
Compression boosting in optimal linear time using the

Burrows-Wheeler Transform∗

Paolo Ferragina† Giovanni Manzini‡

Abstract

In this paper we provide the first compression booster
that turns a zeroth order compressor into a more
effective k-th order compressor without any loss in time
efficiency. More precisely, let A be an algorithm that
compresses a string s within λ|s|H∗0 (s)+µ bits of storage
in O(T (|s|)) time, where H∗0 (s) is the zeroth order
entropy of the string s. Our booster improves A by
compressing s within λ|s|H∗k (s) + log2 |s|+ gk bits still
using O(T (|s|)) time, where H∗k(s) is the k-th order
entropy of s.

The idea of a “compression booster” has been very
recently introduced by Giancarlo and Sciortino in [7].
They combined the Burrows-Wheeler Transform [3]
with dynamic programming and achieved our same
compression bound but with running time O(T (|s|)) +
Ω(|s|2). We start from the same premises of [7], but in-
stead of using dynamic programming we design a linear
time optimization algorithm based on novel structural
properties of the Burrows-Wheeler Transform.

1 Introduction

After its proposal in 1994, the Burrows-Wheeler com-
pression algorithm [3] has immediately become a stan-
dard for efficient lossless compression. Its key tool is
the so called Burrows-Wheeler Transform (BWT, here-
after) that rearranges the symbols of the input string
s producing an output bwt(s) which is usually easier
to compress. The compression of the string bwt(s) is
usually implemented via a cascade of transformation
and coding algorithms: Move-To-Front (MTF), followed
by Run-Length Encoding (RLE), followed a statistical
compressor (Arithmetic or Huffman coding). Even in

∗Partially supported by the Italian MIUR projects “Algorith-
mics for Internet and the Web (ALINWEB) and “Enhanced Con-
tent Delivery (ECD).”
†Dipartimento di Informatica, Università di Pisa, Italy. E-

mail: ferragina@di.unipi.it. Partially supported by the MIUR
project “Piattaforme abilitanti per griglie computazionali ad alte
prestazioni orientate a organizzazioni virtuali scalabili (Grid.it).”
‡Dipartimento di Informatica, Università del Piemonte Ori-

entale, Alessandria, Italy and IIT-CNR, Pisa, Italy. E-mail:
manzini@mfn.unipmn.it.

its simplest forms this scheme achieves a compression
performance that is competitive, if not superior, with
the best known compression methods (see e.g. [5, 11]).
Extensive experimental work has investigated the role
and usefulness of each of the above steps, and numerous
variants have been proposed in the literature.

Recently, theoretical studies have provided new in-
sights into the nature of the BWT, offering some ana-
lytical justifications to the original algorithmic choices
made by Burrows and Wheeler in their seminal paper.
Specifically, Manzini [9] proved bounds in terms of the
k-th order entropy of the string s, denoted by H∗k(s),
without making any assumptions on the input s. He
showed that a variant of the Burrows-Wheeler compres-
sion algorithm takes (5 + ε)|s|H∗k (s) + log2 |s|+ gk bits
to compress any string s, where ε ≈ 10−2 and gk is a
parameter independent of s. This result is particularly
relevant in that the compression bound holds for any
k ≥ 0, and a similar bound cannot hold for many of the
best known compression algorithms, like LZ77, LZ78,
and PPMC.

Given these intriguing properties, more and more
researchers have tried to vivisect the structure of the
BWT-based compressor and gain insights into the na-
ture and role of its four basic steps: BWT, MTF
(Move-to-Front encoding), RLE (Run-length encoding),
and zeroth order coding (Huffman or Arithmetic cod-
ing). Although MTF and RLE serve their purposes,
the general feeling among theoreticians and practition-
ers is that the MTF coder introduces some degree
of inefficiency and several alternatives have been pro-
posed [1, 2, 4, 6, 8, 12]. Very recently, Giancarlo and
Sciortino [7] showed analytically that this feeling was
correct. Specifically, they proved that compressing the
string s up to its k-th order entropy is equivalent to
finding an optimal partition of the string bwt(s) with
respect to a suitably chosen cost function. This idea
led to compression algorithms which, in terms of guar-
anteed performance, outperform the old MTF-based al-
gorithms. For example, in [7] Giancarlo and Sciortino
describe a compression algorithm whose output size is
bounded by 2.5|s|H∗k (s)+log2 |s|+gk bits for any string
s and for any k ≥ 0. This improves by a factor 2 a sim-

