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performance guarantee. It displays the following remarkable properties: (a) it can turn any memoryless
compressor into a compression algorithm that uses the “best possible” contexts; (b) it is very simple
and optimal in terms of time; and (c) it admits a decompression algorithm again optimal in time. To
the best of our knowledge, this is the first boosting technique displaying these properties.

Technically, our boosting technique builds upon three main ingredients: the Burrows–Wheeler
Transform, the Suffix Tree data structure, and a greedy algorithm to process them. Specifically, we
show that there exists a proper partition of the Burrows–Wheeler Transform of a string s that shows
a deep combinatorial relation with the kth order entropy of s. That partition can be identified via a
greedy processing of the suffix tree of s with the aim of minimizing a proper objective function over
its nodes. The final compressed string is then obtained by compressing individually each substring of
the partition by means of the base compressor we wish to boost.

Our boosting technique is inherently combinatorial because it does not need to assume any prior
probabilistic model about the source emitting s, and it does not deploy any training, parameter
estimation and learning. Various corollaries are derived from this main achievement. Among the
others, we show analytically that using our booster, we get better compression algorithms than some
of the best existing ones, that is, LZ77, LZ78, PPMC and the ones derived from the Burrows–Wheeler
Transform. Further, we settle analytically some long-standing open problems about the algorithmic
structure and the performance of BWT-based compressors. Namely, we provide the first family of
BWT algorithms that do not use Move-To-Front or Symbol Ranking as a part of the compression
process.

Categories and Subject Descriptors: D.4.2 [Operating Systems]: Storage Management; E.4 [Cod-
ing and Information Theory]: Data compaction and compression; F.2.2 [Analysis of Algorithms
and Problem Complexity]: Nonnumerical Algorithms and Problems; G.2.1 [Discrete Mathe-
matics]: Combinatorics—Combinatorial algorithms; H.1.1 [Models and Principles]: Systems and
Information theory; H.2.7 [Database Management]: Database Administration—Data warehouse
and repository; H.3.2 [Information Storage and Retrieval]: Information Storage.

General Terms: Algorithms, Design, Theory

Additional Key Words and Phrases: Arithmetic coding, Burrows–Wheeler transform, empirical en-
tropy, Huffman coding, Lempel–Ziv compressors, suffix tree, text compression

1. Introduction

A boosting technique, in very informal terms, can be seen as a method that, when
applied to a particular class of algorithms, yields improved algorithms in terms of
one or more parameters characterizing their performance in the class. For instance,
Deterministic Amplification allows to take an RP or BPP algorithm, with some
error probability, and to produce a new algorithm with, usually, an exponentially
smaller error probability, at the expense of some increase in the number of random
bits. The first such result was obtained by Karp et al. [1985] and has been followed
by a series of very deep and significant findings in the area of Randomized Algo-
rithms and Amplification of Weakly Random Sources (see, for instance, Nisan and
Ta-Shma [1999] and Trevisan [2001]). Another remarkable example comes from
Computational Learning Theory [Valiant 1984]. The first boosting technique in this
field was obtained by Schapire [1990], who showed how to take a Weak Learning
Algorithm and substantially increase its “prediction accuracy”, again at some
expenses in terms of time and space. The fundamental contribution by Schapire
has lead, over the years, to the settlement of many fundamental problems in Com-
putational Learning Theory and to a broad range of results, spanning many fields
[Schapire 2002].

As the two examples just given indicate, general boosting techniques have a deep
significance for Computer Science. Indeed, for one thing, they provide guidelines to
the practitioners on how to obtain high-quality algorithms out of good algorithms,



690 P. FERRAGINA ET AL.

making their engineering task somewhat simpler. They also provide quite a few
insights into the class of problems to which they can be applied. Unfortunately,
they are also very hard to come by.

Data Compression is a key component of efficient Networks and Computer Sys-
tems. However, despite the massive literature produced in this field, ranging from
the foundations laid by Shannon to the more practical engineering aspects [Storer
1992], we are not aware of any boosting technique for data compression algorithms.
In this article, we provide a general boosting technique for Data Compression and
in particular, for text compression, that is, strings of symbols over an alphabet
(see Witten et al. [1999, Chap. 2] ). Given the deep connection between Prediction
and Compression [Rissanen 1984], the results from Computational Learning The-
ory may hint at the existence of boosting techniques for Textual Data Compression,
given sufficient data characterizing the statistical properties of the Source. Unfortu-
nately, to the best of our knowledge, we are not aware of any such algorithm. On the
other hand, our technique is inherently combinatorial: it does not need to assume
any prior probabilistic model about the source emitting the string and there is no
training, parameter estimation and learning. Even more remarkably, it displays the
following properties: (a) it can turn any memoryless compressor into a compression
algorithm that uses the “best possible” contexts; (b) it is very simple and optimal
in terms of time; (c) it admits a decompression algorithm again optimal in time;
(d) it can be shown analytically that it yields better algorithms than some of the best
existing ones, that is, LZ77 [Ziv and Lempel 1977], LZ78 [Ziv and Lempel 1978],
PPMC [Moffat 1990] and the one proposed by Burrows and Wheeler, based on their
Transform [Burrows and Wheeler 1994; Manzini 2001].

The significance of our main result is twofold. From the practical side, we open
the way, starting from solid theoretic ground, to novel compressors that deserve a
careful experimental study and which, in turn, can have a great practical impact.
From the theoretical side, we analytically settle a long-standing open problem
posed by Fenwick [1996] about the algorithmic structure of compressors based on
the Burrows–Wheeler Transform (BWT from now on). We also show that the BWT
is neither a necessary nor a sufficient component of our boosting technique, which
indeed deploys a novel and deep combinatorial relation between Entropy, the BWT,
and the Suffix Tree data structure [McCreight 1976]. This latter methodological
finding should not be underestimated because, despite a few theoretical [Effros
et al. 2002; Manzini 2001; Sadakane 1998] and many experimental studies [Arnavut
2002; Balkenhol et al. 1999; Deorowicz 2002; Fenwick 1996; Larsson 1998; Seward
1997; Wirth and Moffat 2001], insights into the nature and the power of the “magic
box” BWT have been so far very evasive.

1.1. STATEMENT OF RESULTS. Let s be a string drawn from a constant size
alphabet �. Given an integer k, let Hk(s) denote the kth order empirical entropy of s.
Moreover, let H∗

k (s) be the kth order modified empirical entropy of s. Both functions
are defined in Section 2.1. As pointed out in Manzini [2001], the modified empirical
entropy H∗

k is a more realistic measure to bound the worst-case performance of
compression algorithms, since its value is at least equal to the minimum number of
bits needed to write down the length of the input string. Throughout this article, k
denotes an integer and the alphabet � has constant size.

Recall that, given an input string s, the Burrows–Wheeler Transform (BWT) pro-
duces a permuted string bwt(s). For the time being, all we need to know is that the
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BWT is invertible, that is, from bwt(s) we can recover s, and that its computation is
basically a sorting of all suffixes of s.

Consider a compression algorithm A that squeezes any string z# in at most
λ|z|H0(z) + η|z| + µ bits, where λ, µ and η are constants independent of z and #
is a special symbol not appearing elsewhere in z. Our boosting technique consists
of three steps:

(1) compute ŝ = bwt(s R), that is, the BWT of the string s reversed;
(2) using the suffix tree of s R , greedily partition ŝ so that a suitably defined objective

function is minimized;
(3) compress each substring of the partition, separately, using algorithm A.

We will show that, for any k ≥ 0, the length in bits of the string resulting from
the boosting is bounded by:

λ|s|Hk(s) + log2 |s| + η|s| + gk . (1)

Assume now that A squeezes any string z# in at most λ|z|H∗
0 (z) + µ bits. We will

show that, for any k ≥ 0, the length in bits of the compressed string resulting from
boosting is bounded by:

λ|s|H∗
k (s) + log2 |s| + gk . (2)

In both bounds (1) and (2), gk is a constant that depends only on k and not on the
string s. We also remark that both bounds hold simultaneously for all k, that is, k
is not a parameter known to the algorithm.

At this point, the effect of boosting should be clear. One can take a compressor
achieving a good performance in terms of the 0th order entropy and, via our boosting
technique, obtain a new compressor with a performance guarantee bounded in terms
of the kth order entropy, simultaneously for all k. Putting it another way, one can
take a compression algorithm that uses no context information at all and, via the
boosting process, obtain an algorithm that automatically “discovers” and effectively
uses the “best possible” contexts. Moreover, the boosting is optimal in time and
introduces a space overhead of O(|s| log |s|) bits with respect to A.1 So, the design
of effective algorithms that use context information, or memory, reduces to the
one of designing memoryless algorithms. This is the first main achievement of our
article.

