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the original algorithm described by Burrows and Wheeler, which, despite its simplicity, outperforms the Gzip compressor.
The second one uses an additional run-length encoding step to improve compression. We prove that the compression ratio
of both algorithms can be bounded in terms of the k-th order empirical entropy of the input string for any k ≥ 0. We make
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assuming that the input comes from a finite-order Markov source.
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1. INTRODUCTION

A recent breakthrough in data compression has been the introduction of the Burrows-Wheeler Transform
(BWT from now on) [Burrows and Wheeler 1994]. Loosely speaking, the BWT produces a permutation
bwt(s) of the input string s such that from bwt(s) we can retrieve s but at the same time bwt(s) is
much easier to compress. The whole idea of a transformation that makes a string easier to compress is
completely new, even if, after the appearance of the BWT some researchers recognized that it is related
to some well known compression techniques (see for example [Cleary and Teahan 1997; Fenwick 1996b;
Larsson 1998]).

The BWT is a very powerful tool and even the simplest algorithms which use it have surprisingly
good performances (the reader may look at the very simple and clean BWT-based algorithm described
in [Nelson 1996] which outperforms, in terms of compression ratio, the commercial package Pkzip). More
advanced BWT-based compressors, such as Bzip [Seward 1997] and Szip [Schindler 1997], are among
the best compressors currently available. As can be seen from the results reported in [Arnold and Bell
; Fenwick 1996a] BWT-based compressors achieve a very good compression ratio using relatively small
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resources (time and space). Considering that BWT-based compressors are still in their infancy, we believe
that in the next future they are likely to become the new standard in lossless data compression.

Another remarkable property of the BWT is that it can be used to build a data structure which is a sort
of compressed suffix array for the input string s [Ferragina and Manzini 2000; Ferragina and Manzini 2001].
Such data structure consists of a compressed version of bwt(s) plus o(|s|) bits of auxiliary information.
Using this data structure we can compute the number of occurrences of an arbitrary pattern p in s in
O(|p|) time, and we can compute the position in s of each one of such occurrences in O(logε |s|) time.

Despite of its practical relevance, no satisfactory theoretical analysis of the BWT is available. Although
it is easy to intuitively understand why the BWT helps compression, none of the currently used BWT-
based algorithms have been analyzed theoretically. In other words, these algorithms work very well in
practice but no proof has been given that their compression ratio is, say, within a constant factor of the
zeroth order entropy of the input.

In [Sadakane 1997; Sadakane 1998] Sadakane has proposed and analyzed three different algorithms
based on the BWT. Assuming the input string is generated by a finite-order Markov source, he proved that
the average compression ratio of these algorithms approaches the entropy of the source. More recently,
Effros [Effros 1999] has considered similar algorithms and has given bounds on the speed at which the
average compression ratio approaches the entropy. Although these results provide useful insight on the
BWT, they are not completely satisfying for several reasons. First, these results deal with algorithms
which are not realistic (and in fact are not used in practice). For example, some of these algorithms
require the knowledge of quantities which are usually unknown such as the order of the Markov source
or the number of states in the ergodic source. Secondly, none of these analyses deals with run-length
encoding which, as we will see, is a technique frequently used in connection with the BWT. Finally, the
hypothesis that the input comes from a finite-order Markov source is not always realistic, and results
based on this assumption are only valid on the average and not in the worst case.

In this paper, we compare the compression ratio of BWT-based algorithms with the empirical entropy
of the input string. The empirical entropy is defined in terms of the number of occurrences of each symbol
or group of symbols. Therefore, it is defined for any string without requiring any probabilistic assumption
and it can be used to establish worst case results. For k ≥ 0, the k-th order empirical entropy Hk(s)
provides a lower bound to the compression we can achieve using for each symbol a code which depends on
the k symbols preceding it. Since, as we will see, the value Hk(s) is sometimes a too conservative lower
bound, in this paper we consider also the modified empirical entropy H∗k(s) which is defined imposing the
additional requirement that the coding of a string s takes at least enough bits to write down its length
in binary.

In Section 4 we analyze the algorithm in which the output of the BWT is processed by the move-to-
front transformation followed by order-0 encoding. We call this algorithm BW0. BW0 is the basic algorithm
described in the paper introducing the BWT [Burrows and Wheeler 1994, Sect. 3] and it has been tested
in [Fenwick 1996b] (under the name bs-Order0). Although BW0 is one of the simplest BWT-based
algorithms, it achieves a better compression than Gzip, which is based on LZ77. We prove that for any
string s and any k ≥ 0, the output size of BW0 on input s is bounded by ≈ 8|s|Hk(s) + (2/25)|s|. This
means that, except for a small overhead for each input symbol, BW0 compression ratio is within a constant
factor of the k-th order entropy. Note that k is not a parameter of the algorithm, that is, the bound
holds simultaneously for all k ≥ 0. Although the constant 8 is admittedly too high for our result to have
a practical impact, this is the first non-trivial entropic bound for BW0. Our result is obtained through an
analysis of the move-to-front encoding which we believe is of independent interest. We prove that move-
to-front transforms a string which is locally homogeneous into a string which is globally homogeneous.
Although this was well known at the qualitative level, ours is the first analytical proof of this fact.
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In Section 5 we consider a variant of BW0, called BW0RL, which has an additional step consisting in the
run-length encoding of the runs of zeroes produced by the move-to-front transformation. As reported
in [Fenwick 1996a] all the best BWT-based compressors make use of this technique. We prove that for
any k ≥ 0 there exists a constant gk such that for any string s

BW0RL(s) ≤ (5 + ε)|s|H∗k(s) + gk, (1)

where BW0RL(s) is the output size of BW0RL on input s, ε ≈ 10−2, and H∗k(s) is the modified k-th order
empirical entropy. The significance of (1) is that the use of run-length encoding makes it possible to
get rid of the constant overhead per input symbol, and to reduce the size of the multiplicative constant
associated to the entropy. Note that the use of the modified empirical entropy H∗k is essential since (1)
does not hold if we consider Hk.

To our knowledge, a bound similar to (1) has not been proven for any other compression algorithm.
Indeed, for many of the better known algorithms (including some BWT-based compressors) one can prove
that a similar bound cannot hold. For example, although the output of LZ77 and LZ78 is bounded by
|s|Hk(s) +O(|s|(log log |s|)/ log |s|), for any λ > 0 it is possible to find a string s such that the output of
these algorithms is greater than λ|s|H∗1 (s) (see [Kosaraju and Manzini 1999]; obviously for such strings
we have H∗1 (s)� (log log |s|)/ log |s|). The algorithm PPMC [Moffat 1990], which has been the state of the
art compressor for several years, predicts the next symbol on the basis of the l previous symbols, where
l is a parameter of the algorithm. Thus, there is no hope that its compression ratio can be bounded in
terms of the k-th order entropy for k > l. Two algorithms for which a bound similar to (1) might hold
for any k ≥ 0 are DMC [Cormack and Horspool 1987] and PPM* [Cleary and Teahan 1997]. Both of them
predict the next symbol on the basis of a (potentially) unbounded context and they work very well in
practice. Unfortunately, these two algorithms have not been analyzed theoretically.

