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1 Introduction

We consider the problem of computing the suffix array of a text T [1, n]. This
problem consists in sorting the suffixes of T in lexicographic order. The suffix
array [16] (or pat array [9]) is a simple, easy to code, and elegant data structure
used for several fundamental string matching problems involving both linguistic
texts and biological data [4, 11]. Recently, the interest in this data structure has
been revitalized by its use as a building block for three novel applications: (1) the
Burrows-Wheeler compression algorithm [3], which is a provably [17] and prac-
tically [20] effective compression tool; (2) the construction of succinct [10, 19]
and compressed [7, 8] indexes; the latter can store both the input text and its
full-text index using roughly the same space used by traditional compressors for
the text alone; and (3) algorithms for clustering and ranking the answers to
user queries in web-search engines [22]. In all these applications the construc-
tion of the suffix array is the computational bottleneck both in time and space.
This motivated our interest in designing yet another suffix array construction
algorithm which is fast and “lightweight” in the sense that it uses small space.
The suffix array consists of n integers in the range [1, n]. This means that in

theory it uses Θ(n logn) bits of storage. However, in most applications the size
of the text is smaller than 232 and it is customary to store each integer in a four
byte word; this yields a total space occupancy of 4n bytes. For what concerns
the cost of constructing the suffix array, the theoretically best algorithms run in
Θ(n) time [5]. These algorithms work by first building the suffix tree and then
obtaining the sorted suffixes via an in-order traversal of the tree. However, suffix
tree construction algorithms are both complex and space consuming since they
occupy at least 15n bytes of working space (or even more, depending on the
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R. Möhring and R. Raman (Eds.): ESA 2002, LNCS 2461, pp. 698–710, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



Engineering a Lightweight Suffix Array Construction Algorithm 699

text structure [14]). This makes their use impractical even for moderately large
texts. For this reason, suffix arrays are usually built using algorithms which run
in O(n logn) time but have a smaller space occupancy. Among these algorithms
the current “leader” is the qsufsort algorithm by Larsson and Sadakane [15].
qsufsort uses 8n bytes1 and despite the O(n logn) worst case bound it is faster
than the algorithms based on suffix tree construction.
Unfortunately, the size of our documents has grown much more quickly than

the main memory of our computers. Thus, it is desirable to build a suffix array
using as small space as possible. Recently, Itoh and Tanaka [12] and Seward [21]
have proposed two new algorithms which only use 5n bytes. From the theoretical
point of view these algorithms have a Θ

(
n2 logn

)
worst case complexity. In

practice they are faster than qsufsort when the average lcp is small (the lcp is
the length of the longest common prefix between two consecutive suffixes in the
suffix array). However, for texts with a large average lcp these algorithms can
be slower than qsufsort by a factor 100 or more.2

In this paper we describe and extensively test a new lightweight suffix sorting
algorithm. Our main idea is to use a very small amount of extra memory, in
addition to 5n bytes, to avoid the degradation in performance when the average
lcp is large. To achieve this goal we make use of engineered algorithms and ad
hoc data structures. Our algorithm uses 5n+ cn bytes, where c is a user tunable
parameter (in our tests c was at most 0.03). For files with average lcp smaller
than 100 our algorithm is faster than Seward’s algorithm and roughly two times
faster than qsufsort. The best algorithm in our tests uses 5.03n bytes and is faster
than qsufsort for all files except for the one with the largest average lcp.

2 Definitions and Previous Results

Let T [1, n] denote a text over the alphabet Σ. The suffix array [16] (or pat
array [9]) for T is an array SA[1, n] such that T [SA[1], n], T [SA[2], n], etc. is the
list of suffixes of T sorted in lexicographic order. For example, for T = babcc
then SA = [2, 1, 3, 5, 4] since T [2, 5] = abcc is the suffix with lower lexicographic
rank, followed by T [1, 5] = babcc, followed by T [3, 5] = bcc and so on.3

Given two strings v, w we write lcp(v, w) to denote the length of their longest
common prefix. The average lcp of a text T is defined as the average length of
the longest common prefix between two consecutive suffixes. The average lcp is
a rough measure of the difficulty of sorting the suffixes: if the average lcp is
large we need in principle to examine “many” characters in order to establish
the relative order of two suffixes.
1 Here and in the following the space occupancy figures include the space for the input
text, for the suffix array, and for any auxiliary data structure used by the algorithm.