We also investigate whether the BWT is either a necessary or a sufficient tool for
designing our booster. We show that neither of these two cases holds. In fact, if we
use in Step (1) of our booster, the so-called “bounded context” transform, where
only contexts of length up to some fixed k0 are considered [Schindler 1997], then
the same results hold but for all k ≤ k0. Actually, there might exist other transforms
that are substantially different from the BWT and could find effective application
within our boosting technique. Recently, it has been shown by Crochemore et al.
[2005] that the BWT is a particular case of a bijection due to Gessel and Reutenauer
[1993], which allows the enumeration of permutations by descents and cyclic type.
In this article, we show that, as long as those transforms are invertible and mappable

1The logarithmic term in the space occupancy comes from an exact count of the space needed to store
the suffix tree data structure [McCreight 1976] and some integer quantities. This term is usually not
accounted for with the Uniform Memory Model.
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to a suffix tree [McCreight 1976] in accordance with some proximity constraint,
our boosting results still hold.

At this point, it is natural to ask ourselves if the bounds (1) and (2) are the
best possible we can aim for a booster. We show that no compression algorithm,
satisfying some mild assumptions on its inner working, can achieve a bound of
the form |s|H∗

k (s) + gk , for any k ≥ 0 and gk constant. This specifically means
that both the multiplicative factor λ and the additive logarithmic term in (1) and
(2) cannot be dropped simultaneously. This result follows by a lower bound on the
coding of the integers and settles an open problem raised in Manzini [2001].

Finally, we prove the applicability of our boosting technique by proposing two
candidates for the base compressor A: the algorithms HC and RHC. These algorithms
are such that for any string z it is |HC(z#)| ≤ |z|H0(z) +|z|+�(1) and |RHC(z#)| ≤
2.5|z|H∗

0 (z) + �(1). When these algorithms are used together with our boosting
technique, we obtain two compressors satisfying the following bounds, respectively,

|s|Hk(s) + |s| + log2 |s| + gk (3)

and

2.5|s|H∗
k (s) + log2 |s| + gk . (4)

The above worst-case bounds are better than the worst-case bounds proven (so far)
for any other compressor, including the ones based on the BWT. Indeed, in their
seminal paper, Burrows and Wheeler proposed to compress the output of the BWT
using Move-to-Front Encoding [Bentley et al. 1986] (shortly MTF), followed by an
order zero compressor (Arithmetic or Huffman coding [Cover and Thomas 1990]).
In Manzini [2001], it is shown that if we use Arithmetic coding the above algorithm
produces an output bounded by

8|s|Hk(s) + 2

25
|s| + log2 |s| (5)

for any k ≥ 0. Several variants of this first BWT-based compressor have been
proposed in the literature. A common feature of these variants is that they use some
form of Run-Length Encoding [Cover and Thomas 1990] (shortly RLE) at some
point of the compression process. In Manzini [2001], it is shown that if we process
the output of the BWT using MTF, followed by RLE, followed by Arithmetic coding,
we get an output bounded by2

(5 + ε)|s|H∗
k (s) + log2 |s| + g′

k (6)

for any k ≥ 0 and ε ≈ 10−2. We note that the bound (3) is better than (5) in the
leading entropy term, while the bound (4) is a factor of 2 improvement over (6).
As far as other compressors are concerned, in Kosaraju and Manzini [1999] and
Manzini [2001], it was shown that the bound (6) (and therefore (4)) cannot hold
for many of them: LZ77 [Ziv and Lempel 1977], LZ78 [Ziv and Lempel 1978]
and PPMC [Moffat 1990]. It remains an open problem whether a similar bound

2An attentive reader may have noticed the term log |s| in (5) and (6), which was not present in Manzini
[2001]. The point is that the output of the Burrows–Wheeler Transform consists of a permutation of
s and of an integer in the range [1, |s|] (see Section 3). In Manzini [2001] the compression bounds
refer only to the compression of the permutation of s. In this article, we account also for the space
needed to encode the above integer.
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can hold for DMC [Cormak and Horspool 1987] and PPM* [Cleary and Teahan
1997], for which no theoretical analysis (at least in terms of empirical entropy)
is available.

Summing up, our boosting technique yields compression algorithms that are ana-
lytically superior to many of the best existing ones. We point out that, although based
on BWT, our algorithm does not use MTF—or any other type of symbol ranking—as
part of the compression process. This settles a long-standing open problem first
raised by Fenwick [1996] about the existence of alternatives to MTF encoding in
BWT-based compressors. Indeed, since the appearance of the first BWT-based com-
pressors, the general feeling among theoreticians and practitioners was that the
MTF coder introduces some degree of inefficiency [Arnavut 2002; Balkenhol et al.
1999; Deorowicz 2002; Wirth and Moffat 2001]. Our results prove analytically that
an alternative to MTF does exist, and that such an alternative takes linear time and
provides better compression bounds than MTF.

The article is organized as follows. Section 2 introduces some basic terminology
on entropy and prefix codes as well as some useful notation. In Section 3, we recall
the definition and the properties of the Burrows–Wheeler Transform (shortly BWT),
and we describe the basic structure of a compression booster based on the BWT, high-
lighting the difficulties incurred in its design. In Section 4, we introduce the key idea
underlying our boosting technique, namely a deep combinatorial relation among
the entropy, the BWT and the Suffix Tree data structure. This relation materializes
itself in the novel notion of leaf cover of a suffix tree. In Section 5, we detail our
boosting technique and design a greedy algorithm for finding an optimal leaf cover
whose cost is strictly related to the kth order entropy of the input string. Various
corollaries on the nature and limitations of our boosting technique are also proven
in this section. In Section 6, we show the applicability of our boosting technique
by describing two 0th order compressors (HC and RHC) whose performance can be
improved by our booster achieving the bounds (3) and (4). Finally, in Section 7, we
investigate the improvability of our boosting bounds by settling, as a corollary, a
conjecture posed in Manzini [2001]. We conclude our article with some comments
on future directions of research.

2. Empirical Entropies and Code Lengths

In this section, we recall the definition of the empirical entropy of a string and of
some of its variants. We also introduce information measures that can be seen as
“dual” of empirical entropies. In agreement with classic Information Theory, all of
the variants of empirical entropy we define are lower bounds on the output size of
the encoding of a string, where the codeword of each symbol depends on k symbols
“preceding it” in the string. Additional details on those information measures can
be found in Cover and Thomas [1990] and Manzini [2001].

2.1. THE EMPIRICAL ENTROPY OF A STRING. We need to point out one impor-
tant difference between empirical entropy and the entropy defined in the proba-
bilistic setting. Shannon’s entropy is an expected value taken on an ensemble of
strings, while empirical entropy is defined pointwise for any string and can be used
to measure the performance of compression algorithms as a function of the string
structure, thus without any assumption on the input source. In a sense, compression
bounds produced in terms of empirical entropy are worst-case measures.
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Let s be a string over the alphabet � = {a1, . . . , ah} and, for each ai ∈ �,
let ni be the number of occurrences of ai in s. Throughout this paper we assume
that ni ≥ ni+1. Moreover, all logarithms are taken to the base 2 and we assume
0 log 0 = 0. Let {Pi = ni/|s|}h

i=1 be the empirical probability distribution for the
string s. The zeroth order empirical entropy of the string s is defined as

H0(s) = −
h∑

i=1

Pi log(Pi ). (7)

For any length-k string w , we denote by
→
ws the string of single symbols following

the occurrences of w in s, taken from left to right.

Example 2.1. Let s = mississippi, w = si. The two occurrences of si in
s are followed by the symbols s and p, respectively. Hence,

→
ws= sp.

The kth order empirical entropy of s is defined as:

Hk(s) = 1

|s|
∑

w∈�k

|→
ws | H0(

→
ws). (8)

Manzini [2001] argued that, for highly compressible strings, |s|Hk(s) fails to
provide a reasonable bound to the performance of compression algorithms. For
that reason, he introduced the zeroth order modified empirical entropy:

H∗
0 (s) =

{
0 if|s| = 0
(1 + 	log |s|
)/|s| if|s| �= 0 and H0(s) = 0
H0(s) otherwise.

(9)

Note that for a nonempty string s, |s|H∗
0 (s) is at least equal to the number of bits

needed to write down the length of s in binary. The kth order modified empirical
entropy H∗

k is then defined in terms of H∗
0 as the maximum compression we can

achieve by looking at no more than k symbols preceding the one to be compressed.3

Formally, let Sk be a set of substrings of s having length at most k. We say that the
set Sk is a suffix cover of �k , and write Sk � �k , if any string in �k has a unique
suffix in Sk .