Although asymptotic optimality does not necessarily mean good performance in the real world, where
multiplicative constants and lower order terms are often significant, it is reassuring to know that algo-
rithms which work well in practice have nice theoretical properties. Our results somewhat guarantee that
BWT-based algorithms remain competitive for very long strings, or strings with very small entropy.

Notation for compression algorithms. In the following we will introduce several algorithms: some
of them are complete data compression algorithms designed to reduce the size of the input, others are
recoding schemes which transform the input without compressing it. For example the Burrows Wheeler
transform is a recoding scheme since its output bwt(s) is simply a permutation of the input string s.
Throughout the paper, recoding schemes will be denoted using lower-case letters only, while complete
data compression algorithms will be denoted with an initial upper-case letter. Given a recoding scheme
a we write a(s) to denote the output of a on input s. Given a compression algorithm A we write A(s) to
denote the size (i.e. number of bits) of the output produced by A on input s.

2. THE EMPIRICAL ENTROPY OF A STRING

Let s be a string of length n over the alphabet A = {α1, . . . , αh}, and let ni denote the number of
occurrences of the symbol αi inside s. The zeroth order empirical entropy of the string s is defined as

H0(s) = −
h∑
i=1

ni
n

log
(ni
n

)
, (2)

where we assume 0 log 0 = 0 (all logarithms in this paper are taken to the base 2). The value |s|H0(s),
represents the output size of an ideal compressor which uses − log ni

n bits for coding the symbol αi. It
is well known that this is the maximum compression we can achieve using a uniquely decodable code in
which a fixed codeword is assigned to each alphabet symbol. We can achieve a greater compression if the
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codeword we use for each symbol depends on the k symbols preceding it. For any length-k word w ∈ Ak
let ws denote the string consisting of the concatenation of the single characters following each occurrence
of w inside s. For example, if s = abcabcabd we have abs = ccd. Note that the length of ws is equal to
the number of occurrences of w in s, or to that number minus one if w is a suffix of s. The value

Hk(s) =
1
|s|

∑
w∈Ak

|ws|H0(ws) (3)

is called the k-th order empirical entropy of the string s. The value |s|Hk(s) represents a lower bound
to the compression we can achieve using codes which depend on the k most recently seen symbols. Not
surprisingly, for any string s and k ≥ 0, we have Hk+1(s) ≤ Hk(s).

Example 1. Let s = mississippi. For k = 1 we have ms = i, is = ssp, ss = sisi, ps = pi. Since,
according to (2), we have H0(i) = 0, H0(ssp) = 0.918 . . ., H0(sisi) = 1, H0(pi) = 1, the first order
empirical entropy is

H1(s) =
1
11
H0(i) +

3
11
H0(ssp) +

4
11
H0(sisi) +

2
11
H0(pi) = 0.796 . . . .

The empirical entropy resembles the entropy defined in the probabilistic setting (for example, when
the input comes from a Markov source). However, the empirical entropy is defined for any string and can
be used to measure the performance of compression algorithms without any assumption on the input.

The value Hk(s) is defined assuming that the first k symbols of s are coded for free. Therefore, it
provides a reasonable lower bound to the compression ratio only when |s| � k. The following example
shows that even when |s| � k the empirical entropy may provide a lower bound which is too conservative
and that we cannot reasonably hope to achieve.

Example 2. Let s = cc(ab)n. We have as = bn, bs = an−1, cs = ca. This yields

|s|H1(s) = nH0(bn) + (n− 1)H0(an−1) + 2H0(ca) = 2.

Hence, |s|H1(s) does not depend on n.

The reason for which in the above example |s|H1(s) fails to provide a reasonable bound, is that for any
string consisting of multiple copies of the same symbol, for example s = an, we have H0(s) = 0. Since
the output of any compression algorithm must contain enough information to recover the length of the
input, it is natural to consider the following alternative definition of zeroth order empirical entropy. For
any string s let

H∗0 (s) =

 0 if |s| = 0,
(1 + blog |s|c)/|s| if |s| 6= 0 and H0(s)=0,
H0(s) otherwise.

(4)

Note that 1 + blog |s|c is the number of bits required to express |s| in binary. H∗0 satisfies many of the
properties of the empirical entropy, including the monotonicity property

H∗0 (anbm) < H∗0 (an−1bm+1) for 0 ≤ m < n− 1.

Having defined H∗0 it is natural to define the k-th order modified empirical entropy H∗k using a formula
similar to (3). Unfortunately, if we simply replace H0 with H∗0 in (3) the resulting entropy H∗k does not
satisfy the inequality H∗k+1(s) ≤ H∗k(s) for every string s. This is shown by the following example.
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Example 3. Let s = (bad)n(cad)n. We have as = d2n, bs = an, cs = an, and ds = bn−1cn. Thus,
according to (3) the first order modified entropy would be

1
|s|

[
2nH∗0 (d2n) + nH∗0 (an) + nH∗0 (an) + (2n− 1)H∗0 (bn−1cn)

]
. (5)

For k = 2 we have bas = dn, cas = dn, dbs = an−1, dcs = an, and ads = bn−1cn. Hence, the second
order modified entropy would be

1
|s|

[
nH∗0 (dn) + nH∗0 (dn) + (n− 1)H∗0 (an−1) + nH∗0 (an) + (2n− 1)H∗0 (bn−1cn)

]
. (6)

Since 2nH∗0 (d2n) ≈ log 2n and 2nH∗0 (dn) ≈ 2 logn we have that (5) is (asymptotically) smaller than (6).

The above example shows that, when H0 is replaced by H∗0 , the use of a longer context for the prediction
of the next symbol does not always yield an increase in compression. For this reason, we define H∗k as
the maximum compression ratio we can achieve using for each symbol a codeword which depends on a
context of size at most k (instead of always using a context of size k). We use the following notation. For
a given string s, let Sk denote the set of all k-letter substrings of s. Let Q be a subset of S1 ∪ · · · ∪ Sk.
We say that Q covers Sk, and we write Q � Sk, if every string w ∈ Sk has a unique suffix in Q.

Example 4. Let s = mississippi. We have S2 = {mi, is, ss, si, ip, pp, pi}. A set which covers S2 is
{i, is, ss, p}. For the string s = (bad)n(cad)n of Example 3, we have S2 = {ba, ca, db, dc, ad}. A set
which covers S2 is {a, db, dc, ad}.

Definition 2.1. For each Q, such that Q � Sk, let

H∗Q(s) =
1
|s|
∑
w∈Q
|ws|H∗0 (ws).

We define the k-th order modified empirical entropy as

H∗k(s) = min
Q�Sk

H∗Q(s). (7)

The value H∗Q(s) denotes the compression we achieve using the strings in Q as contexts for the prediction
of the next symbol. The value H∗k(s) represents therefore the maximum compression we can achieve
using contexts of length up to k. In the following we use Tk to denote the set for which the minimum (7)
is achieved. Therefore we write

H∗k(s) =
1
|s|

∑
w∈Tk

|ws|H∗0 (ws). (8)

Example 5. Let s = (bad)n(cad)n as in Example 3. The first order modified entropy H∗1 (s) is achieved for
T1 = S1 and is given by (5). The second order modified entropy H∗2 (s) is achieved for T2 = {a, db, dc, ad}
and is given by

H∗2 (s) =
1
|s|

[
2nH∗0 (d2n) + (n− 1)H∗0 (an−1) + nH∗0 (an) + (2n− 1)H∗0 (bn−1cn)

]
.