Copyright © 2004 by the Association for Computing Machinery, Inc.
and the Society for industrial and Applied Mathematics. All Rights
reserved. Printed in The United States of America. No part of this book
may be reproduced, stored, or transmitted in any manner without the
written permission of the publisher. For information, write to the
Association for Computing Machinery, 1515 Broadway, New York, NY
10036 and the Society for Industrial and Applied Mathematics, 3600
University City Science Center, Philadelphia, PA 19104-2688

655

ilar bound for a MTF-based algorithm given in [9].
Giancarlo and Sciortino’s approach can be seen

as a compression booster in that, given a compressor
A which squeezes any string s within λ|s|H∗0 (s) + µ
bits of storage, it improves A by compressing s in
λ|s|H∗k(s)+log2 |s|+gk bits.

1 A drawback of this booster
is that the optimal partition of bwt(s) is computed
using dynamic programming. This induces an overhead
of Ω

(

|s|2
)

time which compares unfavorably with the
Θ(|s|) running time of the MTF-based algorithms.

In this paper we start from the same premises
of [7] but, instead of using dynamic programming,
we design a linear time optimization algorithm based
on novel structural properties of the Burrows-Wheeler
Transform. Our contribution is twofold. From the
theoretical side, we show that the MTF-less compression
is overall superior to the classical MTF-based variants.
From the practical side, we open the way to novel BWT-
based compressors that deserve a careful experimental
study.

The bottom line is that we provide compressor
designers with the first compression booster that allows
to turn a zeroth order compressor into a more effective
k-th order compressor, without any loss in the time
efficiency. Their fatiguing task should be simpler, from
now on!

2 Notation and known results

In this section we review some known results that will
be used in the rest of the paper.

2.1 The empirical entropy of a string Let s be
a string over the alphabet Σ = {a1, . . . , ah}, and let
ni denote the number of occurrences of the symbol ai

inside s. The zeroth order empirical entropy of the
string s is defined as

H0(s) = −

h
∑

i=1

ni

|s|
log

(

ni

|s|

)

(2.1)

(in the following all logarithms are taken to the base
2 and we assume 0 log 0 = 0). The value |s|H0(s)
represents the output size of an ideal compressor which
uses − log ni

|s| bits for coding the symbol ai. It is well

known that this is the maximum compression achievable

1An attentive reader may have noticed the term log |s| in

the compression bounds of [7, 9] which was not present in their

published results. The point is that the output of the Burrows-

Wheeler Transform consists of a permutation of s and of an integer

in the range [1, |s|] (see [3] and Sect. 2.2). In the papers [7, 9]

the compression bounds refer only to the compression of the
permutation of s. In the present paper we account also for the

space needed to encode the above integer.

by using a uniquely decodable code in which a fixed
codeword is assigned to each alphabet symbol.

We can achieve a greater compression if for each
symbol we use a codeword which depends on the k
symbols preceding it. For any length-k string w we

denote by
→
ws the string of symbols following w in s.

Example 1 Let s = mississippi, w = si. The two
occurrences of is inside s are followed by the symbols

s and p, respectively. Hence
→
ws= sp.

The k-th order empirical entropy of s is defined as:

Hk(s) =
1

|s|

∑

w∈Σk

|
→
ws |H0(

→
ws)

The value |s|Hk(s) represents a lower bound to the
output size of any uniquely decodable encoder which
uses for each symbol a code which depends only on the
symbol itself and on the k most recently seen symbols.
The empirical entropy resembles the entropy defined in
the probabilistic setting (for example, when the input
comes from a Markov source). However, the empirical
entropy is defined pointwise for any string and can
be used to measure the performance of compression
algorithms as a function of the string structure, thus
without any assumption on the input source.