Example 2.2. Let � = {a, b} and k = 3. Two suffix covers for �3 are {a, b}
and {a, ab, abb, bbb}. Indeed, any string in �3 has a unique suffix in both sets.

For any suffix cover Sk , let

H∗
Sk

(s) = 1

|s|
∑
w∈Sk

|→
ws | H∗

0 (
→
ws). (10)

The value H∗
Sk

(s) represents the compression we can achieve using the strings in
Sk as contexts for the prediction of the next symbol. The entropy H∗

k (s) is defined

3 Note that Hk is defined in terms of H0 as the maximum compression we can achieve by looking at
exactly k symbols preceding the one to be compressed. For H ∗

k , we instead consider H ∗
0 and a context

of at most k symbols. This is to ensure that H ∗
k+1(s) ≤ H ∗

k (s) for any string s. See Manzini [2001] for
details.
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as the compression that we can achieve using a best possible suffix cover:

H∗
k (s) = min

Sk��k
H∗

Sk
(s). (11)

In the following, we use S∗
k to denote a suffix cover for which the minimum of (11)

is achieved. Therefore, we write

H∗
k (s) = 1

|s|
∑
w∈S∗

k

|→
ws | H∗

0 (
→
ws). (12)

Notice that, when H0(s) = 0, |s|H∗
0 (s) gives the number of bits needed to store the

length of s, which we need to encode. Unfortunately, in that definition there is the
implicit assumption that |s| is known both to the compression and decompression
algorithms. That is usually not the case, since the decompression algorithm knows
|s| only if the compression algorithm encodes it, either explicitly or implicitly. This
point will be further elaborated in Section 7, where we show that even the modified
empirical entropy of any order may be a too demanding bound for compression
algorithms to achieve.

In the rest of this article, we use the Burrows–Wheeler Transform as a key
component of our compression booster. As we will see, the BWT relates substrings
of s with the single symbols preceding their occurrences in s. Conversely, H∗

k (s)
relates substrings of s with the single symbols following their occurrences in s. In
order to simplify the analysis of our algorithms, we introduce an additional notation
offering this other point of view.

Let
←
ws be the string of single symbols that precede all occurrences of the substring

w in the string s (cfr. the definition of
→
ws). Let Pk be a set of strings, having length

at most k, that are unique prefixes of all strings in �k . We call Pk a prefix cover of
�k (cfr. the definition of suffix cover Sk).

Example 2.3. Let � = {a, b} and k = 3. Two prefix covers for �3 are {a, b}
and {a, ba, bb}. Indeed, any string in �3 has a unique prefix in both sets.

Substituting in (10)
→
ws with

←
ws , and Sk with Pk , we define for any prefix

cover Pk

←
H∗

Pk
(s) = 1

|s|
∑
w∈Pk

|←
ws | H∗

0 (
←
ws). (13)

In analogy with (11), we take the minimum of (13) over all prefix covers. Let P∗
k

denote a prefix cover which minimizes (13). Using P∗
k , we define the function←

H∗
k which is analogous to the kth order empirical entropy (12), but now referring to

preceding symbols

←
H∗

k (s) = 1

|s|
∑

w∈P∗
k

|←
ws | H∗

0 (
←
ws). (14)

In analogy with
←
H∗

k, we define
←
Hk substituting in (8)

→
ws with

←
ws . The next lemma

gives the relationship among all of those information measures. Let s R denote the
reversal of the string s.
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LEMMA 2.4. For any string s, and any integer k ≥ 0,
←
Hk (s) = Hk(s R) and

←
H∗

k (s) = H∗
k (s R).

PROOF. We give a proof only for
←
H∗

k, since the one for
←
Hk follows along the

same lines. The set of single symbols following w in s coincides with the set of
single symbols preceding w R in s R . More precisely,

→
ws is the reverse of the string

containing the symbols preceding w R in s R . Furthermore, if Sk is a suffix cover
of �k , then the reversal of the strings in Sk is a prefix cover of the reversal of �k ,
which is indeed �k itself. The lemma follows by observing that H∗

0 (x) = H∗
0 (x R)

for any string x .

The above lemma tells us that if we bound the compression performance of an
algorithm in terms of

←
H∗

k (s), then we can achieve the same bound in terms of H∗
k (s)

by applying the algorithm to s R .
For conciseness of exposition in the following sections, we mainly work with←

H∗
k (s) and H∗

k (s) and we state the results for
←
Hk (s) and Hk(s) in Section 5.1.

2.2. PREFIX CODES AND THEIR LENGTHS. Consider a binary code C for the
alphabet � and let li be the length of the codeword assigned to symbol ai ∈ �. The
empirical expected codeword length for C and string s is

LC (s) =
h∑

i=1

Pili . (15)

An optimal code for the string s is one that minimizes LC (s) among all possible
codes. From now on, we restrict our attention to prefix codes and in particular to
Huffman codes, which are optimal. Denote by LHC(s) the empirical expected code-
word length of the Huffman code for the string s. Let y be the string obtained by
encoding it via a Huffman code. Since in (15), we are using an empirical proba-
bility distribution it is LHC(s) = |y|/|s|. The following theorem establishes some
useful bounds on LHC(s). We omit the proof which can be easily derived from the
corresponding results in Capocelli et al. [1986].

THEOREM 2.5. Let P1 and Ph be the probabilities of the most likely and least
likely symbols in s, with the convention that Ph = 0, when s is made of only one
symbol. Moreover, let β = 0.0860, we have

LHC(s) ≤ H0(s) + P1 − Ph + β if P1 < 1/2; (16)
LHC(s) ≤ H0(s) + 2 − H(P1) − P1 − Ph (17)

≤ H0(s) + P1 − Ph if P1 ≥ 1/2; (18)

where H(P1) denotes the binary empirical entropy of s:

H(P1) = −P1 log P1 − (1 − P1) log(1 − P1). (19)

For the interested reader, we point out that β in (16) comes out from a structural
property of an Huffman tree, known as the sibling property (see Capocelli et al.
[1986] and references therein for details).
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FIG. 1. The Burrows–Wheeler transform for the string s = mississippi. The matrix on the right
has the rows sorted in lexicographic order. The output of the BWT is the last column of the matrix, that
is, ipssm$pissii.

3. The Burrows–Wheeler Transform as a Compression Booster

In 1994, Burrows and Wheeler [1994] introduced a transform that turns out to be
very elegant in itself and extremely useful for textual data compression. Given a
string s, the transform consists of three basic steps (see Figure 1): (1) append to
the end of s a special symbol $ smaller than any other symbol in �; (2) form a
conceptual matrix M whose rows are the cyclic shifts of the string s$, sorted in
lexicographic order; (3) construct the transformed text ŝ = bwt(s) by taking the
last column of M. Notice that every column of M, hence also the transformed text
ŝ, is a permutation of s$. Although it is not obvious, from ŝ we can always recover
s, see Burrows and Wheeler [1994] for details.

Burrows and Wheeler, in their seminal paper, pointed out that the power of the
transform seems to rest on the fact that equal contexts (substrings) of s are grouped
together resulting in a few clusters of distinct symbols in bwt(s). That clustering
makes bwt(s) a better string to compress than s. For a long time, there was only
experimental evidence that the transform actually makes compression “easier”.
Recently, Manzini [2001] has pointed out properties of the transform allowing to
state the above experimental evidence in formal terms. We review those insights
next.

Let w denote a substring of s. By construction, all the rows of the BWT matrix
prefixed by w are consecutive. Hence, the single symbols preceding every occur-
rence of w in s are grouped together in a set of consecutive positions of the string
ŝ (last column of M). Then these symbols form a substring of ŝ, which we denote
hereafter by ŝ[w]. Using the notation introduced in Section 2.1, we have that ŝ[w]
is equal to a permutation of

←
ws , that is, a permutation of the set of single symbols

preceding w in s. We write ŝ[w] = πw (
←
ws) with πw being a string permutation

which depends on w .

Example 3.1. Let s = mississippi and w = s. The four occurrences of
s in s are in the last four rows of the BWT matrix. Thus, ŝ[s] consists of the last
four symbols of ŝ and we have ŝ[s] = ssii. Indeed, those are the single symbols
preceding s in s, in a proper order (cfr.

