
of lossless data compression (e. g., Burrows-Wheeler com-

pression and Prediction by Partial Matching), dictionary-
based compression is still widely used in everyday appli-

cations: consider for example the zip utility and its vari-

ants, the modem compression standards V.42bis and V.44,
and the transparent compression of pdf documents. The

main reason for the success of dictionary-based compres-

sion is its unique combination of compression power and
compression/decompression speed. The reader should re-

fer to [13] for a review of several dictionary-based com-
pression algorithms and of their main features.

Key Results

Let T be a string drawn from an alphabet ˙ . Dictionary-
based compression algorithms work by parsing the in-

put into a sequence of substrings (also called words)

T1; T2; : : : ; Td and by encoding a compact representation
of these substrings. The parsing is usually done incremen-

tally and on-line with the following iterative procedure.

Assume the encoder has already parsed the substrings
T1; T2; : : : ; Ti�1. To proceed, the encoder maintains a dic-

tionary of potential candidates for the next word Ti and
associates a unique codeword with each of them. Then,
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it looks at the incoming data, selects one of the candi-

dates, and emits the corresponding codeword. Different
algorithms use different strategies for establishing which

words are in the dictionary and for choosing the next word

Ti. A larger dictionary implies a greater flexibility for the
choice of the next word, but also longer codewords. Note

that for efficiency reasons the dictionary is usually not built

explicitly: the whole process is carried out implicitly using
appropriate data structures.

Dictionary-based algorithms are usually classified into
two families whose respective ancestors are two parsing

strategies, both proposed by Ziv and Lempel and today

universally known as LZ78 [16] and LZ77 [15].

The LZ78 Algorithm

Assume the encoder has already parsed the words

T1; T2; : : : ; Ti�1, that is, T = T1T2 � � � Ti�1T̂i for some text
suffix T̂i . The LZ78 dictionary is defined as the set of

strings obtained by adding a single character to one of the

words T1; : : : ; Ti�1 or to the empty word. The next word
Ti is defined as the longest prefix of T̂i which is a dictio-

nary word. For example, for T = aabbaaabaabaabba the

LZ78 parsing is: a, ab, b, aa, aba, abaa, bb, a. It is easy to see
that all words in the parsing are distinct, with the possible

exception of the last one (in the example the word a). Let
T0 denote the empty word. If Ti = Tj˛, with 0 � j < i and

˛ 2 ˙ , the codeword emitted by LZ78 for Ti will be the

pair (j, ˛). Thus, if LZ78 parses the string T into t words,
its output will be bounded by t log t + t log j˙ j + �(t) bits.

The LZ77 Algorithm

Assume the encoder has already parsed the words
T1; T2; : : : ; Ti�1, that is, T = T1T2 � � � Ti�1T̂i for some text

suffix T̂i . The LZ77 dictionary is defined as the set of

strings of the form w˛ where ˛ 2 ˙ and w is a substring
of T starting in the already parsed portion of T. The next

word Ti is defined as the longest prefix of T̂i which is a dic-

tionary word. For example, for T = aabbaaabaabaabba

the LZ77 parsing is: a, ab, ba, aaba, abaabb, a. Note that, in

some sense, T5 = abaabb is defined in terms of itself: it is
a copy of the dictionary wordw˛ withw starting at the sec-

ond a of T4 and extending into T5! It is easy to see that all

words in the parsing are distinct, with the possible excep-
tion of the last one (in the example the word a), and that

the number of words in the LZ77 parsing is smaller than

in the LZ78 parsing. If Ti = w˛ with ˛ 2 ˙ , the codeword
for Ti is the triplet (si ; `i ; ˛) where si is the distance from

the start of Ti to the last occurrence of w in T1T2 � � � Ti�1,
and `i = jwj.

Entropy Bounds

The performance of dictionary-based compressors has
been extensively investigated since their introduction.

In [15] it is shown that LZ77 is optimal for a certain fam-
ily of sources, and in [16] it is shown that LZ78 achieves

asymptotically the best compression ratio attainable by

a finite-state compressor. This implies that, when the in-
put string is generated by an ergodic source, the compres-

sion ratio achieved by LZ78 approaches the entropy of the

source. More recent work has established similar results
for other Ziv–Lempel compressors and has investigated

the rate of convergence of the compression ratio to the en-
tropy of the source (see [14] and references therein).

