
The Myriad Virtues of Wavelet Trees

Paolo Ferragina1,�, Raffaele Giancarlo2,��, and Giovanni Manzini3,���

1 Dipartimento di Informatica, Università di Pisa, Italy
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Abstract. Wavelet Trees have been introduced in [Grossi, Gupta and
Vitter, SODA ’03] and have been rapidly recognized as a very flexible
tool for the design of compressed full-text indexes and data compressors.
Although several papers have investigated the beauty and usefulness of
this data structure in the full-text indexing scenario, its impact on data
compression has not been fully explored. In this paper we provide a
complete theoretical analysis of a wide class of compression algorithms
based on Wavelet Trees. We also show how to improve their asymp-
totic performance by introducing a novel framework, called Generalized
Wavelet Trees, that aims for the best combination of binary compressors
(like, Run-Length encoders) versus non-binary compressors (like, Huff-
man and Arithmetic encoders) and Wavelet Trees of properly-designed
shapes. As a corollary, we prove high-order entropy bounds for the chal-
lenging combination of Burrows-Wheeler Transform and Wavelet Trees.

1 Introduction

The Burrows-Wheeler Transform [3] (bwt for short) has changed the way in
which fundamental tasks for string processing and data retrieval, such as com-
pression and indexing, are designed and engineered (see e.g. [4,5,7,9,10,11]). The
transform reduces the problem of high-order entropy compression to the appar-
ently simpler task of designing and engineering good order-zero (or memoryless)
compressors. This point has lead to the paradigm of compression boosting pre-
sented in [4]. However, despite nearly 60 years of investigation in the design of
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good memoryless compressors, no general theory for the design of order-zero
compressors suited for the bwt is available, since it poses special challenges. In-
deed, bwt is a string in which symbols following the same context (substring)
are grouped together, giving raise to clusters of nearly identical symbols. A good
order-zero compressor must both adapt fast to those rapidly changing contexts
and compress efficiently the runs of identical symbols. By now it is understood
that one needs a clever combination of classic order-zero compressors and run
length encoding techniques. However, such a design problem is mostly open. Re-
cently Grossi et al. [7,8] proposed an elegant and effective solution to the posed
design problem: the Wavelet Tree. It is a binary tree data structure that reduces
the compression of a string over a finite alphabet to the compression of a set of
binary strings. The latter problem is then solved via Run Length Encoding or
Gap Encoding techniques. A formal definition is given in Section 2.1.

Wavelet Trees are remarkably natural since they use a well known decompo-
sition of entropy in terms of binary entropy and, in this respect, it is surprising
that it took so long to define and put them to good use. The mentioned ground-
breaking work by Grossi et al. highlights the beauty and usefulness of this data
structure mainly in the context of full-text indexing, and investigates a few of
its virtues both theoretically and experimentally in the data compression setting
[6,8]. Yet, it is still open the fundamental question of whether Wavelet Trees can
provide a data structural paradigm based on which one can design good order-
zero compression algorithms for the Burrows-Wheeler Transform.

Our main contribution is to answer this question in the affirmative by pro-
viding a general paradigm, and associated analytic tools, for the design of good
order-zero compressors for the bwt. It is also rather fortunate that a part of our
theoretical results either strengthen the ones by Grossi et al. or fully support the
experimental evidence presented by those researchers and cleverly used in their
engineering choices. The remaining part of our results highlight new virtues of
Wavelet Trees. More specifically, in this paper:

(A) We provide a complete theoretical analysis of Wavelet Trees as stand-alone,
general purpose, order-zero compressors for an arbitrary string σ. We consider
both the case in which binary strings associated to the tree are compressed using
Run Length Encoding (Rle), and refer to it as Rle Wavelet Tree, and the case
in which Gap Encoding (Ge) is used, and refer to it as Ge Wavelet Tree. In
both cases, a generic prefix-free encoding of the integers is used as a subrou-
tine, thus dealing with the typical scenario of use for Wavelet Trees (see [6,7,8]).
Our analysis is done in terms of the features of these prefix-free encodings and
H∗

0 (σ), the modified order-zero entropy of the string σ, defined in Section 2. As a
notable Corollary, we also obtain an analysis of Inversion Frequencies coding [2]
offering a theoretical justification of the better compression observed in practice
by this technique with respect to Move-to-Front coding.