2 This figure refers to Seward algorithm [21]. We are in the process of acquiring the
code of the Itoh-Tanaka algorithm and we hope we will be able to test it in the final
version of the paper.

3 Note that to define the lexicographic order of the suffixes it is customary to append
at the end of T a special end-of-text symbol which is smaller than any symbol in Σ.
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Table 1. Files used in our experiments sorted in order of increasing average lcp

Name Ave. lcp Max. lcp File size Description

bible 13.97 551 4,047,392 The file bible of the Canterbury corpus

e.coli 17.38 2,815 4,638,690 The file E.coli of the Canterbury corpus
wrld 23.01 559 2,473,400 The file world192 of the Canterbury corpus

sprot 89.08 7,373 109,617,186 Swiss prot database (sprot34.dat)

rfc 93.02 3,445 116,421,901 Concatenation of RFC text files

howto 267.56 70,720 39,422,105 Concatenation of Linux Howto text files

reuters 282.07 26,597 114,711,151 Reuters news in XML format

linux 479.00 136,035 116,254,720 Linux kernel 2.4.5 source files (tar archive)

jdk13 678.94 37,334 69,728,899 html and java files from the JDK 1.3 doc.

chr22 1,979.25 199,999 34,553,758 Assembly of human chromosome 22

gcc 8,603.21 856,970 86,630,400 gcc 3.0 source files (tar archive)

Since this is an “algorithmic engineering” paper we make the following as-
sumptions which correspond to the situation most often faced in practice. We
assume |Σ| ≤ 256 and that each alphabet symbol is stored in one byte. Hence,
the text T [1, n] takes precisely n bytes. Furthermore, we assume that n ≤ 232
and that the starting position of each suffix is stored in a four byte word. Hence,
the suffix array SA[1, n] takes precisely 4n bytes. In the following we use the
term “lightweight” to denote a suffix sorting algorithm which use 5n bytes plus
some small amount of extra memory (we are intentionally giving an informal
definition). Note that 5n bytes are just enough to store the input text T and the
suffix array SA. Although we do not claim that 5n bytes are indeed required,
we do not know of any algorithm using less space.
For testing the suffix array construction algorithms we use the collection of

files shown in Table 1. These files contain different kind of data in different
formats; they also display a wide range of sizes and of average lcp’s.

2.1 The Larsson-Sadakane qsufsort Algorithm

The qsufsort algorithm [15] is based on the doubling technique introduced in [13]
and first used for the construction of the suffix array in [16]. Given two strings
v, w and t > 0 we write v <t w if the length-t prefix of v is lexicographically
smaller than the length-t prefix of w. Similarly we define the symbols ≤t,=t

and so on. Let s1, s2 denote two suffixes and assume s1 =t s2 (that is, T [s1, n]
and T [s2, n] have a length-t common prefix). Let ŝ1 = s1 + t denote the suffix
T [s1 + t, n] and similarly let ŝ2 = s2 + t. The fundamental observation of the
doubling technique is that

s1 ≤2t s2 ⇐⇒ ŝ1 ≤t ŝ2. (1)

In other words, we can derive the ≤2t order between s1 and s2 by looking at the
rank of ŝ1 and ŝ2 in the <t order.