It is possible to prove compression bounds without

probabilistic assumptions on the input, using the notion
of empirical entropy. For any string T, the order k em-

pirical entropy Hk(T) is the maximum compression one

can achieve using a uniquely decodable code in which the
codeword for each character may depend on the k char-

acters immediately preceding it [6]. The following lemma
is a useful tool for establishing upper bounds on the com-

pression ratio of dictionary-based algorithms which hold

pointwise on every string T.

Lemma 1 ([6, Lemma 2.3]) Let T = T1T2 � � � Td be a pars-

ing of T such that each word Ti appears at most M times.

Then, for any k � 0

d log d � jTjHk(T)+d log(jTj/d)+d logM+�(kd+d);

where Hk(T) is the k-th order empirical entropy of T. �

Consider, for example, the algorithm LZ78. It parses the

input T into t distinct words (ignoring the last word
in the parsing) and produces an output bounded by

t log t + t log j˙ j + �(t) bits. Using Lemma 1 and the fact
that t = O(jTj/ log T), one can prove that LZ780s output is

at most jTjHk(T) + o(jTj) bits. Note that the bound holds

for any k � 0: this means that LZ78 is essentially “as pow-
erful” as any compressor that encodes the next character

on the basis of a finite context.

Algorithmic Issues

One of the reasons for the popularity of dictionary-based

compressors is that they admit linear-time, space-efficient

implementations. These implementations sometimes re-
quire non-trivial data structures: the reader is referred

to [12] and references therein for further reading on this
topic.



Unc
or

re
cte

d 
Pro

of

20
08

-0
4-

29

��

Kao: Encyclopedia of Algorithms — Entry 235 — 2008/4/29 — 10:36 — page 257 — LE-TEX

��

�� ��

Dictionary-Based Data Compression D 257

Greedy vs. Non-Greedy Parsing

Both LZ78 and LZ77 use a greedy parsing strategy in the

sense that, at each step, they select the longest prefix of the
unparsed portion which is in the dictionary. It is easy to see

that for LZ77 the greedy strategy yields an optimal pars-

ing; that is, a parsing with the minimum number of words.
Conversely, greedy parsing is not optimal for LZ78: for any

sufficiently large integerm there exists a string that can be
parsed to O(m) words and that the greedy strategy parses

in ˝(m3/2) words. In [9] the authors describe an efficient

algorithm for computing an optimal parsing for the LZ78
dictionary and, indeed, for any dictionary with the prefix-

completeness property (a dictionary is prefix-complete if

any prefix of a dictionary word is also in the dictionary).
Interestingly, the algorithm in [9] is a one-step lookahead

greedy algorithm: rather than choosing the longest possi-
ble prefix of the unparsed portion of the text, it chooses the

prefix that results in the longest advancement in the next

iteration.

Applications

The natural application field of dictionary-based compres-

sors is lossless data compression (see, for example [13]).
However, because of their deep mathematical properties,

the Ziv–Lempel parsing rules have also found applications

in other algorithmic domains.

Prefetching

Krishnan and Vitter [7] considered the problem of

prefetching pages from disk into memory to anticipate
users’ requests. They combined LZ78 with a pre-existing

prefetcher P1 that is asymptotically at least as good as the

best memoryless prefetcher, to obtain a new algorithm P

that is asymptotically at least as good as the best finite-

state prefetcher. LZ780s dictionary can be viewed as a trie:
parsing a string means starting at the root, descending one

level for each character in the parsed string and, finally,

adding a new leaf. Algorithm P runs LZ78 on the string of
page requests as it receives them, and keeps a copy of the

simple prefetcher P1 for each node in the trie; at each step,

P prefetches the page requested by the copy of P1 associ-
ated with the node LZ78 is currently visiting.

String Alignment

Crochemore, Landau and Ziv-Ukelson [4] applied LZ78

to the problem of sequence alignment, i. e., finding the

cheapest sequence of character insertions, deletions and
substitutions that transforms one string T into another

T0 (the cost of an operation may depend on the charac-

ter or characters involved). Assume, for simplicity, that
jTj = jT 0j = n. In 1980 Masek and Paterson proposed an