It is straightforward to verify that H∗k+1(s) ≤ H∗k(s) for every string s. Note that, if we replace H∗0
with H0 inside Definition 2.1 we get an alternative definition of Hk(s) (in this case, the minimum (7) is
achieved for Tk = Sk). For this reason we say that H∗k generalizes Hk when we consider H∗0 instead of
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mississippi#

ississippi#m

ssissippi#mi

sissippi#mis

issippi#miss

ssippi#missi

sippi#missis

ippi#mississ

ppi#mississi

pi#mississip

i#mississipp

#mississippi

=⇒

F L
m ississippi #

s sissippi#m i

# mississipp i

s sippi#miss i

p pi#mississ i

i ssissippi# m

p i#mississi p

i #mississip p

s issippi#mi s

s ippi#missi s

i ssippi#mis s

i ppi#missis s

Fig. 1. Example of Burrows-Wheeler transform for the string s = mississippi. The matrix on the right has the rows
sorted in right-to-left lexicographic order. The string bwt(s) is the first column F with the symbol # removed; in this
example bwt(s) = msspipissii.

H0. The above discussion shows that H∗k is a more realistic lower bound to the compression ratio we can
achieve using contexts of size k or less. Since Hk has a much simpler definition and Hk(s) ≤ H∗k(s) for
any string s, in many situations it may be still preferable to work with Hk. However, when we are trying
to establish tight bounds which hold for every string, the modified empirical entropy is more appropriate.

3. THE BURROWS-WHEELER TRANSFORM AND RELATED ALGORITHMS

The Burrows-Wheeler transform [Burrows and Wheeler 1994] consists of a reversible transformation of
the input string s. The transformed string, that we denote by bwt(s), contains the same characters as s
but it is usually easier to compress. The string bwt(s) is obtained as follows (see Fig. 1). First we append
to end of s a special character # smaller than any other character. Then we form a (conceptual) matrix
M whose rows are the cyclic shifts of s# sorted in right-to-left lexicographic order.1 We set bwt(s) to
be the first column of the sorted matrix with the character # removed. Note that bwt(s) can be seen as
the result of sorting s using, as a sort key for each character, its context, that is, the set of characters
preceding it. The output of the Burrows-Wheeler transform is the string bwt(s) and the index I of the
row starting with # in the sorted matrix (for example, in Fig. 1 we have bwt(s) = msspipissii and
I = 3).

Let F (resp. L) denote the first (resp. last) column of the sorted matrix M. We write Fi (resp. Li)
to denote the i-th character of column F (resp. column L). The following properties have been proven
in [Burrows and Wheeler 1994].
a. Every column of M is a permutation of s#. As a consequence, the last column L can be obtained

by lexicographically sorting the characters of F .
b. For i = 2, . . . , |s|+ 1, the character Li is followed, in the string s#, by the character Fi.
c. For any character α, the i-th occurrence of α in F corresponds to the i-th occurrence of α in L. For

example, in Fig. 1 the second i of F (which is F8) corresponds to the second i of L (which is L3).
Indeed both F8 and L3 correspond to the last i in mississippi.

The above properties are the key to reverse the BWT, that is, to reconstruct s given bwt(s) and I. We
show how the reconstruction works for the example of Fig. 1. From bwt(s) and I we retrieve F , and by
sorting F , we retrieve L. Since # is smaller than any other character, we know that s# is the first row
of the sorted matrix M. Hence, F1 = m is the first character of s. By property c. we get that F1 (the

1In the original formulation given in [Burrows and Wheeler 1994] rows are sorted in left-to-right lexicographic order.
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first m in column F ) corresponds to L6 (the first m in column L). By property b. we get that the second
character of s is F6 = i. Using again property c. we get that F6 (the first i in column F ) correspond
L2 (the first i in column L). By property b. we get that the third character of s is F2 = s. The process
continues until we reach the character #.

Why is the string bwt(s) important for us? The reason is that bwt(s) has the following remarkable
property: for each substring w of s, the characters following w in s are grouped together inside bwt(s).
This is a consequence of the fact that all rotations ending in w are consecutive in the sorted matrix.
Using the notation of the previous section, we have that bwt(s) contains, as a substring, a permutation
of the string ws. Recalling the definitions (3) and (8) of Hk and H∗k , we write

bwt(s)=
⋃

w∈Ak
πw(ws)

[
resp. bwt(s)=

⋃
w∈Tk

πw(ws)
]
, (9)

where πw(ws) denotes a permutation of the string ws.2 Permuting a string does not change its zeroth
order entropy, that is, H0(ws) = H0(πw(ws)) and the same is true for H∗0 . Hence, if we had an ideal
algorithm A such that for any partition s1s2 · · · st of s

A(s) ≤
t∑
i=1

|si|H0(si)
[
resp. A(s) ≤

t∑
i=1

|si|H∗0 (si)
]

(10)

then, by (3) and (8), we would have

A(bwt(s)) ≤ |s|Hk(s)
[
resp. A(bwt(s)) ≤ |s|H∗k(s)

]
.

In other words, combining A with bwt we would be able to compress any string up to its k-th order
(modified) empirical entropy for any k ≥ 0. Thus, the Burrows-Wheeler transform can be seen as a tool
for reducing the problem of compressing up to the k-th order entropy to the problem of compressing
distinct portions of the input string up to their zeroth order entropy. This is a crucial observation for our
analysis. Although no algorithm which satisfies (10) is likely to exist, we show that there are algorithms
whose output size is “close” to

∑t
i=1 |si|H0(si) or

∑t
i=1 |si|H∗0 (si). By using these algorithms to process

the output of the BWT we get a compression ratio which is “close” to the k-th order entropy.
Most of the compression algorithms based on the BWT, process the string bwt(s) with the move-to-

front transformation which is a recoding scheme3 introduced in [Bentley, Sleator, Tarjan, and Wei 1986;
Ryabko 1980]. The move-to-front transformation encodes the symbol αi with an integer equal to the
number of distinct symbols encountered since the previous occurrence of αi. More precisely, the encoder
maintains a list of the symbols ordered by recency of occurrence. When the next symbol arrives, the
encoder outputs its current rank and moves it to the front of the list. Therefore, a string over the alphabet
A = {α1, . . . , αh} is transformed to a string over {0, . . . , h − 1} (note that the length of the string does
not change). To completely determine the encoding we must specify the status of the recency list at the
beginning of the procedure. We denote by mtfπ the algorithm in which the initial status of the recency
list is given by the permutation π defined over A. We denote by mtf the algorithm in which the initial
ordering of the recency list is induced by the input string s, that is, the i-th symbol in the recency list is
given by the i-th symbol in the input (not counting multiple occurrences of the same symbol).