(B) We study the use of Wavelet Trees to compress the output of the bwt. We
show that Rle Wavelet Trees achieve a compression bound in terms of H∗

k (σ).
The technical results are in Section 4 and they improve Theorem 3.2 in [8] in
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that our final bound does not contain the additive term |σ|. We also show that
Ge Wavelet Trees cannot achieve analogous bounds. A striking consequence of
our analytic results is to give full theoretic support to the engineering choices
made in [6,8] where, based on a punctual experimental analysis of the data, the
former method is preferred to the latter to compress the output of the bwt.

(C) We define Generalized Wavelet Trees that add to this class of data struc-
tures in several ways. In order to present our results here, we need to mention
some facts about Wavelet Trees, when they are used as stand-alone order-zero
compressors. The same considerations apply when they are used in (B). Wavelet
Trees reduce the problem of compressing a string to that of compressing a set of
binary strings. That set is uniquely identified by: (C.1) the shape (or topology)
of the binary tree underlying the Wavelet Tree; (C.2) an assignment of alphabet
symbols to the leaves of the tree. How to choose the best Wavelet Tree, in terms
of number of bits produced for compression, is open. Grossi et al. establish worst-
case bounds that hold for the entire family of Wavelet Trees and therefore they
do not depend on (C.1) and (C.2). They also bring some experimental evidence
that choosing the “best” Wavelet Tree may be difficult [8, Sect. 3.1]. It is possible
to exhibit an infinite family of strings over an alphabet Σ for which changing
the Wavelet Tree shape (C.1) influences the coding cost by a factor Θ(log |Σ|),
and changing the assignment of symbols to leaves (C.2) influences the coding
cost by a factor Θ(|Σ|). So, the choice of the best tree cannot be neglected and
remains open. Moreover, (C.3) Wavelet Trees commit to binary compressors,
loosing the potential advantage that might come from a mixed strategy in which
only some strings are binary and the others are defined on an arbitrary alphabet
(and compressed via general purpose order-zero compressors, such as Arithmetic
and Huffman coding). Again, it is possible to exhibit an infinite family of strings
for which a mixed strategy yields a constant multiplicative factor improvement
over standard Wavelet Trees. So, (C.3) is relevant and open.

We introduce the new paradigm of Generalized Wavelet Trees that allows
us to reduce the compression of a string σ to the identification of a set of
strings, for which only a part may be binary, that are compressed via the mixed
strategy sketched above. We develop a combinatorial optimization framework
so that one can address points (C.1)-(C.3) simultaneously. Moreover, we pro-
vide a polynomial-time algorithm for finding the optimal mixed strategy for a
Generalized Wavelet Tree of fixed shape (Theorem 5). In addition, we provide
a polynomial-time algorithm for selecting the optimal tree-shape for Generalized
Wavelet Trees when the size of the alphabet is constant and the assignment of
symbols to the leaves of the tree is fixed (Theorem 6). Apart from their intrinsic
interest, being Wavelet Trees a special case, those two results shed some light on
a problem implicitly posed in [8], where it is reported that a closer inspection
of the data did not yield any insights as to how to generate a space-optimizing
tree, even with the use of heuristics.

Due to space limitations some proofs will be either omitted or simply sketched.
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2 Background and Notation

Let s be a string over the alphabet Σ = {a1, . . . , ah} and, for each ai ∈ Σ, let ni

be the number of occurrences of ai in s. Throughout this paper we assume that
all logarithms are taken to the base 2 and 0 log 0 = 0. The 0-th order empirical
entropy of the string s is defined as H0(s) = −

∑h
i=1(ni/|s|) log(ni/|s|). It is

well known that H0 is the maximum compression we can achieve using a fixed
codeword for each alphabet symbol. We can achieve a greater compression if the
codeword we use for each symbol depends on the k symbols preceding it, since
the maximum compression is now bounded by the k-th order entropy Hk(s)
(see [11] for the formal definition).

For highly compressible strings, |s| Hk(s) fails to provide a reasonable bound
to the performance of compression algorithms (see discussion in [4,11]). For that
reason, [11] introduced the notion of 0-th order modified empirical entropy:

H∗
0 (s) =

⎧
⎨

⎩

0 if |s| = 0
(1 + �log |s|�)/|s| if |s| �= 0 and H0(s) = 0
H0(s) otherwise.