←
ws= isis).
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Fix a positive integer k. In the first k columns of the BWT matrix we find, lex-
icographically ordered, all length-k substrings of s. Hence, the string ŝ can be
partitioned into the substrings ŝ[w] by varying w over �k . We then write

ŝ =
⊔

w∈�k

ŝ[w], (20)

where
⊔

denotes the concatenation operator among strings.4 The same argument
holds for any prefix cover, and in particular for the prefix cover P∗

k which defines←
H∗

k (s): each row of the BWT matrix is prefixed by a unique string in P∗
k hence

ŝ =
⊔

w∈P∗
k

ŝ[w]. (21)

This formula drives us to look at the BWT as a tool for reducing the problem of
compressing s up to the kth order entropy to the problem of compressing distinct
portions of ŝ up to their zeroth order entropy. More precisely, suppose that we have
a compression algorithm A that squeezes any string z in |A(z)| ≤ λ|z|H∗

0 (z) + µ
bits, where λ and µ are constants independent of the input string z. Using A we can
compress any string s up to its kth order entropy with the following procedure:

(1) compute ŝ = bwt(s),
(2) find the optimal prefix cover P∗

k , and partition ŝ into substrings ŝ[w], w ∈ P∗
k ;

(3) compress each substring ŝ[w] using algorithm A.

Since ŝ[w] is a permutation of
←
ws we have |A(ŝ[w])| ≤ λ| ←

ws |H∗
0 (

←
ws) + µ.

By (14), it follows that the above procedure produces an output of size at most
λ|s|

←
H∗

k (s) + µ|�|k bits. By Lemma 2.4, applying the above procedure to s R

produces an output size of at most λ|s|H∗
k (s) + µ|�|k bits.

It goes without saying that, in the above compression procedure, we ignored
a few important details such as, the presence of the $ symbol and the fact that at
decompression time we need to be able to detect the end of each substring ŝ[w]. We
will deal with these details when describing our compression booster in Section 5.
At this point, however, it is crucial to observe that the above algorithmic approach,
although appealing, shows two drawbacks: (1) it needs to compute an optimal prefix
cover P∗

k , and (2) its compression can be bounded in terms of a single entropy H∗
k ,

since the parameter k must be chosen in advance.
We overcome both of these drawbacks by making use of the suffix tree data

structure [McCreight 1976]. We prove a strong structural relationship between the
BWT matrix and the suffix tree of s$. Using this relationship we show that we can
find an absolute optimal prefix cover whose cost is within a constant factor from
the cost of P∗

k for any k ≥ 0. Therefore, using this absolute optimal prefix cover
together with algorithm A, we get an output bounded in terms of the kth order
entropy, for any k ≥ 0. In other words, we have boosted the performance of A from
the zeroth order entropy H∗

0 to the kth order entropy H∗
k , for any k ≥ 0. The other

4 In addition to �w∈�k ŝ[w], the string ŝ also contains the last k symbols of s (which do not belong to
any

←
ws) and the special symbol $. We momentarily ignore the presence of these k + 1 symbols in ŝ

and deal with them in Section 4.
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FIG. 2. Suffix tree for the string s = mississippi$. The symbol associated to each leaf is displayed
inside a circle, it is the symbol occupying the corresponding position of ŝ, when the leaves are listed
from left to right.

key contribution of this article is to show that we can find such an absolute optimal
prefix cover with a post-order visit of the suffix tree which only takes O(|s|) time.

4. Prefix Covers, Leaf Covers, Optimal Partitioning

A crucial ingredient for the design of our compression booster is the relationship
between the BWT matrix and the suffix tree data structure. Let T denote the suffix
tree of the string s$. T has |s| + 1 leaves, one per suffix of s$, and edges labelled
with substrings of s$ (see Figure 2). Any node u of T has implicitly associated a
substring of s$, given by the concatenation of the edge labels on the downward path
from the root of T to u. In that implicit association, the leaves of T correspond to
the suffixes of s$. We assume that the suffix tree edges are sorted lexicographically.
As a consequence, if we scan T ’s leaves from left to right, the associated suffixes
are lexicographically sorted.

Since each row of the BWT matrix is prefixed by one suffix of s$ (see Section 3),
there is a natural one-to-one correspondence between the leaves of T and the rows
of the BWT matrix. Moreover, since the suffixes are lexicographically sorted, both
in T and in the BWT matrix, the i th leaf (counting from the left) of the suffix tree
corresponds to the i th row of the BWT matrix. We associate the i th leaf of T with
the i th symbol of the string ŝ. The symbol written in the leaf v is thus the symbol
preceding in s the substring of s$ associated with v . We write �i to denote the i th
leaf of T and �̂i to denote its associated symbol. From the above discussion, it
follows that ŝ = �̂1�̂2 · · · �̂|s|+1. See Figure 2 for an example.

Let w be a substring of s. The locus of w is the node τ [w] of T that has associated
the shortest string prefixed by w . Notice that many strings may have the same locus
because a suffix tree edge may be labelled by a long substring of s. For example,
in Figure 2, the locus of both ss and ssi is the node reachable by the path labelled
by ssi.

4.1. THE NOTION OF LEAF COVER. For any suffix tree node u, let ŝ〈u〉 denote
the substring of ŝ concatenating, from left to right, the symbols associated to the
leaves descending from node u. For example, in Figure 2, given the node τ [i] as
the locus of the substring i, we have ŝ〈τ [i]〉 = pssm. Note that these symbols are
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exactly the single symbols preceding i in mississippi$. Indeed, because of the
relationship between the suffix tree and the BWT matrix, for any string w we have
ŝ〈τ [w]〉 = ŝ[w].

Given a suffix tree T , we say that a subset L of its nodes is a leaf cover if every
leaf of the suffix tree has a unique ancestor in L. Any leaf cover L = {u1, . . . , u p}
naturally induces a partition of the leaves of T namely ŝ〈u1〉, . . . , ŝ〈u p〉. Because
of the relationship between T and the BWT matrix this is also a partition of ŝ.

Example 4.1. Consider the suffix tree for s = mississippi in Figure 2.
A leaf cover consists of all nodes of depth one. Using the notion of locus, we
can describe this leaf cover as L1 = {τ [$], τ [i], τ [m], τ [p], τ [s]}. Another leaf
cover is L2 = {τ [$], τ [i$], τ [ip], τ [is], τ [m], τ [p], τ [si], τ [ss]} which is in-
stead formed by nodes at various depths. The partition of ŝ induced by L1 is
{i, pssm, $, pi, ssii} and the one induced by L2 is {i, p, s, sm, $, pi, ss, ii}.

We are now ready to describe the relationship between leaf covers and prefix

covers. LetP∗
k = {w1, . . . , w p} denote an optimal prefix cover which defines

←
H∗

k (s)
(see (14)). Let Pk denote the set of nodes {τ [w1], . . . , τ [w p]}, which are the loci of
the strings in P∗

k . Since P∗
k is a prefix cover of �k , any leaf of T corresponding to

a suffix of length greater than k has a unique ancestor in Pk . Conversely, a leaf of
T corresponding to a suffix of length shorter than k might not have an ancestor in
Pk , because that suffix might be not prefixed by any string in P∗

k . As an example,
consider the extreme case in which P∗

k = �k ; all suffixes of s$ shorter than k are
not prefixed by any string in P∗

k so their leaves have no ancestor in Pk .
This means that in order to transform Pk into a leaf cover for T , we need to

add at most k suffix tree nodes. Specifically, let Qk denote the set of leaves of T
corresponding to suffixes of s$ of length at most k which are not prefixed by a string
in P∗

k . We set L∗
k = Pk ∪ Qk and refer to this set as the leaf cover associated to an

optimal prefix cover P∗
k . Such a natural relation between leaf and prefix covers is

exploited next.

4.2. THE COST OF A LEAF COVER. Let C denote the function which associates
to every string x over � ∪ {$}, with at most one occurrence of $, the positive real
value

C(x) = λ|x ′| H∗
0 (x ′) + µ, (22)

where λ and µ are positive constants, and x ′ is the string x with the symbol $
removed, if present. The rationale for considering a cost function C of this form
is the following. We will use C to measure the compression of the substrings of
ŝ achieved by a zeroth order encoder (hence, the term H∗

0 ). Since ŝ contains one
occurrence of the special symbol $, a substring of ŝ may contain the symbol $.
However, in our algorithm, we store separately the position of $ within ŝ (see
Section 5). Therefore, the $ symbol is ignored in the definition of C . For any leaf
cover L, we define its cost as:

C(L) =
∑
u∈L

C(ŝ〈u〉). (23)

Notice that the definition of C(L) is additive and, loosely speaking, accounts for
the cost of individually compressing the substrings of the partition of ŝ induced
by L.
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Example 4.2. The “smallest” leaf cover of T is {root(T )} and its induced parti-
tion consists of the whole string ŝ. Hence, C({root(T )}) = C(ŝ). The “largest” leaf
cover of T consists of the suffix tree leaves {�1, . . . , �|s|+1} and its induced partition
consists of the singletons �̂1, . . . , �̂|s|+1. Hence, C({�1, . . . , �|s|+1}) = ∑|s|+1

i=1 C(�̂i ).
Note that, according to (22), we have C(�̂i ) = λ + µ for �̂i ∈ � and C(�̂i ) = µ for
�̂i = $.