O(n2/ log n)-time algorithm with the restriction that the

costs be rational; Crochemore et al.’s algorithm allows
real-valued costs, has the same asymptotic cost in the

worst case, and is asymptotically faster for compressible

texts.
The idea behind both algorithms is to break into

blocks the matrix A[1 : : : n; 1 : : : n] used by the obvi-
ous O(n2)-time dynamic programming algorithm. Masek

and Paterson break it into uniform-sized blocks, whereas

Crochemore et al. break it according to the LZ78 pars-
ing of T and T0. The rationale is that, by the nature

of LZ78 parsing, whenever they come to solve a block

A[i : : : i0; j : : : j0], they can solve it in O(i0 � i + j0 � j)
time because they have already solved blocks identical

to A[i : : : i0 � 1; j : : : j0] and A[i : : : i0; j : : : j0 � 1] [8]. Lif-
shits, Mozes, Weimann and Ziv-Ukelson [8 recently used

a similar approach to speed up the decoding and training

of hidden Markov models.

Compressed Full-Text Indexing

Given a text T, the problem of compressed full-text in-

dexing is defined as the task of building an index for T
that takes space proportional to the entropy of T and that

supports the efficient retrieval of the occurrences of any

pattern P in T. In [10] Navarro proposed a compressed
full-text index based on the LZ78 dictionary. The basic

idea is to keep two copies of the dictionary as tries: one

storing the dictionary words, the other storing their re-
versal. The rationale behind this scheme is the follow-

ing. Since any non-empty prefix of a dictionary word
is also in the dictionary, if the sought pattern P occurs

within a dictionary word, then P is a suffix of some word

and easy to find in the second dictionary. If P overlaps
two words, then some prefix of P is a suffix of the first

word—and easy to find in the second dictionary—and

the remainder of P is a prefix of the second word—and
easy to find in the first dictionary. The case when P over-

laps three or more words is a generalization of the case
with two words. Recently, Arroyuelo et al. [1] improved

the original data structure in [10]. For any text T, the

improved index uses (2 + �)jTjHk(T) + o(jTj log j˙ j) bits
of space, where Hk(T) is the k-th order empirical en-

tropy of T, and reports all occ occurrences of P in T in

O(jPj2 log jPj + (jPj + occ) log jTj) time.
Independently of [10], in [5] the LZ78 parsing was

used together with the Burrows-Wheeler compression
algorithm to design the first full-text index that uses
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o(jTj log jTj) bits of space and reports the occ occurrences

of P in T in O(jPj + occ) time. If T = T1T2 � � � Td is the
LZ78 parsing of T, in [5] the authors consider the string

T$ = T1$T2$ � � � $Td$ where $ is a new character not be-

longing to ˙ . The string T$ is then compressed using the
Burrows-Wheeler transform. The $’s play the role of an-

chor points: their positions in T$ are stored explicitly so

that, to determine the position in T of any occurrence of P,
it suffices to determine the position with respect to any of

the $’s. The properties of the LZ78 parsing ensure that the
overhead of introducing the $’s is small, but at the same

time the way they are distributed within T$ guarantees the

efficient location of the pattern occurrences.
Related to the problem of compressed full-text index-

ing is the compressed matching problem in which text

and pattern are given together (so the former cannot be
preprocessed). Here the task consists in performing string

matching in a compressed text without decompressing it.
For dictionary-based compressors this problem was first

raised in 1994 by A. Amir, G. Benson, and M. Farach, and

has received considerable attention since then. The reader
is referred to [11] for a recent review of the many theoret-

ical and practical results obtained on this topic.

Substring Compression Problems

Substring compression problems involve preprocessing T

to be able to efficiently answer queries about compress-

ing substrings: e. g., how compressible is a given sub-
string s in T? what is s’s compressed representation? or,

what is the least compressible substring of a given length

`? These are important problems in bioinformatics be-
cause the compressibility of a DNA sequence may give

hints as to its function, and because some clustering al-
gorithms use compressibility to measure similarity. The

solutions to these problems are often trivial for sim-

ple compressors, such as Huffman coding or run-length
encoding, but they are open for more powerful algo-

rithms, such as dictionary-based compressors, BWT com-

pressors, and PPM compressors. Recently, Cormode and
Muthukrishnan [3] gave some preliminary solutions for

LZ77. For any string s, let C(s) denote the number of
words in the LZ77-parsing of s, and let LZ77(s) denote

the LZ77-compressed representation of s. In [3] the au-

thors show that, with O(|T| polylog(|T|)) time preprocess-
ing, for any substring s of T they can: a) compute LZ77(s)

in O(C(s) log jTj log log jTj) time, b) compute an approx-

imation of C(s) within a factor O(log jTj log� jTj) in O(1)
time, c) find a substring of length ` that is close to being the

least compressible in O(jTj`/ log `) time. These bounds
also apply to general versions of these problems, in which

queries specify another substring t in T as context and ask

about compressing substrings when LZ77 starts with a dic-
tionary already containing the words in the LZ77 parsing

of t.