(1)

Note that for a non-empty string s, |s|H∗
0 (s) is at least equal to the number

of bits needed to write down the length of s in binary. The k-th order modified
empirical entropy H∗

k is then defined in terms of H∗
0 as the maximum compression

we can achieve by looking at no more than k symbols preceding the one to be
compressed.

2.1 Wavelet Trees

For ease of exposition we use a slightly more verbose notation than the one in [7].
Let TΣ be a complete binary tree with |Σ| leaves. We associate one-to-one the
symbols in Σ to the leaves of TΣ and refer to it as an alphabetic tree. Given a
string s over Σ the full Wavelet Tree Wf (s) is the labeled tree returned by the
procedure TreeLabel of Fig. 1 (see also Fig. 2). Note that to each internal node
u ∈ Wf (s) we associate two strings of equal length. The first one, assigned in
Step 1, is a string over Σ and we denote it by s(u). The second one, assigned
in Step 3, is a binary string and we denote it by s01(u). Note that the length of
these strings is equal to the number of occurrences in s of the symbols associated
to the leaves of the subtree rooted at u.

In this paper we use Σ(s) to denote the set of symbols that appear in s. If
Σ(s) = Σ, the Wavelet Tree Wf (s) has the same shape as TΣ and is therefore
a complete binary tree. If Σ(s) ⊂ Σ, Wf (s) is not necessarily a complete binary
tree since it may contain unary paths. By contracting all unary paths we obtain
a pruned Wavelet Tree Wp(s) which is a complete binary tree with |Σ(s)| leaves
and |Σ(s)| − 1 internal nodes (see Fig. 2).

As observed in [7], we can always retrieve s given the binary strings s01(u)
associated to the internal nodes of a Wavelet Tree and the mapping between
leaves and alphabetic symbols. Hence, Wavelet Trees are a tool for encoding
arbitrary strings using only an encoder for binary strings. Let C denote any
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Procedure TreeLabel(u, s)

1. Assign string s to node u. If u has no children return.
2. Let uL (resp. uR) denote the left (resp. right) child of u. Let Σ(uL) (reps. Σ(uR)) be

the set of symbols associated to the leaves of the subtree rooted at uL (resp. uR).
3. Assign to node u the binary string obtained from s replacing the symbols in Σ(uL)

with 0, and the symbols in Σ(uR) with 1.
4. Let sL denote the string obtained from s removing the symbols in Σ(uR). If |sL| >

0, TreeLabel(uL, sL).
5. Let sR denote the string obtained from s removing the symbols in Σ(uL). If |sR| >

0, TreeLabel(uR, sR).

Fig. 1. Procedure TreeLabel for building the full Wavelet Tree Wf (s) given the alpha-
betic tree TΣ and the string s. The procedure is called with u = root(T ).

Fig. 2. An alphabetic tree (left) for the alphabet Σ = {a,b,c,d,e,f}. Given the string
s = fcdcfcffd, we show its full (center) and pruned (right) Wavelet Trees.

algorithm for encoding binary strings. For any internal node u we denote by
C∗(u) the length of the encoding of s01(u) via C, that is, C∗(u) = |C(s01(u))|.
With a little abuse of notation we write C∗(Wp(s)) to denote the total cost of
encoding the Wavelet Tree Wp(s). Namely, C∗(Wp(s)) =

∑
u∈Wp(s) C∗(u), where

the sum is done over the internal nodes only. C∗(Wf (s)) is defined similarly. The
following fundamental property of pruned Wavelet Trees was established in [7]
and shows that there is essentially no loss in compression performance when we
compress an arbitrary string s using Wavelet Trees and a binary encoder.