In [9] it is shown that for highly compressible strings
|s|Hk(s) fails to provide a reasonable bound to the
performance of compression algorithms. For this reason
it is introduced the concept of zeroth order modified
empirical entropy as:

H∗0 (s) =







0 if |s| = 0
(1 + blog |s|c)/|s| if |s| 6= 0 and H0(s) = 0
H0(s) otherwise.

Note that for a non-empty string s, |s|H∗0 (s) is at least
equal to the number of bits needed to write down the
length of s in binary. The k-th order modified empirical
entropy H∗k is defined in terms of H

∗
0 as the maximum

compression we can achieve by looking at no more
than k symbols preceding the one to be compressed.2

Formally, let Sk be a set of substrings of s having length
at most k. We say that the set Sk is a suffix cover of
Σk, and write Sk ¹ Σ

k, if any string in Σk has a unique
suffix in Sk.

Example 2 Let Σ = {a, b} and k = 3, two examples
of suffix covers for Σ3 are {a, b} and {a, ab, abb, bbb}.

2Note that Hk was defined in terms of H0 as the maximum

compression we can achieve by looking at exactly k symbols

preceding the one to be compressed. For H∗
k
we instead consider

H∗
0
and a context of at most k symbols. This is to ensure that

H∗
k+1

(s) ≤ H∗
k
(s) for any string s. See [9] for details.

656

Indeed, any string over Σ of length 3 has a unique suffix
in both sets.

For any suffix cover Sk let

H∗Sk
(s) =

1

|s|

∑

w∈Sk

|
→
ws |H

∗
0 (
→
ws);(2.2)

the value H∗Sk
(s) represents the compression we can

achieve using the strings in Sk as contexts for the
prediction of the next symbol. The modified k-th order
empirical entropy of s is defined as the compression
that we can achieve using the best possible suffix cover.
Formally

H∗k(s) = min
Sk¹Σk

H∗Sk
(s),(2.3)

see [9] for further details and properties of the en-
tropy H∗k . In the following, we use S

∗
k to denote the

suffix cover for which the minimum of (2.3) is achieved.
Therefore we write

H∗k(s) =
1

|s|

∑

w∈S∗
k

|
→
ws |H

∗
0 (
→
ws).(2.4)

A comment is in order at this point. In the rest
of the paper we use the Burrows-Wheeler Transform
(BWT) as a key component of our compression booster.
As we will see, the BWT relates substrings of s with
their preceding symbols. Conversely, H∗k(s) relates
substrings of s with their following symbols. In order
to simplify the analysis of our algorithms we introduce
an additional notation which offers this other point of
view.

Let
←
ws be the string of symbols that precede all

occurrences of the substring w in the string s (cfr.
→
ws

which contains the following symbols). Let Pk be a
set of strings, having length at most k, that are unique
prefixes of all strings in Σk. We call Pk a prefix cover of
Σk (cfr. the definition of suffix cover Sk).

Example 3 Let Σ = {a, b} and k = 3, two examples
of prefix covers for Σ3 are {a, b} and {a, ba, bb}. Indeed,
any string over Σ of length 3 has a unique prefix in both
sets.

Substituting in (2.2)
→
ws with

←
ws, and Sk with Pk, we

define for any prefix cover Pk

←

H∗Pk
(s) =

1

|s|

∑

w∈Pk

|
←
ws |H

∗
0 (
←
ws).(2.5)

In analogy with (2.3), we take the minimum of (2.5)
over all prefix covers. Let P∗k denote the prefix cover
which minimizes (2.5). Using P∗k , we define the function

←

H∗k which is analogous to the k-th order empirical
entropy (2.4), but now referring to preceding symbols

←

H∗k (s) =
1

|s|

∑

w∈P∗
k

|
←
ws |H

∗
0 (
←
ws).(2.6)

The relationship between H∗k and
←

H∗k is shown by the
following lemma.