Engineering a Lightweight Suffix Array Construction Algorithm 701

The algorithm qsufsort works in rounds. At the beginning of the ith round
the suffixes are already sorted according to the ≤2i ordering. In the ith round
the algorithm looks for groups of suffixes sharing the first 2i characters and sorts
them according to the ≤2i ordering using Bentley-McIlroy ternary quicksort [1].
Because of (1) each comparison in the quicksort algorithm takes O(1) time.
After at most logn rounds all the suffixes are sorted. Thanks to a very clever
data organization qsufsort only uses 8n bytes. Even more surprisingly, the whole
algorithm fits in two pages of clean and elegant C code.
The experiments reported in [15] show that qsufsort outperforms other suffix

sorting algorithm based on either the doubling technique or the suffix tree con-
struction. The only algorithm which runs faster than qsufsort, but only for files
with average lcp less than 20, is the Bentley-Sedgewick multikey quicksort [2].
Multikey quicksort is a direct comparison algorithm since it considers the suf-
fixes as ordinary strings and sorts them via a character-by-character comparison
without taking advantage of their special structure.

2.2 The Itoh-Tanaka two-stage Algorithm

In [12] Itoh and Tanaka describe a suffix sorting algorithm called two-stage
suffix sort (two-stage from now on). two-stage only uses the text T and the suffix
array SA for a total space occupancy of 5n bytes. To describe how it works, let
us assume Σ = {a, b, . . . , z}. Using counting sort, two-stage initially partitions
the suffixes into |Σ| buckets Ba, . . . , Bz according to their first character. Note
that a bucket is nothing more than a set of consecutive entries in the array
SA which now is sorted according to the ≤1 ordering. Within each bucket two-
stage distinguishes between two types of suffixes: Type A suffixes in which the
second character of the suffix is smaller than the first, and Type B suffixes in
which the second character is larger than or equal to the first suffix character.
The crucial observation of algorithm two-stage is that when all Type B suffixes
are sorted we can derive the ordering of Type A suffixes. This is done with
a single pass over the array SA; when we meet suffix T [i, n] we look at suffix
T [i − 1, n]: if it is a Type A suffix we move it to the first empty position of
bucket BT [i−1].

Type B suffixes are sorted using textbook string sorting algorithms: in their
implementation the authors use MSD radix sort [18] for sorting large groups
of suffixes, Bentley-Sedgewick multikey quicksort for medium size groups, and
insertion sort for small groups. Summing up, two-stage can be considered an
“advanced” direct comparison algorithm since Type B suffixes are sorted by di-
rect comparison whereas Type A suffixes are sorted by a much faster procedure
which takes advantage of the special structure of the suffixes.
In [12] the authors compare two-stage with three direct comparison algo-

rithms (quicksort, multikey quicksort, and MSD radix sort) and with an earlier
version of qsufsort. two-stage turns out to be roughly 4 times faster than quick-
sort and MSD radix sort, and 2 to 3 times faster than multikey quicksort and
qsufsort. However, the files used for the experiments have an average lcp of at
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most 31, and we know that the advantage of doubling algorithms (like qsufsort)
become apparent for much larger average lcp’s.

2.3 Seward copy Algorithm

Independently of Itoh and Tanaka, in [21] Seward describes a lightweight algo-
rithm, called copy, which is based on a concept similar to the Type A/Type B suf-
fixes used by algorithm two-stage.
Using counting sort, copy initially sorts the array SA according to the ≤2

ordering. As before we use the term bucket to denote the contiguous portion of
SA containing a set of suffixes sharing the same first character. Similarly, we use
the term small bucket to denote the contiguous portion of SA containing suffixes
sharing the first two characters. Hence, there are |Σ| buckets each one consisting
of |Σ| small buckets. Note that one or more (small) buckets can be empty.