Theorem 1 (Grossi et al., ACM Soda 2003). Let C be a binary encoder
such that for any binary string z the bound |C(z)| ≤ λ|z|H0(z) + η|z| + μ holds
with constant λ, η, μ. Then, for a string s drawn from any alphabet Σ(s), we
have C∗(Wp(s)) =

∑
u∈Wp(s) |C(s01(u))| ≤ λ|s|H0(s)+ η|s|+(|Σ(s)|− 1)μ. The

bound holds regardless of the shape of Wp(s). The same result holds when the
entropy H0 is replaced by the modified entropy H∗

0 . �	
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3 Achieving 0-th Order Entropy with Wavelet Trees

This section contains a technical outline of the results claimed in (A) of the Intro-
duction, where Wavelet Trees are used as stand alone, general purpose, order-zero
compressors. In particular, we analyze the performance of Rle Wavelet Trees
(Section 3.1) and Ge Wavelet Trees (Section 3.2) showing that Ge is superior
to Rle as an order-zero compressor over Wavelet Trees. Nevertheless, we will
show in Section 4 that Ge Wavelet Trees, unlike Rle Wavelet Trees, are un-
able to achieve the k-th order entropy when used to compress the output of the
Burrows-Wheeler Transform. This provides a theoretical ground to the practical
choices and experimentation made in [6,8]. Moreover, a remarkable corollary of
this section is a theoretical analysis of Inversion Frequencies coding [2].

Let CPF denote a prefix-free encoding of the integers having logarithmic cost,
namely |CPF (n)| ≤ a log n + b, for n ≥ 1. Note that since |CPF (1)| ≤ b we must
have b ≥ 1. Also note that for γ codes we have a = 2 and b = 1. This means
that it is worthwhile to investigate only prefix codes with a ≤ 2. Indeed, a code
with a > 2 (and necessarily b ≥ 1) would be worse than γ codes for any n and
therefore not interesting. Hence in the following we assume a ≤ 2, b ≥ 1 and
thus a ≤ 2b and a ≤ b + 1.

3.1 Analysis of Rle Wavelet Trees

For any binary string s = a�1
1 a�2

2 · · · a�k

k , with ai ∈ {0, 1} and ai �= ai+1, we define
CRLE(s) = a1CPF (�1)CPF (�2) · · · CPF (�k). Note that we need to store explicitly
the bit a1 since the values �1, . . . , �k alone are not sufficient to retrieve s.

Lemma 1. For any binary string s = a�1
1 a�2

2 · · · a�k

k , with ai ∈ {0, 1} and ai �=
ai+1, we have |CRLE(s)| = 1+

∑
i=1,k |CPF (�i)| ≤ 2 max(a, b)|s|H∗

0 (s)+b+1. �	
Combining the above Lemma with Theorem 1 we immediately get:

Corollary 1. For any string s over the alphabet Σ(s), if the internal nodes of
the Wavelet Tree Wp(s) are encoded using Rle we have

C∗(Wp(s)) ≤ 2 max(a, b)|s|H∗
0 (s) + (|Σ(s)| − 1)(b + 1). �	

Consider now the algorithm rle wt defined as follows. We first encode |s| using
|CPF (|s|)| ≤ a log |s| + b bits. Then we encode the internal nodes of the Wavelet
Tree using Rle. The internal nodes are encoded in a predetermined order—for
example heap order—such that the encoding of a node u always precedes the
encoding of its children (if any).1 This ensures that from the output of rle wt we
can always retrieve s. To see this, we observe that when we start the decoding of
the string s01(u) we already know its length |s01(u)| and therefore no additional
bits are needed to mark the end of the run-length encoding. Since the output of
rle wt consists of |CPF (|s|)| + C∗(Wp(s)) bits, by Corollary 1 we get:

Theorem 2. For any string s over the alphabet Σ(s) we have

|rle wt(s)| ≤ 2 max(a, b)|s|H∗
0 (s) + (b + 1)|Σ(s)| + a log |s| − 1. �	

1 We are assuming that the Wavelet Tree shape is hard-coded in the (de)compressor.
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Fig. 3. The skewed Wavelet Tree for the string s = dabbdabc. Symbol b is the most
frequent one and is therefore associated to the leftmost leaf.

3.2 Analysis of Ge Wavelet Trees

For any binary string s with exactly r 1’s, let p1, p2, . . . , pr denote their positions
in s, and let g1, . . . , gr be defined by g1 = p1, gi = pi − pi−1 for i = 2, . . . , r. We
denote by CGap(s) the concatenation CPF (g1)CPF (g2) · · · CPF (gr).