The reason for which bwt(s) is often processed using move-to-front is the following. We have observed
that the BWT collects together the symbols following a given context, that is, bwt(s) = ∪wπw(ws)

2In addition to ∪w∈Akπw(ws) the string bwt(s) also contains the first k symbols of s (which do not belong to any ws). In
the following we will ignore the presence of these k symbols in bwt(s).
3In its original formulation move-to-front was presented as a compression algorithm.
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(see (9)). Every string ws is likely to contain only a few distinct symbols, but the symbols appearing in
πw(ws) are in general different from those in πw′(w′s). The move-to-front recoding transforms both πw(ws)
and πw′(w′s) into strings containing a large number of small integers. In other words, the move-to-front
recoding transforms a string which is locally homogeneous into a string which is globally homogeneous.
In Section 4 we will analyze to what extent move-to-front achieves this objective.

Summing up, the string s′ = mtf(bwt(s)) has exactly the same length of the input string s. However,
the regularity which is in s is transformed into the presence of many small integers in s′. As an example, if
s is an English text s′ typically contains more than 50% 0’s (see Table 1 in [Fenwick 1996b]). The BWT-
based algorithms take advantage of this “skewness” of s′ to reduce its size (and this is where the actual
compression is done). In the paper introducing the BWT, Burrows and Wheeler suggest to compress s′

using a zeroth order coder such as Huffman coding [Huffman 1952] or Arithmetic coding [Witten, Neal,
and Cleary 1987]. These algorithms encode a symbol which appears ni times out of n using roughly
− log(ni/n) bits and therefore achieve a compression ratio close to H0(s′). Burrows and Wheeler also
describe an improved algorithm which uses run-length encoding to compress the runs of 0’s which typically
appear in s′. More recent BWT-based algorithms (see for example [Fenwick 1996a; Seward 1997; Wheeler
1995; Wheeler 1997]) do not introduce new techniques for the compression of s′. Most of the efforts have
been directed to improve the overall compression speed, or to refine the two basic tools (zeroth order
encoding4 and run-length encoding) introduced by Burrows and Wheeler for the compression of s′.

In section 4 we analyze the algorithm which compresses s′ using a zeroth order coder, and in section 5
we consider the effect of using run-length encoding. To ensure the widest possible applicability of our
results, we have tried to make as few assumptions as possible on the algorithms used to compress s′.

In the following we denote by Order0 a generic order-0 coder. We make no assumptions on its inner
working, we only assume that its compression ratio is close to the zeroth order entropy of the input string.
More precisely, we assume that there exists a constant µ such that for any string s

Order0(s) ≤ |s|H0(s) + µ|s|. (11)

It is well known that for static Huffman coding (11) holds with µ = 1. For the dynamic Huffman coding
algorithm described in [Vitter 1987] (11) holds with µ = 2. Arithmetic coding routines exist in different
flavors (see for example [Howard and Vitter 1992b; Moffat, Neal, and Witten 1995; Witten, Neal, and
Cleary 1987]) each one with a different balance between storage requirements, compression, and speed.
In [Howard and Vitter 1992a] Howard and Vitter carry out a comprehensive analysis of arithmetic coding
which tells us that a simple arithmetic coder, such as the one described in [Witten, Neal, and Cleary
1987], satisfies (11) with µ ≈ 10−2.

4. ANALYSIS OF THE ALGORITHM BW0

In this section we analyze the algorithm BW0 = bwt + mtf + Order0, that is, the algorithm in which
the output of the BWT is processed by move-to-front followed by a zeroth order coder. The output of
this algorithm is therefore BW0(s) = Order0(mtf(bwt(s))). We prove that BW0 compression ratio can be
bounded in terms of the k-th order entropy for any k ≥ 0. The proof is based on the following result on
the behavior of the move-to-front transformation.

Theorem 4.1. Let s be any string over the alphabet {α1, . . . , αh}, and ŝ = mtf(s). For any partition
s = s1 · · · st we have

|ŝ|H0(ŝ) ≤ 8
[ t∑
i=1

|si|H0(si)
]

+
2
25
|s|+ t(2h log h+ 9). (12)

4Some of the efforts have been directed to avoid the use of arithmetic coding which is covered by quite a few patents.
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Let us comment on the above theorem. Note that for any partition s = s1 · · · st we have |s|H0(s) ≥∑
i |si|H0(si). If the strings si’s have similar statistics then

∑
i |si|H0(si) will be close to |s|H0(s), but in

general we can have a large gap between the two terms (consider for example the extreme case s1 = an,
s2 = bn for which we have |s1s2|H0(s1s2) = 2n and H0(s1) = H0(s2) = 0).

Theorem 4.1 establishes that if we use move-to-front the entropy of the resulting string cannot be too
far from

∑
i |si|H0(si). We do not claim that the bound in (12) is tight (in fact, we believe it is not).

However, a bound of the form |ŝ|H0(ŝ) ≤ λ[
∑
i |si|H0(si)] + c cannot hold. For the entropy H0 this is

obvious (consider again s1 = an, s2 = bn), the following example shows that this is true also for the
modified entropy H∗0 .

Example 6. Let s = (ab)kbk
2
, s1 = (ab)k, s2 = ak

2
. We have |s1|H∗0 (s1)+ |s2|H∗0 (s2) = 2k+

⌊
log k2

⌋
+1.

Let ŝ = mtf(s) = 012k0k
2−1. Since

|ŝ|H∗0 (ŝ) = |ŝ|H0(ŝ)

= 2k
(

log
2k + k2

2k

)
+ k2

(
log

2k + k2

k2

)
≥ k log k,

we have limk→∞ |ŝ|H∗0 (ŝ)/(|s1|H∗0 (s1) + |s2|H∗0 (s2)) = +∞.

As an immediate corollary of Theorem 4.1 we get the following result on BW0.

Theorem 4.2. For any string s over A = {α1, . . . , αh} and k ≥ 0 we have

BW0(s) ≤ 8|s|Hk(s) +
(
µ+

2
25

)
|s|+ hk(2h log h+ 9), (13)

where µ is defined in (11).

Proof. Let ŝ = mtf(bwt(s)). By (11) we have

BW0(s) = Order0(ŝ) ≤ |ŝ|H0(ŝ) + µ|s|.

By the properties of the BWT we know that there exists t ≤ hk and a partition s1 · · · st of bwt(s) such
that |s|Hk(s) =

∑t
i=1 |si|H0(si). The thesis follows by Theorem 4.1.

Before proving Theorem 4.1 we need to establish several auxiliary results. The following lemma bounds
|s|H0(s) in terms of

∑
i |si|H0(si) for a string s over the alphabet {0, 1} assuming that all strings si’s

contain more 0’s than 1’s.

Lemma 4.3. For i = 1, . . . , t, let si be a string over the alphabet {0, 1}. Let mi denote the number of
1’s in si and. If, for i = 1, . . . , t, mi ≤ |si|/2, then

|s1 · · · st|H0(s1 · · · st) ≤ 3
t∑
i=1

|si|H0(si) +
1
40
|s1 · · · st|.