Grammar Generation

Charikar et al. [2] considered LZ78 as an approximation

algorithm for the NP-hard problem of finding the small-

est context-free grammar that generates only the string
T. The LZ78 parsing of T can be viewed as a context-

free grammar in which for each dictionary word Ti = Tj˛

there is a production X i ! X j˛. For example, for T =

aabbaaabaabaabba the LZ78 parsing is: a, ab, b, aa, aba,

abaa, bb, a, and the corresponding grammar is: S !

X1 : : : X7X1; X1 ! a; X2 ! X1b; X3 ! b; X4 ! X1a;

X5 ! X2a; X6 ! X5a; X7 ! X3b. Charikar et al. showed

LZ78’s approximation ratio is in O((jTj/ log jTj)2/3) \

˝(jTj2/3 log jTj); i. e., the grammar it produces has size at

most f (jTj) � m�, where f (|T|) is a function in this inter-
section and m� is the size of the smallest grammar. They

also showed m� is at least the number of words output by

LZ77 on T, and used LZ77 as the basis of a new algorithm
with approximation ratio O(log(jTj/m�)).

URL to Code

The source code of the gzip tool (based on LZ77) is
available at the page http://www.gzip.org/. An LZ77-based

compression library zlib is available from http://www.zlib.
net/. A more recent, and more efficient, dictionary-based

compressor is LZMA (Lempel–Ziv Markov chain Algo-

rithm), whose source code is available from http://www.
7-zip.org/sdk.html.
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Synonyms

Approximate dictionary matching; Approximate text in-
dexing

ProblemDefinition

Indexing and dictionary matching are generalized models
of pattern matching. These models have attained impor-

tance with the explosive growth of multimedia, digital li-

braries, and the Internet.
1. Text Indexing: In text indexing one desires to prepro-

cess a text t, of length n, and to answer where subse-

quent queries p, of lengthm, appear in the text t.
2. Dictionary Matching: In dictionary matching one is

given a dictionary D of strings p1; : : : ; pd to be prepro-

cessed. Subsequent queries provide a query string t, of
length n, and ask for each location in t at which patterns

of the dictionary appear.

Key Results

Text Indexing

The indexing problem assumes a large text that is to be

preprocessed in a way that will allow the following efficient
future queries. Given a query pattern, one wants to find all

text locations that match the pattern in time proportional
to the pattern length and to the number of occurrences.

To solve the indexing problem, Weiner [14] invented

the suffix tree data structure (originally called a posi-

tion tree), which can be constructed in linear time, and

subsequent queries of length m are answered in time

O(m log j˙ j + tocc), where tocc is the number of pattern
occurrences in the text.

Weiner’s suffix tree in effect solved the indexing prob-
lem for exactmatching of fixed texts. The construction was

simplified by the algorithms of McCreight and, later, Chen

and Seiferas. Ukkonen presented an online construction
of the suffix tree. Farach presented a linear time construc-

tion for large alphabets (specifically, when the alphabet is

f1; : : : ; ncg, where n is the text size and c is some fixed
constant). All results, besides the latter, work by handling

one suffix at a time. The latter algorithm uses a divide
and conquer approach, dividing the suffixes to be sorted

to even-position suffixes and odd-position suffixes. See the

entry on Suffix Tree Construction for full details. The stan-
dard query time for finding a pattern p in a suffix tree is

O(m log j˙ j). By slightly adjusting the suffix tree one can

obtain a query time of O(m + log n), see [12].
Another popular data structure for indexing is suf-

fix arrays. Suffix arrays were introduced by Manber and
Myers. Others proposed linear time constructions for lin-

early bounded alphabets. All three extend the divide and

conquer approach presented by Farach. The construction
in [11] is especially elegant and significantly simplifies the

divide and conquer approach, by dividing the suffix set

into three groups instead of two. See the entry on Suffix
Array Construction for full details. The query time for suf-

fix arrays is O(m + log n) achievable by embedding addi-
tional lcp (longest common prefix) information into the