Lemma 2. Let s be a binary string with r 1’s. If 1 ≤ r ≤ |s|/2, we have

|CGap(s)| = |CPF (g1)| + · · · + |CPF (gr)| ≤ max(a, b)|s|H0(s). �	

Let s be a string over the alphabet Σ(s). Consider the following algorithm called
ge wt. First we encode the length of s using a log |s| + b bits and the number
of occurrences of each symbol using a total of |Σ(s)| �log |s|� bits. Then, we
build a Wavelet Tree completely skewed to the left such that the most frequent
symbol is associated to the leftmost leaf. The other symbols are associated to
the leaves in reverse alphabetic order (see Fig. 3). Finally, we use Ge to encode
the strings s01(u1), . . . , s01(u|Σ(s)|−1) associated to the internal nodes of such
Wavelet Tree. Note that this information is sufficient to reconstruct the input
string s. The crucial point is that the decoding starts with the retrieval of the
number of occurrences of each symbol. Hence, we can immediately determine
the association between leaves and symbols and when we later decode a string
s01(ui) we already know its length and the number of 1’s in it.

Theorem 3. For any string s, it is

|ge wt(s)| ≤ max(a, b)|s| H0(s) + |Σ(s)| �log |s|� + a log |s| + b.

Proof. We only need to show that
∑

i |CGap(s01(ui))| ≤ max(a, b)|s| H0(s). To
this end we observe that assigning the most frequent symbol to the leftmost
leaf ensures that each s01(ui) contains more 0’s than 1’s. The thesis follows by
Lemma 2 and Theorem 1. �	

Let us give a closer look to the ge wt algorithm when Σ = {a1, a2, . . . , ah}
and ah is the most frequent symbol. In this case, when we encode s01(ui) we
are encoding the positions of the symbol ai in the string s with the symbols
a1, . . . , ai−1 removed. In other words, we are encoding the number of occurrences



568 P. Ferragina, R. Giancarlo, and G. Manzini

of ai+1, . . . , ah between two consecutive occurrences of ai. This strategy is known
as Inversion Frequencies (If) and was first suggested in [2] as an alternative to
Move-to-Front (MTF) encoding. We have therefore the following result.

Corollary 2. The variant of If-coding in which the most frequent symbol is
processed last produces a sequence of integers that we can encode with CPF in at
most max(a, b)|s| H0(s) bits. �	

Standard analysis of MTF says that combining CPF with MTF outputs at most
a|s| H0(s) + b|s| bits. Hence, the above corollary is the first theoretical jus-
tification of the fact, observed by practitioners, that If-coding is superior to
MTF [1,2]. Corollary 2 also provides a theoretical justification for the strategy,
suggested in [1], of processing the symbols in order of increasing frequency.

4 Achieving H∗
k with Rle Wavelet Trees and bwt

This section provides the technical details about the results claimed in (B) of
the Introduction. In particular, we show that by using Rle Wavelet Trees as a
post-processor of the bwt one can achieve higher order entropy compression (cfr
[10]). We also show that the same result cannot hold for Ge Wavelet Trees.

We need to recall a key property of the Burrows-Wheeler Transform of a string
σ [11]: If s = bwt(σ) then for any k ≥ 0 there exists a partition s = s1s2 · · · st

such that2 t ≤ |Σ|k and |σ| H∗
k (σ) =

∑t
i=1 |si| H∗

0 (si). In other words, the bwt
is a tool for achieving the k-th order entropy H∗

k provided that we can achieve
the entropy H∗

0 on each si. An analogous result holds for Hk as well.
The proof idea is to show that compressing the whole s via one Rle Wavelet

Tree is not much worse than compressing each string si separately. In order to
prove such a result, some care is needed. We can assume without loss of generality
that Σ(s) = Σ. However, Σ(si) will not, in general, be equal to Σ(s) and this
creates some technical difficulties and forces us to consider both full and pruned
Wavelet Trees. Indeed, if we “slice” the Wavelet Tree Wp(s) according to the
partition s = s1 · · · st we get full Wavelet Trees for the strings si’s.

Our first lemma states that, for full Rle Wavelet Trees, partitioning a string
does not improve compression.

Lemma 3. Let α = α1α2 be a string over the alphabet Σ. We have C∗(Wf (α)) ≤
C∗(Wf (α1)) + C∗(Wf (α2)). �	

Since Theorem 1 bounds the cost of pruned Wavelet Trees, in order to use
Lemma 3 we need to bound C∗(Wf (αi)) in terms of C∗(Wp(αi)), for i = 1, 2.