copy sorts the buckets one at a time starting with the one containing the
fewest suffixes, and proceeding up to the largest one. Assume for simplicity
that Σ = {a, b, . . . , z}. To sort a bucket, let us say bucket Bp, copy sorts the
small buckets bpa, bpb, . . . , bpz. The crucial point of algorithm copy is that when
bucket Bp is completely sorted, with a simple pass over it copy sorts all the
small buckets bap, bbp, . . . , bzp. These small buckets are marked as sorted and
therefore copy will skip them when their “parent” bucket is sorted. As a further
improvement, Seward shows that even the sorting of the small bucket bpp can be
avoided since its ordering can be derived from the ordering of the small buckets
bpa, . . . , bpo and bpq, . . . , bpz. This trick is extremely effective when working on
files containing long runs of identical characters.
Algorithm copy sorts the small buckets using Bentley-McIlroy ternary quick-

sort. During this sorting the suffixes are considered atomic, that is, each compar-
ison consists of the complete comparison of two suffixes. The standard trick of
sorting the larger side of the partition last and eliminating tail recursion ensures
that the amount of space required by the recursion stack grows, in the worst
case, logarithmically with the size of the input text. In [21] Seward compares
a tuned implementation of copy with the qsufsort algorithm on a set of files
with average lcp up to 400. In these tests copy outperforms qsufsort for all files
but one. However, Seward reports that copy is much slower than qsufsort when
the average lcp exceeds a thousand, and for this reason he suggests the use of
qsufsort as a fallback when the average lcp is large.4

Since the source code of both qsufsort and copy is available5, we have tested
both algorithms on our suite of test files which have an average lcp ranging
from 13.97 to 8603.21 (see Table 1). The results of our experiments are reported
in the top two rows of Table 2 (for a AMD Athlon processor) and Table 3 (for
a Pentium III processor). In accordance with Seward’s results, copy is faster than

4 In [21] Seward describes another algorithm, called cache, which is faster than copy for
files with larger average lcp. However, algorithm cache uses 6n bytes.

5 Algorithm copy was originally conceived to split the input file into 1MB blocks. We
modified it to allow the computation of the suffix array for the whole file.
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qsufsort when the average lcp is small, and it is slower when the average lcp is
large. The turning point appears to be when the average lcp is in the range
100-250. However, this is not the complete story. For example for all files the
running time of qsufsort on the Pentium is smaller than the running time for
the Athlon; this is not true for copy (see for example files jdk13 and gcc). We
conjecture that a difference in the cache architecture and behavior could explain
this difference, and we plan to investigate it in the full paper (see also Section 4).
We can also see that the difference in performance between the two algorithms
does not depend on the average lcp alone. The DNA file chr22 has a very large
average lcp, nevertheless the two algorithms have similar running times. The
file linux has a much greater average lcp than reuters and roughly the same size.
Nevertheless, the difference in the running times between qsufsort and copy is
smaller for linux than for reuters.
The most striking data in Tables 2 and 3 are the running times for gcc: for this

file algorithm copy is 150-200 times slower than qsufsort. This is not acceptable
since gcc is not a pathological file built to show the weakness of copy, on the
contrary it is a file downloaded from a very busy site and we can expect that
there are other files like it on our computers.6 In the next section we describe
a new algorithm which uses several techniques for avoiding such catastrophic
behavior and at the same time retaining the nice features of copy: the 5n bytes
space occupancy and the good performance for files with moderate average lcp.

3 Our Contribution: Deep-Shallow Suffix Sorting

Our starting point for the design of an efficient suffix array construction algo-
rithm is Seward copy algorithm. Within this algorithm we replace the procedure
used for sorting the small buckets (i.e. the groups of suffixes having the first two
characters in common). Instead of using Bentley-McIlroy ternary quicksort we
use a more sophisticated technique. More precisely, we sort the small buckets
using Bentley-Sedgewick multikey quicksort and we stop the recursion when we
reach a predefined depth L (that is, when we have to sort a group of suffixes with
a length-L common prefix). At this point we switch to a different string sorting
algorithm. This approach has several advantages: (1) it provides a simple and
efficient mean to detect the groups of suffixes with a long common prefix; (2)
because of the limit L, the size of the recursion stack is bounded by a predefined
constant which is independent of the size of the input text and can be tuned by
the user; (3) if the suffixes in the small bucket have common prefixes which never
exceed L, all the sorting is done by multikey quicksort which is an extremely
efficient string sorting algorithm.
We call this approach to suffix sorting deep-shallow sorting since we mix an