Lemma 2.1. For any string s,
←

H∗k (s) = H∗k(s
R), where

sR denotes the reversal of the string s.

Proof. The set of symbols following w in s coincides
with the set of symbols preceding wR in sR. More

precisely,
→
ws is the reverse of the string containing the

symbols preceding wR in sR. Furthermore, if Sk is a
suffix cover of Σk, then the reversal of the strings in Sk

is a prefix cover of the reversal of Σk (which is Σk itself).
The lemma follows by observing that H∗0 (x) = H∗0 (x

R)
for any string x.

The above lemma tells us that if we bound the com-

pression performance of an algorithm in terms of
←

H∗k (s),
then we can achieve the same bound in terms of H∗k(s)
by applying the algorithm to sR.

2.2 The Burrows-Wheeler Transform Let s de-
note a text over the constant size alphabet Σ. In [3]
Burrows and Wheeler introduced a new compression
algorithm based on a reversible transformation, now
called the Burrows-Wheeler Transform (BWT from now
on). The BWT consists of three basic steps (see Fig. 1):
(1) append to the end of s a special symbol $ smaller
than any other symbol in Σ; (2) form a conceptual ma-
trixM whose rows are the cyclic shifts of the string s$
sorted in lexicographic order; (3) construct the trans-
formed text ŝ = bwt(s) by taking the last column of
M. Notice that every column of M, hence also the
transformed text ŝ, is a permutation of s$. Although it
is not obvious, from ŝ we can always recover s, see [3]
for details.

The importance of the BWT for data compression
comes from the following observation. Let w denote
a substring of s. By construction, all rows of the
BWT matrix prefixed by w are consecutive. Hence,
the symbols preceding every occurrence of w in s are
grouped together in a set of consecutive positions of
the string ŝ (last column of M). Then these symbols
form a substring of ŝ, which we denote hereafter by
ŝ[w]. Using the notation introduced in the previous
section, we have that ŝ[w] is equal to a permutation

of
←
ws, namely ŝ[w] = πw(

←
ws) with πw being a string

permutation which depends on w.

657

mississippi$

ississippi$m

ssissippi$mi

sissippi$mis

issippi$miss

ssippi$missi

sippi$missis

ippi$mississ

ppi$mississi

pi$mississip

i$mississipp

$mississippi

=⇒

$ mississipp i

i $mississip p

i ppi$missis s

i ssippi$mis s

i ssissippi$ m

m ississippi $

p i$mississi p

p pi$mississ i

s ippi$missi s

s issippi$mi s

s sippi$miss i

s sissippi$m i

Figure 1: Example of Burrows-Wheeler transform for the string s = mississippi. The matrix on the right has
the rows sorted in lexicographic order. The output of the BWT is the last column of the matrix; in this example
the output is ipssm$pissii.

Example 4 Let s = mississippi and w = is. The
two occurrences of is in s are in the fourth and fifth
rows of the BWT matrix. Thus, ŝ[is] consists of the
fourth and fifth symbols of ŝ and we have ŝ[is] = ms.
Indeed, m and s are the symbols preceding is in s.

Note that in the first k columns of the BWT
matrix we find, lexicographically ordered, all length-k
substrings of s. Hence the string ŝ can be partitioned
into the substrings ŝ[w] by varying w over Σk. We then
write

ŝ=
⊔

w∈Σk

ŝ[w]=
⊔

w∈Σk

πw(
←
ws),(2.7)

where
⊔

denotes the concatenation operator among
strings.3 The same argument holds for any prefix cover,
and in particular for the prefix cover P∗k which defines
←

H∗k (s): each row of the BWT matrix is prefixed by a
unique string in P∗k hence

ŝ=
⊔

w∈P∗
k

ŝ[w]=
⊔

w∈P∗
k

πw(
←
ws).(2.8)