Lemma 4. Let β be a string over the alphabet Σ. We have

C∗(Wf (β)) ≤ C∗(Wp(β))+(|Σ|−1)(a log |β|+b+1). �	
2 For simplicity we ignore the end-of-file symbol and the first k symbols of σ that do

not belong to any si. We will take care of these details in the full version.
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We are now able to bound the size of a Rle Wavelet Tree over the string s =
bwt(σ) in terms of the k-th order entropy of σ.

Theorem 4. Let σ denote a string over the alphabet Σ = Σ(s), and let s =
bwt(σ). For any k ≥ 0 we have

C∗(Wp(s)) ≤ 2 max(a, b)|σ| H∗
k (σ) + |Σ|k+1(2b + 2 + a log(|σ|)). (2)

In addition, if |Σ| = O(polylog(|σ|)), for all k ≤ α log|Σ| |σ|, constant 0 < α < 1,
we have

C∗(Wp(s)) ≤ 2 max(a, b)|σ| H∗
k (σ) + o(|σ|). (3)

Proof. Let s = s1 · · · st denote the partition of s such that |σ| H∗
k (σ) =

∑t
i=1 |si| H∗

0 (si). By Lemma 3, and the fact that Σ = Σ(s), we have that
C∗(Wp(s)) = C∗(Wf (s)) ≤

∑t
i=1 C∗(Wf (si)). By Lemma 4, we get

C∗(Wp(s)) ≤
t∑

i=1

C∗(Wp(si)) + (|Σ| − 1)
t∑

i=1

(a log |si| + b + 1)

=
t∑

i=1

C∗(Wp(si)) + (|Σ| − 1)
t∑

i=1

a log |si| + t(|Σ| − 1)(b + 1)

Since
∑t

i=1 log |si| ≤ t log(|s|/t) and t ≤ |Σ|k, using Corollary 1 we get

C∗(Wp(s)) ≤ 2 max(a, b)
(∑t

i=1
|si| H∗

0 (si)
)

+t(|Σ| − 1)a log(|s|/t) + 2t(|Σ| − 1)(b + 1) (4)
≤ 2 max(a, b)|σ| H∗

k (σ) + t(|Σ| − 1)(2b + 2 + a log(|s|/t))

which implies (2) since |s| = |σ|. To prove (3) we start from (4) and note that
|Σ|’s size and the inequality t ≤ |Σ|k imply t|Σ| log(|s|/t) = o(|s|) = o(|σ|). �	

Theorem 4 shows that Rle Wavelet Trees achieve the k-th order entropy with the
same multiplicative constant 2 max(a, b) that Rle achieves with respect to H∗

0
(Lemma 1). Thus, Wavelet Trees are a sort of booster for Rle (cfr. [4]). It is
possible to prove (details in the full paper) that if we apply the Compression
Boosting algorithm [4] to Rle we get slightly better bounds than the ones of
Theorem 4, the improvement being in the term not containing H∗

k . However,
Compression Boosting makes use of a non trivial (even if linear time) partitioning
algorithm. It is therefore not obvious which approach is preferable in practice.

In proving Theorem 4 we have used some rather coarse upper bounds and we
believe that the result can be significantly improved. However, there are some
limits to the possible improvements. The following example shows that, even for
constant size alphabets, the o(|σ|) term in (3) cannot be reduced to Θ(1).

Example 1. Let Σ = {1, 2, . . . , m}, and let σ = (123 · · ·m)n. We have |σ|H∗
1 (σ) ≈

m log n and s = bwt(σ) = mn1n2n · · · (m−1)n. Consider a balanced Wavelet Tree
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of height �log m�. It is easy to see that there exists an alphabet ordering such that
the internal nodes of the Wavelet Tree all consist of alternate sequences of 0n and
1n. Even encoding these sequences with log n bits each would yield a total cost of
about (m log m) log n ≈ (log m)|σ|H∗

1 (σ) bits. �	
Finally, it is natural to ask whether we can repeat the above analysis and prove
a bound for Ge Wavelet Trees in terms of the k-th order entropy. Unfortunately
the answer is no! The problem is that when we encode s with Ge we have
to make some global choices—e.g., the shape of the tree in ge wt, the role of
zeros or ones in each internal node in the algorithm of [8]—and these are not
necessarily good choices for every substring si. Hence, we can still split Wf (s) into
Wf (s1), . . . , Wf (st), but it is not always true that Wf (si) ≤ λ|si| H0(si)+ o(|si|).
As a more concrete example, consider the string σ = (01)n. We have |σ|H∗

1 (σ) =
Θ(log n) and s = bwt(σ) = 1n0n. Wp(s) consists only of the root with associated
string 1n0n, that can encode the gaps between either 1’s or 0’s. In both cases
the output will be Θ(n) bits, thus exponentially larger than |σ| H∗

1 (σ).