Proof. Let h(x) = −x log(x) − (1 − x) log(1 − x), s = s1 · · · st, and t = (m1 + · · · + mt)/|s|. Since
H0(si) = h(mi/|si|), our thesis is equivalent to

h(t) ≤ 3
t∑
i=1

|si|
|s|

h

(
mi

|si|

)
+

1
40
.
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Since, for 0 ≤ x ≤ 1/2, we have h(x) ≥ 2x we can write
t∑
i=1

|si|
|s|

h

(
mi

|si|

)
≥ 2

m1 + · · ·+mt

|s|
= 2t

and our thesis becomes

h(t) ≤ 6t+
1
40
.

Elementary calculus shows that the function 6t−h(t)+ 1
40 has a positive minimum (achieved for t = 1/65)

and the lemma follows.

To prove the next lemma we need some additional notation. For x, y ≥ 0 define

G(x, y) = −x log
x

x+ y
− y log

y

x+ y
. (14)

In addition, let G(x, 0) = G(0, y) = G(0, 0) = 0. The following properties are easily verified

G(λx, λy) = λG(x, y), (15)
0 ≤ G(x, y) ≤ x+ y, (16)
G(x, y + z) ≤ G(x+ y, z) +G(x, y). (17)

The following lemma bounds |s1s2|H0(s1s2) when s1, s2 are strings over the alphabet {0, 1} which are
not homogeneous, that is, s1 contains more 1’s than 0’s whereas s2 contains more 0’s than 1’s.

Lemma 4.4. Let s1, s2 be strings over {0, 1}. Let x1 (resp. y1) denote the number of 1’s in s1 (resp.
s2). Assume x1 > |s1|/2 and y1 ≤ |s2|/2. We have

|s1s2|H0(s1s2) ≤ 4.85|s1|+ |s2|H0(s2) +
1
20
|s1s2|.

Proof. Let x0 = |s1|−x1, y0 = |s2|−y1 denote the number of 0’s in s1 and s2 respectively. Expressing
the entropy in terms of the function G, our thesis becomes

G(x0 + y0, x1 + y1) ≤ 4.85(x1 + x0) +G(y0, y1) +
1
20

(x0 + y0 + x1 + y1).

Let r = y1(x0/y0). Using (17) with x = x0 + y0, y = y1 + r, z = x1 − r we get

G(x0 + y0, x1 + y1) ≤ G(x0 + y0 + y1 + r, x1 − r) +G(x0 + y0, y1 + r).

By (15) and (16) we have

G(x0 + y0, y1 + r) =
(

1 +
x0

y0

)
G(y0, y1)

≤ G(y0, y1) + x0

(
1 +

y1

y0

)
= G(y0, y1) + x0 + r.

Hence, to complete the proof it suffices to prove that

G(x0 + y0 + y1 + r, x1 − r) ≤ 4.85(x1 − r) +
1
20

(x0 + y0 + x1 + y1).
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Expanding G using (14), dividing by x1 − r, and setting t = (x0 + y0 + y1 + r)/(x1 − r) the previous
inequality becomes

(1 + t) log(1 + t)− t log(t) ≤ 4.85 +
1 + t

20
.

Elementary calculus shows that the maximum of the function (1 + t) log(1 + t)− t log(t)− (1 + t)/20 is
− log(21/20 − 1) which is less than 4.85 and the lemma follows.

Lemmas 4.3 and 4.4 both deal with the simple case of strings over the alphabet {0, 1}. Now we need
to face the general case of strings over any finite alphabet. In the following given a string s over the
alphabet {0, . . . , h− 1} we denote by s01 the string in which each nonzero symbol is replaced by 1. For
example, (102300213)01 = 101100111.

Lemma 4.5. For any string s let ŝ = mtf(s). We have |ŝ01|H0(ŝ01) ≤ 2|s|H0(s).

Proof. For i = 1, . . . , h, let ni denote the number of occurrences of the symbol αi in s. Without loss
of generality, we can assume that the most frequent symbol of s is α1, that is, n1 ≥ ni for i = 2, . . . , h.
If n1 ≤ |s|/2 then

|s|H0(s) =
h∑
i=1

ni log(|s|/ni) ≥
h∑
i=1

ni = |s|,

and the lemma follows since |ŝ01|H0(ŝ01) ≤ |s|.
Assume now n1 > |s|/2. Let r = n2 + · · ·+ nh and β = n1/|s|. We have

h∑
i=2

ni log(|s|/ni) = r log |s| −
h∑
i=2

ni log ni ≥ r log(|s|/r), (18)

which implies

|s|H0(s) =
h∑
i=1

ni log(|s|/ni) ≥ n1 log(|s|/n1) + r log(|s|/r) = −n1 log β − r log(1− β). (19)

Let m0 denote the number of 0’s in ŝ01. Note that, by definition of mtf encoding, the first symbol of ŝ is
0; in addition, there is a 0 in ŝ for each pair of identical consecutive symbols in s. Hence, the symbol α1

alone generates n1−r 0’s in ŝ, which implies m0 ≥ n1−r. Consider now the algorithm which encodes ŝ01

using − log(β) bits for the symbol 0, and − log(1− β) bits for the symbol 1. Since the codeword lengths
satisfy Kraft’s inequality we have

|ŝ01|H0(ŝ01) ≤ m0 log
(

1
β

)
+ (|s| −m0) log

(
1

1− β

)
= m0 log

(
1− β
β

)
+ |s| log

(
1

1− β

)
≤ (n1 − r) log

(
1− β
β

)
+ (n1 + r) log

(
1

1− β

)
= −n1 log β − 2r log(1− β) + r log β
≤ 2[−n1 log β − r log(1− β)].

By (19) the last term is smaller than 2|s|H0(s) and the lemma follows.
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Lemma 4.6. For i = 0, . . . , h − 1, let mi denote the number of occurrences of the symbol i inside
ŝ = mtf(s). We have

h−1∑
i=0

mi log(i+ 1) ≤ |s|H0(s).

Proof. The result can be proven repeating verbatim the proof of Theorem 1 in [Bentley, Sleator,
Tarjan, and Wei 1986] with f(x) = log(x). Note that in [Bentley, Sleator, Tarjan, and Wei 1986] mtf
ranks are encoded with the symbols 1, . . . , h.

Lemma 4.7. For i = 1, . . . , t let ŝi = mtf(si), and let s̃ = ŝ1 · · · ŝt. We have

|s̃|H0(s̃) ≤ |s̃01|H0(s̃01) + 2
t∑
i=1

|si|H0(si).

Proof. For j = 0, . . . , h − 1, let mj (resp. m(i)
j ) denote the number of occurrences of the symbol j

in s̃ (resp. ŝi), and let β = m0/|s̃|. Consider the algorithm which encodes s̃ using − log(β) bits for the
symbol 0, and − log(1 − β) + 2 log(j + 1) bits for the symbol j, j = 1, . . . , h − 1. Since the codeword
lengths satisfy Kraft’s inequality we have

|s̃|H0(s̃) ≤ −m0 log(β)− (|s̃| −m0) log(1− β) + 2
h−1∑
j=1

mj log(j + 1)

= |s̃01|H0(s̃01) + 2
t∑
i=1

h−1∑
j=1

m
(i)
j log(j + 1).

The thesis follows by Lemma 4.6.