The next lemma shows that the cost of the leaf cover L∗
k , associated to an optimal

prefix cover P∗
k , is within an additive constant from λ|s|

←
H∗

k (s).

LEMMA 4.3. Fix k ≥ 0. Let C be defined by (22) and let L∗
k be the leaf cover

associated with P∗
k . There exists a constant gk such that, for any string s

C(L∗
k) ≤ λ|s|

←
H∗

k (s) + gk .

PROOF. By definition of L∗
k , we have L∗

k = Pk ∪ Qk , hence

C(L∗
k) =

∑
u∈Pk

C(ŝ〈u〉) +
∑
u∈Qk

C(ŝ〈u〉).

To evaluate the second summation, recall that Qk contains only leaves and that
|Qk | ≤ k. Moreover, if u is a leaf, then |ŝ〈u〉| = 1 and C(ŝ〈u〉) ≤ λ + µ. Hence,
the second summation is bounded by k(λ + µ). To evaluate the first summation,
recall that every u ∈ Pk is the locus of a string w ∈ P∗

k . By the relation between
the suffix tree and the BWT matrix, we have for any string w that ŝ〈τ [w]〉 = ŝ[w].
Using that and (22), we get

C(L∗
k) ≤

∑
u∈Pk

C(ŝ〈u〉) + k(λ + µ)

=
∑

w∈P∗
k

C(ŝ[w]) + k(λ + µ)

≤ λ

( ∑
w∈P∗

k

|ŝ[w]| H∗
0 (ŝ[w])

)
+ µ|�|k + k(λ + µ).

Now recall that ŝ[w] is a permutation of
←
ws and therefore H∗

0 (ŝ[w]) = H∗
0 (

←
ws).

Hence, using (14), we get

C(L∗
k) ≤ λ

( ∑
w∈P∗

k

|←ws | H∗
0 (

←
ws)

)
+ gk = λ|s|

←
H∗

k (s) + gk .

We now consider a leaf cover Lmin which minimizes C(L), hereafter called an
optimal leaf cover. That is, Lmin is such that C(Lmin) ≤ C(L), for any leaf cover L.
We say thatLmin induces an optimal partition of ŝ with respect to the cost function C .
The relevance of Lmin resides in the following lemma, whose proof immediately
derives from Lemma 4.3 and the obvious inequality C(Lmin) ≤ C(L∗

k) for any k.

LEMMA 4.4. Let Lmin be an optimal leaf cover for the cost function C defined
by (22). For any k ≥ 0 there exists a constant gk such that, for any string s

C(Lmin) ≤ λ|s|
←
H∗

k (s) + gk .
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FIG. 3. Pseudocode for the linear-time computation of an optimal leaf cover Lmin.

Summing up, we have shown that instead of finding the partition induced by P∗
k ,

for a fixed k, we can find the optimal partition corresponding to the leaf cover Lmin
(this corresponds to what we called the absolute optimal prefix cover at the end
of Section 3). Such an approach has two remarkable properties. First, the entropy
bound of Lemma 4.4 holds for any k. Second, Lmin has strong structural properties
that allow its computation in optimal linear time. This will be proven in the next
section.

4.3. COMPUTING Lmin IN LINEAR TIME. The key observation for computing
Lmin in linear time is a decomposability property with respect to the subtrees of the
suffix tree T . In the following, with a little abuse of notation, we denote by Lmin(u)
an optimal leaf cover of the subtree of T rooted at the node u.

LEMMA 4.5. An optimal leaf cover for the subtree rooted at u consists of either
the single node u, or of the union of optimal leaf covers of the subtrees rooted at
the children of u in T .

PROOF. When u is a leaf, the result obviously holds, since the optimal leaf
cover is the node itself. Assume that u is an internal node and let u1, u2, . . . , uc
be its children in T . Note that both node sets {u} and ∪c

i=1 Lmin(ui ) are leaf covers
of the subtree of T rooted at u. We now show that one of them is optimal for that
subtree. Let us assume that Lmin(u) �= {u}. Then, Lmin(u) consists of nodes which
descend from u. We can then partition Lmin(u) as ∪c

i=1 L(ui ), where each L(ui ) is
a leaf cover for the subtree rooted at ui , child of u in T . By the optimality of the
Lmin(ui )’s and the additivity of the function C , we have

C(Lmin(u)) =
∑

i

C(L(ui )) ≥
∑

i

C(Lmin(ui )).

Hence,∪iLmin(ui ) is an optimal leaf cover for the subtree rooted at u, as claimed.

Lemma 4.5 ensures that the computation of Lmin can be done greedily by pro-
cessing bottom-up the nodes of the suffix tree T . The detailed algorithm is given in
Figure 3. Note that, during the bottom-up visit of T , we store in L(u) the optimal
leaf cover of the subtree rooted at u and its cost in Z (u).

LEMMA 4.6. The algorithm in Figure 3 computes the leaf cover Lmin achieving
the minimum value for the cost function C defined by (22), in O(|s|) time and
O(|s| log |s|) bits of space.

PROOF. The correctness of the algorithm follows immediately from Lemma 4.5.
For what concerns its running time, the only nontrivial operation during the tree
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FIG. 4. Pseudocode of our compression booster which turns a zeroth order compressor A into a kth
order compressor.

visit is the computation of C(ŝ〈u〉) in Step (2.1). That requires knowledge of the
number of occurrences of the symbol ai in ŝ〈u〉, for i = 1, . . . , |�|. These values
can be obtained in O(1) time, as follows: When u is a leaf, then the ai ’s occur either
zero or one time each. When u is an internal node, the number of occurrences of
each ai can be computed from the number of occurrences of ai in ŝ〈u j 〉, where
u1, . . . , uc are the children of u in T . (Recall that |�| = O(1) and ŝ〈u〉 is the
concatenation of ŝ〈u1〉, . . . , ŝ〈uc〉.) Hence, the visit of the tree takes constant time
per node and O(|s|) time overall. Recall that the construction of the suffix tree at
Step (1) takes O(|s|) time and O(|s| log |s|) bits of space. This space bound is also
needed to store the values Z (u) during the post-order visit of T .

5. A BWT-Based Compression Booster

We are now ready to describe our compression booster that turns a zeroth order
compressor into an effective kth order compressor, for any k ≥ 0, without any
(asymptotic) loss in time efficiency. Our starting point is any compressorA satisfying
the following property:

PROPERTY 5.1. Let A be a compression algorithm such that, given an input
string x ∈ �∗, A first appends an end-of-string symbol # to x and then compresses
x# with the following space and time bounds:

(1) A compresses x# in at most λ|x |H∗
0 (x) + µ bits, where λ and µ are constants,

(2) the running time of A is T (|x |) and its working space is S(|x |), where T ( · ) is
a convex function and S( · ) is nondecreasing.

Note that instead of using the symbol #, algorithm A can explicitly store the length
of x as a prefix of the compressed string x (e.g., using a variable length encoding
of the integers among the ones in Elias [1975]); but, in this case, the number of bits
used to encode |x | must be accounted for in the output size. An algorithm satisfying
Property 5.1 with λ = 2.5 will be described in Section 6.2.

Given any compressor A satisfying Property 5.1, the algorithmic toolbox detailed
in Figure 4 can be used to boost A’s compression up to the kth order entropy, for
any k ≥ 0, without any (asymptotic) loss in time efficiency and with a slightly
superlinear bit space overhead. The properties of our compression booster are stated
in the following theorem.
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THEOREM 5.2. Given a compression algorithm A that satisfies Property 5.1, the
booster detailed in Figure 4 yields the following: (A) if applied to s, it compresses
it within λ|s|

←
H∗

k (s) + log2 |s| + gk bits of storage, for any k ≥ 0; (B) if applied
to s R, it compresses s within λ|s|H∗

k (s) + log2 |s| + gk bits, for any k ≥ 0. In both
cases, the above compression takes O(T (|s|)) time and O(S(|s|) + |s| log |s|) bits
of space.