5 Generalized Wavelet Trees

In point (C) of the Introduction we discussed the impact on the cost of a Wavelet
Tree of: (C.1) its (binary) shape, (C.2) the assignment of alphabet symbols to
its leaves, (C.3) the possible use of non-binary compressors to encode the strings
associated to its internal nodes. Those examples motivate us to introduce and
discuss Generalized Wavelet Trees, a new paradigm for the design of effective
order-zero compressors. Let C01 and CΣ be two compressors such that C01 is
specialized to binary strings while CΣ is a generic compressor. We assume that
C01 and CΣ satisfy the following property, which holds—for example—when C01
is Rle (with γ codes or order-2 Fibonacci codes used for the coding of integers,
see e.g. Lemma 1) and CΣ is Arithmetic or Huffman coding.

Property 1. (a) For any binary string x, |C01(x)| ≤ α|x|H∗
0 (x) + β bits, where

α and β are constants; (b) For any string y, |CΣ(y)| ≤ |y|H0(y) + η|y| + μ bits,
where η and μ are constants; (c) the running time of C01 and CΣ is a convex
function (say T01 and TΣ) and their working space is a non decreasing function
(say S01 and SΣ). �	
Given the Wavelet Tree Wp(s), a subset L of its nodes is a leaf cover if every
leaf of Wp(s) has a unique ancestor in L (see [4, Sect. 4]). Let L be a leaf cover
of Wp(s) and let WL

p (s) be the tree obtained by removing all nodes in Wp(s)
descending from nodes in L. We assign colors to nodes of WL

p (s) as follows:
all leaves are black and the remaining nodes red. We use C01 to compress all
binary strings s01(u), u ∈ WL

p (s) and red, while we use CΣ to compress all
strings s(u), u ∈ WL

p (s) and black. Nodes that are leaves of Wp(s) are ignored
(as usual). It is a simple exercise to work out the details on how to make this
encoding decodable.3 The cost C∗(WL

p (s)) is the total number of bits produced
3 Note that we need to encode which compressor is used at each node and (possibly)

the tree shape. For simplicity in the following we ignore this Θ(|Σ|) bits overhead.
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(1) If r is the only node, let Copt(r) ← |C01(s)| and L(r) ← {r}.
(2) Else, visit Wp(s) in post-order. Let u be the currently visited node.

(2.1) If u is a leaf, let Z(u) ← 0 and L(u) ← {u}. Return.
(2.2) Compute Z(u) ← min {|CΣ(s(u))|, |C01(s01(u))| + Z(uL) + Z(uR)}.
(2.3) If Z(u) = |CΣ(s(u))| then L(u) ← {u}, else L(u) ← L(uL) ∪ L(uR).

(3) Set Lmin ← L(root(T )).

Fig. 4. The pseudocode for the linear-time computation of an optimal leaf cover Lmin

for a given decomposition tree Ts

by the encoding process just described. In particular, a red node u contributes
|C01(s01(u))| bits, while a black node contributes |CΣ(s(u))| bits.

Example 2. When L = root(Wp(s)) we compress s using CΣ only. By Prop-
erty 1(b) we have C∗(WL

p (s)) ≤ |s|H0(s) + η|s| + μ. The other extreme case is
when L consists of all the leaves of Wp(s). In this case we never use CΣ and we
have C∗(WL

p (s)) ≤ α|s|H∗
0 (s)+β(|Σ|−1) by Property 1(a) and Theorem 1. �	

We note that when the algorithms C01 and CΣ are fixed, the cost C∗(WL
p (s))

depends on two factors: the shape of the alphabetic tree TΣ , and the leaf cover L.
The former determines the shape of the Wavelet Tree, the latter determines the
assignment of C01 and CΣ to the nodes of Wp(s). It is natural to consider the
following two optimization problems.