algorithm for sorting suffixes with small lcp (shallow sorter) with an algorithm
(actually more than one, as we shall see) for sorting suffixes with large lcp (deep
6 As we have already pointed out, algorithm copy was conceived to work on blocks of
data of size at most 1MB. The reader should be aware that we are using an algorithm
outside its intended domain!
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Table 2. Running times (in seconds) for a 1400 MHz AMD Athlon processor,
with 1GB main memory and 256Kb L2 cache. The operating system was Debian
GNU/Linux Debian 2.2. The compiler was gcc ver. 2.95.2 with options -O3 -
fomit-frame-pointer. The table reports (user + system) time averaged over five
runs. The running times do not include the time spent for reading the input files

bible e.coli wrld sprot rfc howto reuters linux jdk13 chr22 gcc

qsufsort 5.44 5.21 3.27 313.41 321.15 80.23 391.08 262.26 218.14 55.08 199.63

copy 3.36 4.55 1.69 228.47 201.06 68.25 489.75 297.26 450.93 48.69 28916.45

ds0 L=500 2.64 3.21 1.29 157.54 139.71 50.36 294.57 185.79 227.94 33.38 2504.98

ds0 L=1000 2.57 3.22 1.29 157.04 140.11 50.26 292.25 185.00 235.74 33.27 2507.15

ds0 L=2000 2.66 3.23 1.29 157.00 139.93 50.30 292.35 185.46 237.75 33.29 2511.50

ds0 L=5000 2.66 3.23 1.31 156.90 139.87 50.36 291.47 185.53 239.48 33.23 2538.78

ds1 L=200 2.51 3.21 1.29 169.68 149.12 41.76 301.10 150.35 148.14 33.44 343.02

ds1 L=500 2.51 3.22 1.28 161.94 147.35 40.62 309.97 140.85 177.28 33.32 295.70

ds1 L=1000 2.51 3.22 1.29 157.60 145.12 40.52 298.23 138.11 202.28 33.27 289.40

ds1 L=2000 2.50 3.19 1.27 157.19 140.93 41.10 291.18 139.06 202.30 33.18 308.41

ds1 L=5000 2.51 3.18 1.28 157.09 139.73 42.76 289.95 145.74 212.77 33.21 372.35

ds2 d=500 2.64 3.19 1.35 157.09 139.34 37.48 292.22 121.15 164.97 33.33 230.64

ds2 d=1000 2.55 3.19 1.28 157.33 139.14 38.50 284.50 124.07 184.86 33.30 242.99

ds2 d=2000 2.50 3.18 1.27 156.93 139.81 39.67 286.56 128.26 191.71 33.25 266.27

ds2 d=5000 2.51 3.19 1.28 157.05 139.65 41.94 289.78 137.08 210.01 33.31 332.55

sorter). In the next sections we describe several deep sorting strategies, i.e. al-
gorithms for sorting suffixes which have a length-L common prefix.

3.1 Blind Sorting

Let s1, s2, . . . , sm denote a group of m suffixes with a length-L common prefix
that we need to deep-sort. If m is small (we will discuss later what this means)
we sort them using an algorithm, called blind sort, which is based on the blind
trie data structure introduced in [6, Sect. 2.1] (see Fig. 1). Blind sorting simply
consists in inserting the strings s1, . . . , sm one at a time in an initially empty
blind trie; then we traverse the trie from left to right thus obtaining the strings
sorted in lexicographic order.
The insertion of string si in the trie requires a first phase in which we scan si