PROOF. We only prove case (A), since (B) would follow from Lemma 2.4. First
of all, let us show that the output produced by our booster can be decompressed.
Notice that the symbol $ is initially removed from ŝ (i.e., from each ŝi ). Hence, each
string ŝ ′

i is over the alphabet �. The decoder starts by decompressing the strings
ŝ ′

1, . . . , ŝ ′
m one at a time. The end-of-string symbol # is used to distinguish ŝ ′

i from
ŝ ′

i+1. Since, at Step (4), we only compress non empty strings ŝ ′
i ’s, when the decoder

finds an empty string (i.e., the singleton #) it knows that all strings ŝ ′
1, . . . , ŝ ′

m have
been decoded and it may compute |s| = ∑

i |ŝ ′
i |. The decoder then fetches the next

(	log2 |s|
 + 1) bits which contain the position of $ within ŝ (written at Step (6)).
At this point, the decoder has reconstructed the original ŝ and it may recover the
input string s using the inverse BWT.

As far as the compression performance is concerned, we have |A(x)| ≤ C(x) by
construction. Since Lmin is an optimal leaf cover with respect to the cost function
C , using Lemma 4.4, we get

m∑
i=1

|A(ŝi )| ≤
m∑

i=1

C(ŝi ) = C(Lmin) ≤ λ|s|
←
H∗

k (s) + gk .

Since the compression of the empty string # needs further µ bits and we append
(	log2 |s|
+1) bits to encode the position of the symbol $, the overall compression
bound follows.

It is simple to prove, for a convex function f and any two positive values a and
b, that f (a) + f (b) ≤ f (a + b) + f (0). Since T is a convex function and T (|s|) =

(|s|), exploiting the fact that

∑
i |ŝ ′

i | = |s|, we get
∑

i T (|ŝ ′
i |) ≤ O(T (|s|)). By

Lemma 4.6, we know that computingLmin takes O(|s|) time. Hence, the overall run-
ning time of our booster is O(T (|s|)) as claimed. Finally, since space can be reused
and S is non-decreasing, the total space used for the compression of ŝ ′

1, . . . , ŝ ′
m is

O(S(|s|)), and, by Lemma 4.6, computing Lmin takes O(|s| log |s|) bits. Thus, the
overall space occupancy is O(S(|s|) + |s| log |s|) bits as claimed.

We point out that, when A admits a decompression algorithm satisfying the
same assumptions on time and space as in Property 5.1, the computational re-
sources taken by the decompression process are the same as the ones needed by
boosting.

5.1. BOUNDS FOR THE ENTROPY Hk . The results given for H∗
k can be repeated

almost verbatim for the entropy Hk . In this section we state the analogous of
Theorem 5.2 for the entropy Hk . The main difference between Hk and H∗

k is that
H0(an) = 0. Hence, we cannot hope to find an algorithm that satisfies the first
requirement of Property 5.1 with H∗

0 replaced by H0. For this reason, we slightly
change the space bound for the base algorithm to be used with our compression
booster. The new requirements are expressed by the following property:
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PROPERTY 5.3. Let A be a compression algorithm such that, given an input
string x ∈ �∗, A first appends an end-of-string symbol # to x and then compresses
x# with the following space and time bounds:

(1) A compresses x# in at most λ|x |H0(x) + η|x | + µ bits, where λ, η, and µ are
constants,

(2) the running time of A is O(T (|x |)) and its working space is O(S(|x |)), where
T ( · ) is a convex function and S( · ) is non decreasing.

An algorithm satisfying Property 5.3 with λ = 1, and η = 1 will be described in
Section 6.1. Given an algorithm A which satisfies Property 5.3, we define, for every
string x over � ∪ {$}, with at most one occurrence of $, the cost function:

C ′(x) = λ|x ′| H0(x ′) + η|x ′| + µ, (24)

where x ′ is the string x with the symbol $ removed if present (C ′ is the analogous
of the cost function defined by (22)). Reasoning, as in Section 4, we can define the
concept of optimal leaf cover with respect to C ′ and we can compute it in linear time
using the algorithm of Figure 3 with C replaced by C ′. Repeating almost verbatim
the proof of Theorem 5.2, we get the following result.

THEOREM 5.4. Given a compression algorithm A that satisfies Property 5.3, the
booster detailed in Figure 4 yields the following: (A) if applied to s, it compresses it
within λ|s|

←
Hk (s)+ log2 |s|+η|s|+ gk bits of storage, for any k ≥ 0; (B) if applied

to s R, it compresses s within λ|s|Hk(s) + log2 |s|+ η|s|+ gk bits, for any k ≥ 0. In
both cases, the above compression takes O(T (|s|)) time and O(S(|s|) + |s| log |s|)
bits of space.

5.2. GENERAL INVERTIBLE AND BOUNDED CONTEXT TRANSFORMS. Let P be
an invertible string permutation algorithm. That is, given a string s, P returns
a permutation sp of the string and, possibly, some additional information of size
logarithmic in the length of s that is used for decoding. We say that P is realized by
a suffix tree if and only if the following holds for any string s. Let i1i2 · · · i|s| denote
the permutation of the string positions yielding sp. Then, there exists a permutation
π of the nodes in the suffix tree for s such that the leaf associated to the suffix
starting at position i j + 1 is the j th leaf in a left to right scan of the leaves of the
permuted suffix tree π (T ). The BWT is certainly realized by a suffix tree. It remains
open to establish whether other transforms exist, which substantially depart from
sorting permutations. In any case, all the results stated in Section 4 hold for those
permutations.

There is one set of permutations that is particularly interesting because of its
practical relevance. Fix k0 ≥ 0. The bounded context transform of order k0 is the
one generated by sorting the rows of the BWT matrix according to their prefixes of
length k0 (in the case, of equal prefixes, the rows keep their relative order). The
bounded context transforms can be computed more efficiently than the original BWT,
and they usually yield only a slightly worse compression. A detailed presentation
of those methods as well as of the corresponding decoding algorithms is given
in Schindler [1997]. Here we prove that our boosting approach proves helpful in
this case too.
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THEOREM 5.5. Let s be a string and sB be its bounded context transform, for a
positive context length k0. The same results stated in Theorem 5.2 and Theorem 5.4
hold in this case, but only for k ≤ k0.

PROOF. Fix k ≤ k0. We give a proof only for
←
H∗

k (s), since the other cases are
analogous. The hearth of the proof is to show that the analogous of Lemma 4.3
holds. Now, let TB be the suffix tree of s with the leaves rearranged to correspond
to the permuted string sB . That is, the i th leaf of TB is labelled with the i th symbol
of sB . Notice that the suffix having locus in that leaf is preceded in s by the symbol
assigned to the leaf.

We define the frontier of depth k0 in TB as the set of nodes such that each one
is the locus of a string of length at least k0 and, among all such nodes, they are
the closest to the root. Let T ′

B be the suffix tree TB , where we have cut all nodes
descending from the frontier. So, the nodes on the frontier are now the leaves of
T ′

B . At each node u of T ′
B , either a leaf or an internal node, we assign the string

sB〈u〉 obtained by concatenating from left to right the symbols at the leaves of the
subtree of TB rooted at u. Note that sB〈u〉 is a substring of sB . Consider a leaf cover
L∗

k for T ′
B , associated to P∗

k , and let its cost be defined as in Section 4.2. We can
again write L∗

k = Pk ∪ Qk , hence

C(L∗
k) =

∑
u∈Pk

C(sB〈u〉) +
∑
u∈Qk

C(sB〈u〉).

Reasoning as in the proof of Lemma 4.3 we get C(L∗
k) ≤ λ|s|

←
H∗

k (s) + g′
k , with

the only difference that now such a bound holds only for k ≤ k0. Hence, if we
compute the optimal leaf cover for T ′

B we are able to compress any string up to

λ|s|
←
H∗

k (s) + g′
k for any k ≤ k0.

6. Two Zeroth Order Base Compressors

In this section, we describe two zeroth order compressors satisfying, with very
small constants, the Properties 5.1 and 5.3 stated in Section 5. The first algorithm,
called HC, is a variant of the classic Huffman compressor adapted here to efficiently
manage the end-of-string symbol #. The second algorithm, called RHC, builds upon
HC and uses run-length encoding to efficiently compress the strings with low entropy.

6.1. THE ALGORITHM HC. In this section, we describe algorithm HC, which
satisfies Property 5.3 with λ = 1 and η = 1. Let T1 be a Huffman tree obtained
from the empirical probability distribution of s, when s has at least two distinct
symbols. Else, it is a tree with only the root, associated to the only symbol in s.
Using T1, we derive a tree T2 in which there is a codeword also for the symbol #.
Indeed, let b be the least frequent symbol in s. T2 is obtained from T1 by making
the leaf corresponding to b an internal node and by appending to it two new leaves,
one assigned to b and the other assigned to #.