Problem 1. Given a string s and a Wavelet Tree Wp(s), find the optimal leaf
cover Lmin that minimizes the cost function C∗(WL

p (s)). Let C∗
opt(Wp(s)) be the

corresponding optimal cost.

Problem 2. Given a string s, find an alphabetic tree TΣ and a leaf cover Lmin
for that tree giving the minimum of the function C∗

opt(Wp(s)). That is, we are
interested in finding both a shape of the Wavelet Tree, and an assignment of C01
and CΣ to the Wavelet Tree nodes, so that the resulting compressed string is the
shortest possible.

Problem 2 is a global optimization problem, while Problem 1 is a much more con-
strained local optimization problem. Note that by Example 2 we have C∗

opt(Wp(s))
≤ min(|s| H∗

0 (s) + η|s| + μ, α|s| H∗
0 (s) + β(|Σ| − 1)).

5.1 Optimization Algorithms (Sketch)

The first algorithm we sketch is an efficient algorithm for the solution of Prob-
lem 1. The pseudo-code is given in Figure 4. We have

Theorem 5. Given two compressors satisfying Property 1 and a Wavelet Tree
Wp(s), the algorithm in Figure 4 solves Problem 1 in O(|Σ|(T01(|s|) + TΣ(|s|)))
time and O(|s| log |s| + max(S01(|s|), SΣ(|s|))) bits of space.

Proof. (Sketch). The correctness of the algorithm hinges on a decomposability
property of the cost functions associated to Lmin with respect to the subtrees of
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Wp(s). Such a property is essentially the same used in [4, Sect. 4.5], here exploited
to devise an optimal Generalized Wavelet Tree. As for the time analysis, it is
based on the convexity of the functions T01(·) and TΣ(·) which implies that on
any Wavelet Tree level we spend O(T01(|s|) + TΣ(|s|)) time. �	

Since we are assuming that the alphabet is of constant size, the algorithm of
Figure 4 can be turned into an exhaustive search procedure for the solution
of Problem 2. The time complexity would be polynomial in |s| but at least
exponential in |Σ|. Although we are not able to provide algorithms for the global
optima with time complexity polynomial both in |Σ| and |s|, we are able to settle
the important special case in which the ordering of the alphabet is assigned.
Using Dynamic Programming techniques, we can show:

Theorem 6. Consider a string s and fix an ordering ≺ of the alphabet symbols
appearing in the string. Then, one can solve Problem 2 constrained to that or-
dering of Σ, in O(|Σ|4(T01(|s|) + Tgen(|s|)) time. �	

References

1. J. Abel. Improvements to the Burrows-Wheeler compression algorithm: After BWT
stages. http://citeseer.ist.psu.edu/abel03improvements.html.

2. Z. Arnavut and S. Magliveras. Block sorting and compression. In DCC: Data
Compression Conference, pages 181–190. IEEE Computer Society TCC, 1997.

3. M. Burrows and D. Wheeler. A block sorting lossless data compression algorithm.
Technical Report 124, Digital Equipment Corporation, 1994.

4. P. Ferragina, R. Giancarlo, G. Manzini, and M. Sciortino. Boosting textual com-
pression in optimal linear time. Journal of the ACM, 52:688–713, 2005.

5. P. Ferragina and G. Manzini. Indexing compressed text. Journal of the ACM,
52(4):552–581, 2005.

6. L. Foschini, R. Grossi, A. Gupta, and J. Vitter. Fast compression with a static
model in high order entropy. In DCC: Data Compression Conference, pages 62–71.
IEEE Computer Society TCC, 2004.

7. R. Grossi, A. Gupta, and J. Vitter. High-order entropy-compressed text indexes. In
Proc. 14th Annual ACM-SIAM Symp. on Discrete Algorithms (SODA ’03), pages
841–850, 2003.

8. R. Grossi, A. Gupta, and J. Vitter. When indexing equals compression: Experi-
ments on compressing suffix arrays and applications. In Proc. 15th Annual ACM-
SIAM Symp. on Discrete Algorithms (SODA ’04), pages 636–645, 2004.

9. R. Grossi and J. Vitter. Compressed suffix arrays and suffix trees with applications
to text indexing and string matching. SIAM Journal on Computing, 35:378–407,
2005.
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