Note that Lemma 4.7 bounds the entropy of s̃ = ŝ1 · · · ŝt with ŝi = mtf(si). Unfortunately, for the
proof of Theorem 4.1 we need to bound the entropy of ŝ = mtf(s) = mtf(s1 · · · st). The difference is
a subtle one but cannot be ignored. When we compute mtf(s1 · · · st) we encode si (i > 1) using the
recency list induced by the processing of s1 · · · si−1. This will produce an output different from mtf(si)
which uses, by definition, the recency list induced by si (see the definition of move-to-front encoding in
Section 3). Note however, that the difference in the initial status of the recency list influences only the
encoding of the first occurrence of any given symbol in si. Hence, the encoding of si in ŝ differs from
mtf(si) in at most h positions. We use this observation to prove the following lemma.

Lemma 4.8. For i = 1, . . . , t let ŝi = mtf(si). Let s = s1 · · · st, s̃ = ŝ1 · · · ŝt, and ŝ = mtf(s). We have

|ŝ|H0(ŝ) ≤ |s̃01|H0(s̃01) + 2
t∑
i=1

|si|H0(si) +
|s|
300

+ t(9 + 2h log h).

Proof. As we have already observed, the strings ŝ and s̃ differ in at most th positions. Hence,
repeating the proof of Lemma 4.7 we get

|ŝ|H0(ŝ) ≤ |ŝ01|H0(ŝ01) + 2
t∑
i=1

|si|H0(si) + 2th log h.

We complete the proof by showing that

|ŝ01|H0(ŝ01)− |s̃01|H0(s̃01)− |s|
300
≤ 9t. (20)
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We observe that, except for the first symbol of ŝ, each 0 in ŝ corresponds to repetition of the same symbol
in s. Hence, we can have a difference between ŝ and s̃ only in the positions corresponding to the first
symbol of each si for i > 1. In these positions there is always a 0 in s̃ whereas there is a 0 in ŝ only if
the first symbol of si is equal to the last symbol of si−1. As a result, s̃ contains r more zeros than ŝ with
r < t. Let n0 (resp. n1) denote the number of 0’s (resp. 1’s) in ŝ01. Using (14) and (17) we get

|ŝ01|H0(ŝ01)− |s̃01|H0(s̃01)− |s|
300

= G(n0, n1)−G(n0 + r, n1 − r)−
n0 + n1

300

≤ G(n0, r)−
n0 + r

300
.

We prove (20) by showing that the last expression is bounded by 9r. Using (14) and setting t = n0/r we
get

G(n0, r)
r

− n0 + r

300r
= (1 + t) log(1 + t)− t log t− 1 + t

300
Elementary calculus shows that the right-hand side is at most − log(21/300 − 1) which is less than 9 and
the lemma follows.

Proof of Theorem 4.1. For i = 1, . . . , t, let ŝi = mtf(si) and s̃ = ŝ1 · · · ŝt. By Lemma 4.8 we know
that it suffices to prove that

|s̃01|H0(s̃01) ≤ 6
[ t∑
i=1

|si|H0(si)
]

+
3
40
|ŝ|. (21)

Assume first that in each ŝ01
i the number of 0’s is at least as large as the number of 1’s. By Lemma 4.3

we get

|s̃01|H0(s̃01) ≤ 3
[ t∑
i=1

|ŝ01
i |H0(ŝ01

i )
]

+
1
40
|ŝ|

and (21) follows by Lemma 4.5.
Consider now the general case in which some of the ŝ01

i contains more 1’s than 0’s. We can assume
that these are ŝ01

1 , ŝ
01
2 , . . . , ŝ

01
k . By Lemmas 4.4 and 4.3 we have

|s̃01|H0(s̃01) ≤ 4.85|ŝ01
1 · · · ŝ01

k |+ |ŝ01
k+1 · · · ŝ01

t |H0(ŝ01
k+1 · · · ŝ01

t ) +
1
20
|s̃01|

≤ 4.85
[ k∑
i=1

|si|
]

+ 6
[ t∑
i=k+1

|si|H0(si)
]

+
3
40
|s̃|.

For j = 1, . . . , k let mj denote the number of occurrences of the most frequent symbol in sj . The
hypothesis on ŝ01

j implies mj ≤ (3/4)|sj |, hence, using (18) we get

|sj |H0(sj) ≥ mj log
(
|sj |
mj

)
+ (|sj | −mj) log

(
|sj |

|sj | −mj

)
≥ γ|sj |, (22)

where γ = −[(3/4) log(3/4) + (1/4) log(1/4)]. Since (4.85/γ) ≤ 6, by (22) we have 4.85|sj | ≤ 6|sj |H0(sj)
and the thesis follows.

5. ANALYSIS OF THE ALGORITHM BW0RL

We have observed in Section 3 that when we process the output of the BWT with move-to-front encoding
we get a string which usually contains long sequences of zeroes. In this section we analyze the effects of
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compressing these sequences using run-length encoding. As we will see, for the resulting algorithm, that
we call BW0RL, we are able to prove bounds which are better than the ones given in Section 4 for the
algorithm BW0.

We use the following notation. Given a string s over {α1, . . . , αh}, let ŝ = mtf(s). We know that ŝ is
defined over the alphabet {0, 1, . . . , h−1}. Let 0,1 denote two symbols not belonging to any of the above
alphabets. For m ≥ 1 let B(m) denote the number m+ 1 written in binary using 0,1 and discarding the
most significant bit. That is

B(1) = 0, B(2) = 1, B(3) = 00, B(4) = 01, . . . .

We define rle(ŝ) (the run-length encoding of ŝ) as the string obtained from ŝ by replacing each (maximal)
run 0m with B(m). For example, if ŝ = 110022013000, then rle(ŝ) = 111220300. Clearly, given rle(ŝ)
we can retrieve ŝ since, 0 and 1 are only used to encode runs of 0’s. Note that |B(m)| = blog(m+ 1)c ≤ m
which implies |rle(ŝ)| ≤ |ŝ|.

We define the algorithm BW0RL = bwt + mtf + rle + Order0. The output of this algorithm on input
s is therefore BW0RL(s) = Order0(rle(mtf(bwt(s)))). Although the run-length encoding scheme we have
just described has not been used in any actual implementation of a BWT-based algorithm, we claim that
our analysis is of general interest. In fact, the only property of our scheme that we use in our proofs is
that the sequence 0m is replaced by a binary string of length at most log(m+ 1).

The main result of this section is the following theorem which bounds the output size of BW0RL in
terms of the modified k-th order entropy.

Theorem 5.1. For any k ≥ 0 there exists a constant gk such that for any string s we have

BW0RL(s) ≤ (5 + 3µ)|s|H∗k(s) + gk

where µ is defined in (11).

The proof of the above theorem is completely different from the proof of Theorem 4.1 and it is based on
the concept of local λ-optimality.

Definition 5.2. A compression algorithm A is locally λ-optimal if for all t > 0 there exists a constant
ct such that for each partition s1s2 · · · st of the string s we have

A(s) ≤ λ
[ t∑
i=1

|si|H∗0 (si)
]

+ ct.