and simultaneously traverse the trie until we reach a leaf �. Then we compare si

with the string associated to leaf � and we determine the length of their common
prefix. Finally, we update the trie adding the leaf corresponding to si (see [6]
for details and for the merits of blind tries with respect to standard compacted
tries). Obviously in the construction of the trie we ignore the first L characters
of each suffix because they are identical.
Our implementation of the blind sort algorithm uses at most 36m bytes of

memory. Therefore, we use it when the number of suffixes to be sorted is less
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Table 3. Running times (in seconds) for a 1000MHz Pentium III processor, with
1GB main memory and 256Kb L2 cache. The operating system was GNU/Linux
Red Hat 7.1. The compiler was gcc ver. 2.96 with options -O3 -fomit-frame-
pointer. The table reports (user + system) time averaged over five runs. The
running times do not include the time spent for reading the input files

bible e.coli wrld sprot rfc howto reuters linux jdk13 chr22 gcc

qsufsort 4.96 4.63 3.16 230.52 245.02 64.71 290.20 213.81 168.59 42.69 162.68

copy 3.34 4.63 1.76 230.10 197.73 70.82 532.02 324.29 519.10 47.33 35258.04

ds0 L=500 2.28 2.96 1.24 122.84 114.50 47.60 246.87 192.02 218.85 26.02 3022.47

ds0 L=1000 2.21 2.80 1.20 122.29 114.10 47.62 243.98 191.32 221.65 26.07 3035.91

ds0 L=2000 2.21 2.80 1.19 121.80 113.80 48.51 242.71 192.33 222.68 26.04 3026.48

ds0 L=5000 2.28 2.94 1.23 121.55 113.72 47.80 242.17 186.40 225.59 25.99 3071.17

ds1 L=200 2.29 2.99 1.26 137.27 124.75 36.07 253.79 140.10 127.52 26.28 383.03

ds1 L=500 2.18 2.85 1.20 127.29 122.13 34.49 262.66 126.61 150.68 26.10 331.50

ds1 L=1000 2.20 2.85 1.20 122.76 119.27 34.60 248.58 123.38 174.54 26.06 325.91

ds1 L=2000 2.18 2.79 1.19 121.50 114.85 35.23 240.59 124.24 175.30 25.93 344.11

ds1 L=5000 2.19 2.80 1.20 121.80 113.53 37.39 240.42 132.50 190.77 26.05 410.72

ds2 d=500 2.18 2.79 1.20 121.66 112.74 30.95 239.44 102.51 133.37 25.95 249.23

ds2 d=1000 2.18 2.79 1.19 121.44 112.57 32.16 232.45 105.79 152.49 25.92 262.48

ds2 d=2000 2.22 2.81 1.20 121.65 113.35 33.99 235.94 111.35 162.75 26.05 287.02

ds2 d=5000 2.23 2.82 1.20 121.54 113.25 36.86 239.99 121.88 186.84 25.99 353.70

than B = n
2000 . Thus, the space overhead of using blind sort is at most

9n
500 bytes.

If the text is 100MB long, this overhead is 1.8MB which should be compared
with the 500MB required by the text and the suffix array.7

If the number of suffixes to be sorted is larger than B = n
2000 we sort them

using Bentley-McIlroy ternary quicksort. However, with respect to algorithm
copy, we introduce the following two improvements:

1. As soon as we are working with a group of suffixes smaller than B we stop
the recursion and we sort them using blind sort;

2. during each partitioning phase we compute LS (resp. LL) which is the longest
common prefix between the pivot and the strings which are lexicographically
smaller (resp. larger) than the pivot. When we sort the strings which are
smaller (resp. larger) than the pivot we can skip the first LS (resp. LL)
characters since we know they constitute a common prefix.

We have called the above algorithm ds0 and its performances are reported
in Tables 2 and 3 for several values of the parameter L (the depth at which we

7 Although we believe this is a small overhead, we point out that the limit B = n
2000

was chosen somewhat arbitrarily. Preliminary experimental results show that there
is only a marginal degradation in performance when we take B = n

3000
, or B = n

4000
.