Now, the output of algorithm HC consists of an encoding of T2 followed by the
encoding of s# via the codewords represented by T2.

THEOREM 6.1. For any string s over the alphabet �, we have

|HC(s#)| ≤ |s|H0(s) + |s| + �(|�| log |�|). (25)
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PROOF. We observed that HC(s#) consists of the encoding of T2 followed by
the compressed string y. Let h = |�|. Using for example the algorithm in Witten
et al. [1999, Section 2.3] the encoding of T2 takes �(h log h) bits. We now show that
|y| ≤ |s|H0(s)+|s|+h+1. Let {Pi }h

i=1 be the empirical probability distribution of s
defined in Section 2.1. The proof proceeds by distinguishing three cases, depending
on the value of P1.

Case P1 = 1. The unique symbol forming s and the symbol # are both encoded
by a codeword of one bit. So, |y| = |s| + 1 and the bound follows.

Case 1/2 ≤ P1 < 1. s consists now of more than one symbol. Consider the
Huffman tree T1 obtained from the empirical distribution for s. By construction,
the encoding of s via T1 takes |s|LHC(s) bits (see Section 2.2). Let T2 be the tree
obtained from T1 as described above and let b denote the least frequent symbol used
for its construction. Note that if �b denotes the length of the codeword representing
b in T1, then �b + 1 is the length of the encodings of b and # in T2. Finally, note
that the number of occurrences of b in s is |s|Ph . Hence, the encoding of s# via T2
takes |s|LHC(s) bits plus |s|Ph (one extra bit for each occurrence of b), plus �b + 1
(the cost of encoding #). Thus, |y| = |s|(LHC(s) + Ph) + �b + 1. Using bound (18)
of Theorem 2.5, we get |y| ≤ |s|(H0(s) + P1) + �b + 1. Since T2 is a binary tree
with h + 1 leaves, we have �b ≤ h and the lemma follows.

Case P1 < 1/2. The proof follows along the same lines as in the previous case,
except that now we use bound (16) of Theorem 2.5 and the fact that |s|(P1+β) < |s|,
since β = 0.0860 and P1 < 1/2.

COROLLARY 6.2. For any string s, if we combine HC with the compression
booster of Figure 4 the resulting algorithm runs in O(|s|) time and O(|s| log |s|)
bits of space, and produces an output bounded by |s|Hk(s) + |s| + log |s| + gk bits
for any k ≥ 0.

6.2. THE ALGORITHM RHC. In this section, we describe algorithm RHC which
satisfies Property 5.1 with λ = 2.5. The main idea behind this algorithm is to use
the knowledge about the symbol frequencies in s to make its performance closely
approximate H∗

0 . As pointed out by Manzini [2001], for low-entropy strings it is
essential to use run length encoding. However it is not trivial to combine a zeroth
order encoder with run length encoding and to retain “the best of both worlds”. Our
algorithm here proposes a novel combination, guaranteeing good bounds in terms
of H∗

0 (s).
Recall that the γ encoding [Elias 1975] of an integer i ≥ 1 consists of the binary

representation i—which takes 1 + 	log i
 bits—prefixed by 	log i
 0’s. Note that
γ codes are prefix-free and that the encoding of i takes |γ (i)| = 1 + 2	log i
 bits.

Let 0 and 1 be two symbols not in the input alphabet. For any n ≥ 1, we
write B(n) to denote the number n written in binary using 0 and 1 and discarding
the most significant bit. For example, B(1) = ε (the empty string), B(2) = 0,
B(3) = 1, B(4) = 00, etc. Obviously, this encoding is not prefix-free and
|B(i)| = 	log(i)
.

LEMMA 6.3. Given a sequence of positive integers d1, d2, . . . , dt = w, such
that d j < d j+1 for j = 1, . . . , t − 1, there is an algorithm that encodes that
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sequence in at most

|x | ≤ 3

2
t log

(w

t

)
+ 2t + 2	log t
 + 2 (26)

bits. The encoding of the sequence is prefix free in the sense that we can detect the
end of the encoding without any additional information.

PROOF. Consider the integer gaps g1 = d1, g2 = d2 − d1, . . . , gt = dt − dt−1.
Our algorithm first encodes the number of gaps t using γ coding, then it encodes
g1�g2� . . . gt� where � is a delimiter allowing us to use a variable length (not prefix-
free) encoding of each g j .

The encoding of g1�g2� . . . gt� is a two stage process. In the first stage, we build
the string x ′ = B(g1)�B(g2)� . . . B(gt )�. Let z0, z1, and z� denote respectively the
number of 0’s, 1’s and �’s in x ′. Assume z1 ≤ z0 (the other case is symmetric: we
use one bit to distinguish between the two cases). In the second stage, we construct
the binary string x by encoding the symbols of x ′ with the codewords: 0→ 0,
1→ 10 and � → 11.

Let p = maxi gi . For j = 1, . . . , p, let q j denote the number of gi ’s equal to j .
Therefore,

∑p
j=1 q j = t . With reference to the algorithm outlined above, we give

a proof only for the case z1 ≤ z0, since the other is symmetric. We have

|x | = |γ (t)| + z0 + 2z1 + 2z� + 1 = z0 + 2z1 + 2t + 2	log t
 + 2.

We now bound z0 + z1 in terms of t and w = dt . Since |B(gi )| = 	log(gi )
, we have

z0 + z1 =
t∑

i=1

	log(gi )
 =
p∑

j=1

q j	log( j)
 ≤ t
p∑

j=1

q j

t
log( j).

Using Jensen’s inequality and observing that
∑p

j=1 jq j = w , we get

z0 + z1 ≤ t log

( p∑
j=1

q j

t
j

)
= t log

(w

t

)
.

Finally, we observe that z1 ≤ z0 implies z0 + 2z1 ≤ (3/2)(z0 + z1) and the lemma
follows.

We point out that the problem considered in Lemma 6.3 can be solved using
several known methods for universal encoding of integers [Elias 1975], some of
which are asymptotically optimal. However, the asymptotically optimal encodings
are better than ours for large integers, while we need to be efficient for all integers,
since the lengths of the strings we need to compress (i.e., substrings of ŝ) may even
consist of a few symbols. Therefore, although interesting, asymptotic results do not
seem to be applicable here.

In Figure 5 we describe the algorithm RHC. It consists of four cases, based on the
empirical probability P1 of the most frequent symbol occurring in s. Intuitively, as
P1 increases towards one, the empirical entropy of s rapidly decreases and, in order
to track it with some degree of accuracy, our algorithm needs to know when to use
run length encoding. We remark that the first two bits of the encoding indicate which
one among the four cases in the algorithm produces the remaining part of the binary
output. We account for those bits in the analysis, but they are not discussed in the
presentation of the algorithm. Note that only in the first case we explicitly encode
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FIG. 5. Encoding of s# by algorithm RHC.

the symbol #, in all other cases we encode instead the length |s| (see comment
immediately following Property 5.1).

The next theorem bounds the output size |RHC(s#)| in terms of H∗
0 (s). We will

also be needing the following lemma:

LEMMA 6.4. Consider a string s and let r = |s|−n1 be the number of symbols
remaining once that the most frequent has been deleted. For 1/2 ≤ P1 < 1, the
following bounds holds:

|s|H∗
0 (s) = |s|H0(s) ≥ |s|H(P1) (27)

|s|H(P1) ≥ r [1 + log(|s|/r )] (28)

PROOF. The fact that
∑h

i=2 ni = r immediately gives |s|H0(s) ≥ n1 log |s|
n1

+
r log |s|

r = |s|H(P1). To complete the proof, observe that n1 log |s|
n1

= r log(1+ r
n1

)
n1
r

and that (1 + 1/t)t ≥ 2, for t ≥ 1.

THEOREM 6.5. For any string s over the alphabet �, we have

|RHC(s#)| ≤ 5

2
|s|H∗

0 (s) + �(|�| log |�|). (29)

PROOF. We start by noting that, depending on the various cases, RHC(s#) is
composed of a table, providing a representation of the alphabet symbols as they
appear coded in the input string and, possibly, an encoding of a Huffman tree. This
part takes �(|�| log |�|) bits [Witten et al. 1999, Sect. 2.3]. Let y be the remaining
binary string output by the algorithm, and let P1, . . . , Ph be the empirical probability
distribution over s. We prove the theorem by showing that |y| ≤ 5

2 |s|H∗
0 (s)+�(|�|).