From the discussion in Section 3 we know that if A is locally λ-optimal then, for any k ≥ 0 the output size
of bwt+A is bounded by λ|s|H∗k(s)+gk. Note that many algorithms which work well in practice—Huffman
coding, LZ78, PPM, to name a few—are not locally optimal. Suppose for example t = 2 and s = s1s2.
During the processing of s1 these algorithms build internally a model of the input (the dictionary in LZ78,
frequency counts in Huffman coding and PPM) which influences the processing of s2. It is possible to
find instances in which this model is completely misleading so that the overall output size is much greater
than |s1|H∗0 (s1) + |s2|H∗0 (s2).5

The proof of Theorem 5.1 is obtained by showing that mtf + rle + Order0 is locally λ-optimal with
λ = 5 + 3µ. Note that mtf + Order0 is not locally optimal, that is, run-length encoding is essential for
achieving local optimality. The following lemma, which can be easily proven by induction, provides a
sufficient condition for local optimality.

5We emphasize that the notion of local λ-optimality is simply a useful tool for our analysis. We do not claim that locally
optimal algorithms are in any sense superior to other compressors.
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Lemma 5.3. If there exist three constants λ, v, w such that for any string s A(s) ≤ λH∗0 (s) + v, and
for any partition s = s1s2 we have

A(s) ≤ A(s1) + A(s2) + w, (23)

then the algorithm A is locally λ-optimal.

Unfortunately, we cannot apply the above lemma directly to mtf + rle + Order0. The reason is that
we know nothing of the inner working of Order0 and we are only assuming that it satisfies (11). For this
reason we introduce the auxiliary compression algorithm Pc (for prefix code) defined as follows. Recall
that the output of rle is a string over the alphabet {0,1, 1, 2, . . . , h− 1}. For such strings the algorithm
Pc works as follows. The symbols 0 and 1 are coded using two bits (10 for 0, 11 for 1). The symbol i,
i = 1, 2, . . . , h− 1, is coded in 1 + 2 blog(i+ 1)c bits using a prefix code for the integer i+ 1: blog(i+ 1)c
0’s followed by the binary representation of i + 1 which takes 1 + blog(i+ 1)c bits, the first one being a
1. It is straightforward to verify that this is a instantaneous code, that is, no codeword is a prefix of any
other codeword.

For any ordering π of the alphabet A let Aπ = mtfπ + rle+ Pc. For any string s, we denote with π(s)
the ordering which maximizes the output size of Aπ. That is,

Aπ(s)(s) = max
π

Aπ(s). (24)

For any string s we define mtf∗ = mtfπ(s) and A∗ = Aπ(s) = mtf∗ + rle + Pc. Note that, for every string
s, A∗ first computes the worst case ordering π(s), then uses it as the initial ordering for move-to-front
encoding.

The following lemmas establish some auxiliary results on the behavior of the algorithms mtf∗ and A∗.

Lemma 5.4. Let π denote any ordering of the alphabet A. For i = 1, . . . , h − 1, let mi denote the
number of occurrences of the symbol i inside mtfπ(s). We have

h−1∑
i=1

mi log(i+ 1) ≤ |s|H0(s) + h log h.

Proof. The thesis follows by Lemma 4.6 observing that mtf(s) and mtfπ(s) differ in at most h
positions.

Lemma 5.5. Let A∗ = mtf∗ + rle + Pc. For any string s we have

A∗(s) ≤ 5|s|H∗0 (s) + 2h log h+ 2 log e− 1.

Proof. Let s′ = mtf∗(s), s′′ = rle(s′). For i = 0, . . . , h− 1, let mi denote the number of occurrences
of the symbol i in s′. By construction, for i > 0, s′′ still contains mi occurrences of the symbol i, whereas
the m0 0’s in s′ are transformed into sequences of 0’s and 1’s. Let z0 denote the number of occurrences
of the symbols 0 and 1 in s′′ (so that |s′′| = |s′| −m0 + z0). Note that, since |B(i)| = blog(i+ 1)c ≤ i,
we have z0 ≤ m0. By construction we have

A∗(s) = Pc(s′′) = 2z0 +
h−1∑
i=1

mi(1 + 2 log(i+ 1)) (25)

≤ z0 + |s′′|+ 2
[h−1∑
i=1

mi log(i+ 1)
]
,

that, using Lemma 5.4, becomes

A∗(s) ≤ z0 + |s′′|+ 2|s|H0(s) + 2h log h. (26)
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For i = 1, . . . , h, let ni denote the number of occurrences of the symbol αi in s. Without loss of
generality, we can assume n1 ≥ ni for i = 2, . . . , h. Let n = |s| = |s′| and r = n2 + · · ·+nh. To prove the
lemma we need to analyze several cases.

Case 1.. r ≥ n/3.
Using (18) we get

|s|H0(s) ≥ n1 log(n/n1) + r log(n/r) ≥ γ′n

where γ′ = −[(2/3) log(2/3) + (1/3) log(1/3)]. Since γ′ > 2/3 and z0 + |s′′| ≤ 2n, from (26) we get

A∗(s) ≤ 2n+ 2|s|H0(s) + 2h log h < 5|s|H0(s) + 2h log h.

Case 2.. 1 < r < n/3.
This is the most complex case. We start by observing that the n1 occurrences of α1 in s generate at least
n1 − (r + 1) 0’s in s′ = mtf∗(s). Using our notation, this translates to

m0 ≥ n1 − (r + 1), or, equivalently, m1 +m2 + · · ·mh−1 ≤ 2r + 1. (27)

The m0 0’s in s′ are translated into z0 0’s and 1’s in s′′ = rle(s′). We now want to bound z0 in terms
of r and n. Assume s′ contains g sequences of 0’s of length l1, . . . , lg. Let p = maxi li. For j = 1, . . . , p
let qj denote the number of sequences of length j (therefore

∑p
j=1 qj = g). We have

z0 =
g∑
i=1

blog(1 + li)c ≤
p∑
j=1

qj log(1 + j) = g

[ p∑
j=1

qj
g

log(1 + j)
]
.

Since log(1 + x) is a concave function, by Jensen’s inequality we get

z0 ≤ g log
( p∑
j=1

qj
g

(1 + j)
)

= g log
(
g +m0

g

)
.

Since each one of the g sequences of 0’s in s′ is terminated either by a nonzero symbol or by the end of the
string, we have g+m0 ≤ n+ 1 which implies z0 ≤ g log((n+ 1)/g). The function f(x) = x log((n+ 1)/x)
increases for x ≤ (n + 1)/e. It is not difficult to see that g ≤ r + 1, and our hypothesis implies
r + 1 ≤ (n+ 1)/e. Using elementary calculus we get

z0 ≤ (r + 1) log
(
n+ 1
r + 1

)
,

≤ (r + 1) log
(

n

r + 1

)
+ log e. (28)

Combining the last inequality with (25), (27) and Lemma 5.4 we get

A∗(s) ≤ 2z0 +
[h−1∑
i=1

mi

]
+ 2
[h−1∑
i=1

mi log(i+ 1)
]
,

≤ 2(r + 1) [log(n/(r + 1)) + 1] + 2 log e− 1 + 2|s|H0(s) + 2h log h.