In the future we plan to better investigate the space/time tradeoff introduced by
this parameter and its impact on the cache performance.
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Fig. 1. A standard compacted trie (left) and the corresponding blind trie (right)
for the strings: abaaba, abaabb, abac, bcbcaba, bcbcabb, bcbcbba, bcbcbbba. Each
internal node of the blind trie contains an integer and a set of outgoing la-
belled arcs. A node containing the integer k represent a set of strings which have
a length-k common prefix and differ in the (k+1)st character. The outgoing arcs
are labelled with the different characters that we find in position k + 1. Note
that since the outgoing arcs are ordered alphabetically, by visiting the trie leaves
from left to right we get the strings in lexicographic order

stop multikey quicksort and we switch to the blind sort/quicksort algorithms).
We can see that algorithm ds0 is slower than qsufsort only for the files jdk13 and
gcc. If we compare copy and ds0 we notice that our deep-shallow approach has
reduced the running time for gcc by a factor 10. This is certainly a good start.
As we shall see, we will be able to reduce it again by the same factor taking
advantage of the fact that the strings we are sorting are all suffixes of the same
text.

3.2 Induced Sorting

One of the nice features of two-stage and copy algorithms is that some of the
suffixes are not sorted by direct comparison: instead their relative order is derived
in constant time from the ordering of other suffixes which have been already
sorted. We use a generalization of this technique in the deep-sorting phase of our
algorithm. Assume we need to sort the suffixes s1, . . . , sm which have a length-
L common prefix. We scan the first L characters of s1 looking at each pair of
consecutive characters (e.g. T [s1]T [s1 + 1], T [s1 + 1]T [s1 + 2], up to T [s1 + L−
2]T [s1+L−1]). As soon as we find a pair of characters, say αβ, belonging to an
already sorted small bucket bαβ the ordering of s1, . . . , sm can be derived from
the ordering of bαβ as follows.
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Assume α = T [s1+t] and β = T [s1+t+1] for some t < L−1. Since s1, . . . , sm

have a length-L common prefix, every si contains the pair αβ starting from
position t. Hence bαβ contains m suffixes corresponding to s1, . . . , sm (that is,
bαβ contains the suffixes starting at s1 + t, s2 + t, . . . , sm + t). Note that these
suffixes are not necessarily consecutive in bαβ . Since the first t − 1 characters
of s1, . . . , sm are identical, the ordering of s1, . . . , sm can be derived from the
ordering of the corresponding suffixes in bαβ . Summing up, the ordering is done
as follows:

1. We sort the suffixes s1, . . . , sm according to their starting position in the
input text T [1, n]. This is done so that in Step 3 we can use binary search
to answer membership queries in the set s1, . . . , sm.

2. Let ŝ denote the suffix starting at the text position T [s1 + t]. We scan the
small bucket bαβ in order to find the position of ŝ within bαβ .

3. We scan the suffixes preceding and following ŝ in the small bucket bαβ . For
each suffix s we check whether the suffix starting at the position T [s − t] is
in the set s1, . . . , sm; if so we mark the suffix s.8

4. When m suffixes in bαβ have been marked, we scan them from left to right.
Since bαβ is sorted this gives us the correct ordering of s1, . . . , sm.

Obviously there is no guarantee that in the length-L common prefix of s1, . . . ,
sm there is a pair of characters belonging to an already sorted small bucket. In
this case we simply resort to the quicksort/blind sort combination. We call this
algorithm ds1 and its performances are reported in Tables 2 and 3 for several
values of L. We can see that ds1 with L = 500 runs faster than qsufsort for all
files except gcc. In general, ds1 appears to be slightly slower than ds0 for files
with small average lcp but it is clearly faster for the files with large average
lcp: for gcc it is 8-9 times faster.