We distinguish four cases, corresponding to the ones in the algorithm. Note that,
except that in case (d), where P1 = 1, we have H∗

0 (s) = H0(s).
(a) P1 < 1/2. In this case, RHC produces the same output as algorithm HC.

Reasoning as in the proof of Theorem 6.1, we have

|y| ≤ |s|(H0(s) + P1 + β) + h + 1 ≤ |s|H0(s) + |s| + �(|�|) .

The thesis follows observing that P1 < 1/2 implies |s| H∗
0 (s) = |s|H0(s) ≥ |s|.
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(b) 1/2 ≤ P1 < (|s| − 1)/|s|. The output string y now consists of two parts, the
first one giving the encoding of |s| and of the position in s of b1, . . . , br , and the
second one giving the encoding of b. For the first part, we use Lemma 6.3 with
t = r + 1, dr+1 = |s|, and for i = 1, . . . , r , di = pi where pi is the position of
bi in s. The space required for this encoding is given by (26) with t = r + 1 and
w = |s|.5

To bound the length of the encoding of b, we observe that the use of tree T ′
1

makes that encoding |s| bits shorter than the encoding of s, say y′, obtained via the
Huffman tree T1. Putting all of those observations together, we obtain

|y| ≤ (|y′| − |s|) + 3

2
(r + 1) log

( |s|
r + 1

)
+ 2(r + 1) + 2	log(r + 1)
 + 2. (30)

We further bound the right-hand side of (30) by bounding |y′| with (17) of The-
orem 2.5 and by using inequality log( |s|

r+1 ) ≤ log( |s|
r ). Applying the fact that

|s|(1 − P1) = r to the result, we get:

|y| ≤ (|s|H0(s)−|s|H(P1)+r )+3

2
(r + 1) log

( |s|
r

)
+2r+2	log(r+1)
+4. (31)

Since 2	log(r + 1)
 < (r/4) + 5, inequality (31) simplifies to

|y| ≤ (|s|H0(s) − |s|H(P1)) + 3

2
r log

( |s|
r

)
+ 3

2
log

( |s|
r

)
+ (13/4)r + 9. (32)

Let G(r ) = r log |s|
r − 3

4r − 3
2 log |s|

r . For |s| > 16, G(2) and G(|s|/2) are positive
and G(r ) is a concave function in [2, |s|/2]. Hence, G(r ) > 0 for 2 ≤ r ≤ |s|/2.
This implies 3

2 log |s|
r < r log |s|

r − 3
4r , which plugged into (32) yields

|y| ≤ (|s|H0(s) − |s|H(P1)) + 5

2
r + 5

2
r log

( |s|
r

)
+ 9. (33)

Using now inequality (28), we can bound the right-hand side of (33) to get

|y| ≤ (|s|H0(s) − |s|H(P1)) + 5

2
|s|H(P1) + 9. (34)

Simplifying the right-hand side of (34) and applying (27) to it, the thesis now
follows:

(c) P1 = |s|−1
|s| . In this case, y consists of two parts: the encoding of |s| given

by Lemma 6.3, which takes 4 + (3/2)(log |s|) bits, followed by �log |s|� bits. The
thesis follows observing that |s| H∗

0 (s) = |s|H0(s) ≥ log |s|.
(d) P1 = 1. In this case, y only contains the encoding of |s| given by Lemma 6.3

which takes 4+(3/2)(log |s|) bits. By (9), we have |s|H∗
0 (s) ≥ log |s| and the thesis

follows.

Finally, we observe that the algorithm should be able to handle also the case |s| = 0.
This can be easily done using for example one extra bit in case (d).

5 If pr = |s|, we cannot use directly Lemma 6.3 since we would have dr = dr+1. In this case, we only
encode the sequence p1, . . . , pr . This modification does not increase the output size except that we
need an additional bit to state whether we are in the case pr = |s| or not.
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Since RHC satisfies Property 5.1, we can transform it into a kth order compressor
using the booster described in Section 5.

COROLLARY 6.6. For any string s, if we combine RHC with the compression
booster of Figure 4 the resulting algorithm runs in O(|s|) time and O(|s| log |s|)
bits of space and produces an output bounded by 2.5|s|H∗

k (s) + log |s| + gk bits,
for any k ≥ 0.

7. Lower Bounds

In the previous section, we have shown that combining RHC with the compression
booster of Section 5 we can compress any string s up to 2.5|s|H∗

k (s) + log |s| + �(1)
bits for any k ≥ 0. In this section, we address the issue of the existence of a zeroth
order compressor that satisfies Property 5.1 with λ = 1. Using such a compressor
with our booster we would be able to compress any string up to |s|H∗

k (s) + log |s| +
�(1) for any k ≥ 0. A related question is whether it is possible to achieve the
|s|H∗

k (s) + �(1) bound with a completely different approach, possibly not based
on the BWT.

We answer both questions in the negative. Those results come from the stronger
finding that, independently of whether the transform is applied as a pre-processing
step, the bottleneck for the performance of compression algorithms rests on the
need to encode the length of the input string, when it is of the form an , that is,
H0(s) = 0. We model such a requirement by assuming that a compressor A, when
restricted to work on input strings an , n ≥ 1, produces a codeword for n. That is,
{A(an)|n ≥ 1} is a codeword set for the integers. For technical reasons, we also
assume that |A(an)| is a nondecreasing function of n. Depending on the implemen-
tation, those assumptions seem to account for “the inner working” of many of the
best-known compression algorithms that, either implicitly or explicitly, use codes
for the integers. Indeed, the decompression algorithm must derive n from the infor-
mation encoded by the compressor because, since both algorithms must work for
any n, they cannot agree once and for all on its value. The lower bound now comes
from Theorem 4 in Levenshtein [1968], which we restate in our notation.

THEOREM 7.1 (LEVENSHTEIN 1968, THEOREM 4). Let A be a compressor sat-
isfying the assumptions stated above. Then, there exists a countable number of
strings s such that |A(s)| ≥ |s|H∗

0 (s) + β(|s|), where β(n) is a diverging function
of n.

PROOF. Let s = an . The compressor A, when restricted to work on strings
of that form, produces a codeword set for the integers. Then, there must exist
infinitely many values of n such that |A(s)| ≥ logsum2n − (log2 log2 e) log∗

2 n,
where logsum2x = ∑

1≤i≤log∗
2 x log(i)

2 x and log∗
2 x = min{t : log(t)

2 x ≤ 1}. Since,
for s = an , |s|H∗

0 (s) = 1 + 	log |s|
, we have |A(s)| ≥ |s|H∗
0 (s) + β(|s|), where

β(n) is a diverging function of n.

Combining the above theorem with the observation that H∗
k (s) is a decreasing

function of k, we get the following corollary.

COROLLARY 7.2. No compression algorithm satisfying the assumptions stated
at the beginning of the section can compress any string s up to |s|H∗

0 (s), even within
constant additive factors.
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Note that from Corollary 7.2 follows that we cannot aim at removing both
the constant factor 2.5 and the additive term log |s| from the space bound of
Corollary 6.6. Moreover, it settles a conjecture raised in Manzini [2001] stating
that no BWT based algorithm can achieve a bound of the form |s|H∗

k (s) + �(1) for
any k ≥ 0.

8. Conclusions and Open Problems

We have shown how to boost the performance of compression algorithms. Analyti-
cally, our techniques yield compression algorithms that are superior to many of the
best-known ones, when one measures performance in a worst case setting, that is,
by means of empirical entropy. Moreover, we have given the first family of com-
pression algorithms based on the BWT that do not use MTF as part of the compression
process. That settles a long-standing open problem in that area [Fenwick 1996].
We have also addressed the problem of the best possible compression bounds that
one can get in terms of empirical entropy of a string, which turns out to be a too
demanding bound to achieve.

The contributions in this article raise some interesting open problems. For in-
stance, it would be of great practical interest to conduct an experimental study of our
boosting technique. Other issues have a more theoretic flavor, such as to improve
the constants of the leading entropy terms in our bounds, to prove tighter lower
bounds or investigate the relation among boosting, universal codes of the integers
and compression methods such as Huffman codes. Furthermore, our techniques are
optimal in time, but use O(|s| log |s|) bits of working space. It would be therefore
interesting to design compression boosters that achieve optimal time and possibly
use space (sub)linear in |s|. A possible starting point of investigation for this latter
issue might be the recent results in Hon et al. [2003]. Finally, we point out that
our techniques are off-line in the sense that they look at the whole input before
producing any output. It could be worthwhile to investigate the existence of on-line
data compression boosting techniques.
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