Hence, to complete the proof we need to show that

|s|H0(s) ≥ (2/3)(r + 1) [log(n/(r + 1)) + 1] . (29)

Using (18) we have

|s|H0(s) ≥ n1 log(n/n1) + r log(n/r)
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≥ r log
(

1 +
r

n1

)n1
r

+ r log(n/r)

≥ r[1 + log(n/r)]; (30)

where the last inequality holds since (1 + 1/t)t ≥ 2 for t ≥ 1. Being r ≥ 2, we have r ≥ (2/3)(r + 1).
Hence

|s|H0(s) ≥ (2/3)(r + 1)[log(n/r) + 1] ≥ (2/3)(r + 1)[log(n/(r + 1)) + 1]

as claimed.
Case 3.. r = 1.

The input string consists of n− 1 copies of α1 plus a different symbol. It is easy to see that in the worst
case we have m1 = 1 and mh−1 = 2. From (25) and (28) we get

A∗(s) ≤ 4 log(n/2) + 2 log e+ 4 log h+ 5 = 4 log n+ 2 log e+ 4 log h+ 1

The thesis follows since by (30) we have 5|s|H0(s) ≥ 5 logn+ 5.
Case 4.. r = 0.

The input string consists of n copies of the same symbol. The thesis follows since A∗(s) = 1 + 2 log h +
2blog nc and |s|H∗0 (s) = 1 + blog nc.

Corollary 5.6. Let π denote any ordering of the alphabet A. For any string s, we have

|rle(mtfπ(s))| ≤ 3|s|H∗0 (s) + log e.

Proof. The proof of the corollary is essentially contained in the proof of Lemma 5.5 (the fact that
we are now considering an arbitrary ordering π instead of the worst case ordering π(s) does not alter
the substance of the reasoning). Let s′′ = rle(mtfπ(s)) and let any other symbol be defined as in the
proof of Lemma 5.5. We show how the argument goes for the case when 1 < r < n/3 which is the most
complex one. By (27) and (28), we have

|s′′| = z0 +m1 +m2 + · · ·+mh−1

≤ (r + 1) log
(

n

r + 1

)
+ log e+ 2r + 1

≤ 2(r + 1) [log(n/(r + 1)) + 1] + log e.

The thesis follows since by (29) this is less than 3|s|H0(s) + log e.

Lemma 5.7. The algorithm A∗ = mtf∗+ rle+ Pc is locally 5-optimal, that is for any string s and any
partition s = s1 · · · st we have

A∗(s) ≤ 5
[ t∑
i=1

|si|H∗0 (si)
]

+ ct. (31)

Proof. By Lemmas 5.5 and 5.3 it suffices to prove that A∗ satisfies (23). Let s = s1s2, π = π(s) (the
worst ordering for s), and let τ denote the ordering of the recency list when mtf has processed the last
symbol of s1. Using this notation we have mtf∗(s) = mtfπ(s1) ∪ mtfτ (s2). Let Aπ = mtfπ + rle + Pc,
Aτ = mtfτ + rle + Pc. If the last symbol of mtfπ(s1) or first symbol of mtfτ (s2) are different from 0 we
are done since, by (24), we have

A∗(s1) + A∗(s2) ≥ Aπ(s1) + Aτ (s2) = A∗(s).
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Assume now mtfπ(s1) = ŝ10i, mtfτ (s2) = 0j ŝ2, where the last symbol of ŝ1 and the first symbol of ŝ2 are
different from 0. We have

A∗(s1) + A∗(s2) ≥ Aπ(s1) + Aτ (s2)
= Pc(rle(ŝ10i)) + Pc(rle(0j ŝ2))
= Pc(rle(ŝ1)) + Pc(B(i)) + Pc(B(j)) + Pc(rle(ŝ2))
= Pc(rle(ŝ1)) + 2(blog(i+ 1)c+ blog(j + 1)c) + Pc(rle(ŝ2))
≥ Pc(rle(ŝ1)) + Pc(B(i+ j)) + Pc(rle(ŝ2))
= A∗(s).

This completes the proof.

We are now able to prove Theorem 5.1. As we have already pointed out, the proof is obtained by
establishing the local optimality of mtf + rle + Order0, which is the thesis of the following theorem.

Theorem 5.8. The algorithm A = mtf + rle + Order0 is locally (5 + 3µ)-optimal.

Proof. For any string s, let s′ = rle(mtf(s)). By (24), and the fact that Pc codewords satisfy Kraft’s
inequality we get

A∗(s) = Pc(rle(mtf∗(s)))
≥ Pc(rle(mtf(s)))
≥ |s′|H0(s′).

Using (11) we can establish the following relationship between A(s) and A∗(s)

A(s) = Order0(s′)
≤ |s′|H0(s′) + µ|s′|
≤ A∗(s) + µ|s′|. (32)

Let s = s1s2 · · · st denote any partition of s. For i = 1, . . . , t−1, let πi denote the ordering of the recency
list when mtf has processed the last symbol of si. Finally, let ŝ1 = mtf(s1), and for i = 2, . . . , t let
ŝi = mtfπi−1(si). We have mtf(s) = ŝ1 ∪ ŝ2 ∪ · · · ∪ ŝt. Hence, using Lemma 5.6, we get

|s′| = |rle(ŝ1 ∪ ŝ2 ∪ · · · ∪ ŝt)|
≤ |rle(ŝ1)|+ |rle(ŝ2)|+ · · ·+ |rle(ŝt)|
≤ 3[|s1|H∗0 (s1) + · · ·+ |st|H∗0 (st)] + t log e.

Combining the last inequality with (32) and (31) we get

A(s) ≤ A∗(s) + µ|s′|

≤ 5
[ t∑
i=1

|si|H∗0 (si)
]

+ ct + 3µ
[ t∑
i=1

|si|H∗0 (si)
]

+ tµ log e

= (5 + 3µ)
[ t∑
i=1

|si|H∗0 (si)
]

+ c′t.

This completes the proof.
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6. CONCLUDING REMARKS

In this paper we have analyzed two algorithms based on the BWT. We have bounded the output size of
these algorithms in terms on the k-th order empirical entropy of the input string. Our results hold for
every string without any probabilistic assumption on the input.

We believe that, with a more careful analysis, it is possible to reduce the size of the constants which
appear in our bounds. However, we conjecture that such constants cannot be made equal to one, that is,
the BWT-based algorithms are not optimal in the classical sense. In other words, our conjecture is that
any worst case analysis of BWT-based algorithms must take into account small overheads which do not
degrade the performance in practice even if they do not go to zero asymptotically.

In our analysis we concentrated on the algorithms which process the output of the BWT. Our major
efforts have been aimed at bounding their compression ratio in terms of

∑t
i=1 |si|H0(si), where s1 · · · st

is a partition of bwt(s). We ignored a “second order” effect which could be considered in future works. In
fact, we did not take into account that, in the partitions we are interested in, the substrings si and si+1

are associated to contexts which in most cases are similar (being consecutive in the lexicographic order).
Therefore, si and si+1 have in general similar statistics which makes the move-to-front transformation
more effective.
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