3.3 Anchor Sorting

Profiling shows that the most costly operation of induced sorting is the scanning
of the small bucket bαβ in search of the position of suffix ŝ (Step 2 above).
We now show that we can avoid this operation if we are willing to use a small
amount of extra memory. For a fixed d > 0 we partition the text T [1, n] into
n/d segments of length d: T [1, d], T [d+1, 2d] and so on up to T [n−d+1, n] (for
simplicity let us assume that d divides n). We define two arrays Anchor[·] and
Offset[·] of size n/d such that, for i = 1, . . . , n/d:

– Offset[i] contains the position of leftmost suffix which starts in the ith seg-
ment and belongs to an already sorted small bucket. If in the ith segment
does not start any suffix belonging to an already sorted small bucket then
Offset[i] = 0.

– Let ŝi denote the suffix whose starting position is stored Offset[i]. Anchor[i]
contains the position of ŝi within its small bucket.

8 The marking is done setting the most significant bit of s. This means that we can
work with texts of size at most 231. The same restriction holds for qsufsort as well.
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The use of the arrays Anchor[·] and Offset[·] is fairly simple. Assume that we
need to sort the suffixes s1, . . . , sm which have a length-L common prefix. For
j = 1, . . . , m, let tj denote the segment containing the starting position of sj . If
ŝtj (that is, the leftmost already sorted suffix in segment tj) starts within the
first L characters of sj (that is, sj < ŝtj < sj + L) then we can sort s1, . . . , sm

using the induced sorting algorithm described in the previous section. However,
we can skip Step 2 since the position of ŝtj within its small bucket is stored
in Anchor[tj ]. Obviously, it is possible that for some j ŝtj does not exist or
cannot be used. However, since the suffixes s1, . . . , sm usually belong to different
segments, we have m possible candidates. In our implementation among the
available sorted suffixes ŝtj ’s we use the one whose starting position is closest to
the corresponding sj (that is, we choose j which minimizes ŝtj − sj ; this helps
Step 3 of induced sorting). If there is no available sorted suffix, then we resort
to the blind sort/quicksort combination.
For what concerns the space occupancy of anchor sorting, we note that in

Offset[i] we can store the distance between the beginning of the ith segment and
the leftmost sorted suffix. Hence Offset[i] < d. If we take d < 216 the array Offset
requires 2n/d bytes of storage. Since each entry of Anchor requires four bytes,
the overall space occupancy is 6n/d bytes. In our tests we used at least d = 500
which yields an overhead of 6n

500 bytes. If we add the
9n
500 bytes required by blind

sorting with B = n
2000 , we get a maximum overhead of at most

3n
100 bytes. Hence,

for a 100MB text the overhead is at most 3MB, which we consider a “small”
amount compared with the 500MB used by the text and the suffix array.
In Tables 2 and 3 we report the running times of anchor sorting (under the

name ds2) for d ranging from 500 to 5000 and L = d + 50. We see that for the
files with moderate average lcp ds2 with d = 500 is significantly faster than
copy and roughly two times faster than qsufsort. For the files with large average
lcp ds2 is faster than qsufsort for all files except gcc. For gcc ds2 is 15% slower
than qsufsort on the Athlon and 50% slower on the Pentium. In our opinion
this slowdown on a single file is an acceptable price to pay in exchange for the
reduction in space occupancy achieved over qsufsort (5.03n bytes vs. 8n bytes).
We believe that the possibility of building suffix arrays for larger files has more
value than a greater efficiency in handling files with a very large average lcp.

4 Conclusions and Further Work

In this paper we have presented a novel algorithm for building the suffix array of
a text T [1, n]. Our algorithm uses 5.03n bytes and is faster than any other tested
algorithm. Only on a single file our algorithm is outperformed by qsufsort which
however uses 8n bytes.
For pathological inputs, i.e. texts with an average lcp of Θ(n), all lightweight

algorithms take Θ
(
n2 logn

)
time. Although this worst case behavior does not

occur in practice, it is an interesting theoretical open question whether we can
achieve O(n logn) time using o(n) space in addition to the space required by the
input text and the suffix array.
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