Recall that permuting a string does not change its
zeroth order entropy, that is, H∗0 (ws) = H∗0 (πw(ws)).
Hence, comparing (2.6) with (2.8) shows that the BWT
can be seen as a tool for reducing the problem of
compressing s up to the k-th order entropy to the
problem of compressing distinct portions of ŝ up to their
zeroth order entropy. Loosely speaking, suppose that
we have a compression algorithm A that squeezes any
string z in |A(z)| ≤ λ|z|H∗0 (z) + µ bits, where λ and µ

3In addition to t
w∈Σk ŝ[w], the string ŝ also contains the last

k symbols of s (which do not belong to any
←
ws) and the special

symbol $. We momentarily ignore the presence of these k + 1

symbols in ŝ and deal with them in Sect. 4.

are constants independent of the input string z. Using

A we can compress any string s up to
←

H∗k (s) with the
following three-step procedure

1. compute ŝ = bwt(s),

2. find the optimal prefix cover P∗k , and partition ŝ
into the substrings ŝ[w], w ∈ P∗k ;

3. compress each substring ŝ[w] using algorithm A.

By (2.6) and (2.8), we see that the above algorithm

produces an output of size at most λ|s|
←

H∗k (s) +
µ|Σ|k bits. By Lemma 2.1 and by applying the above
algorithm to sR, we get an output size of at most
λ|s|H∗k (s) + µ|Σ|k bits. It goes without saying that
in the above compression procedure we ignored a few
important details such as, the presence of the $ symbol
and the fact that we need to be able to detect the end
of each substring ŝ[w]. We will deal with these details
when describing our compression booster in Section 4.
At this point, however, is crucial to observe that the
above algorithmic approach, although appealing, shows
two drawbacks: (1) it needs to compute the optimal
prefix cover P∗k , and (2) its compression can be bounded
in terms of a single entropy H∗k , since the parameter k
must be chosen in advance.

In their seminal paper, Burrows and Wheeler [3]
implicitly overcame these drawbacks by transforming ŝ
via the so-called Move-to-Front encoding (MTF from
now on) and then compressing the output with an order
zero encoder. The analysis in [9] showed that this
approach compresses any string up to its k-th order
entropy, for any k ≥ 0.

Recently, Giancarlo and Sciortino [7] have proposed
a new approach for achieving the entropy H∗k(s) using
the BWT. They prove that compressing s up to H∗k(s),
for any positive k, is equivalent to finding an optimal

658

partition of the transformed string ŝ with respect to
a suitably chosen cost function. These ideas lead to
compression algorithms which, in terms of guaranteed
performance, outperform the old MTF-based approach.
A drawback of the Giancarlo and Sciortino’s approach
is the high computational cost. They use dynamic
programming to determine the optimal partition of ŝ,
and this yields an overhead of Ω

(

|s|2
)

time. This
compares unfavorably with the Θ(|s|) running time of
the MTF-based algorithms. In the following sections
we show how to take advantage of some structural
properties of the BWT matrix in order to find the
optimal partition of ŝ in Θ(|s|) time avoiding the use
of dynamic programming.

REMARK. In the analysis of BWT-based compres-
sors, it is customary to provide bounds in terms of both
the empirical entropies Hk and H∗k defined in Sect. 2.1
(see [7, 9]). In the following we only consider the entropy
H∗k (which is the hardest to deal with). The analysis for
Hk is similar and will be described in the full paper. At
the end of Sect. 4 we state, without proof, the main
result concerning the entropy Hk.

3 From prefix covers to leaf covers

A crucial ingredient for the efficient computation of the
optimal partition of ŝ is the relationship between the
BWT matrix and the suffix tree data structure [10].
Let T denote the suffix tree of the string s$. T has
|s| + 1 leaves, one per suffix of s$, and edges labelled
with substrings of s$ (see Figure 2). Any node u of T
has implicitly associated a substring of s$ given by the
concatenation of the edge labels on the downward path
from the root of T to u. In this implicit association the
leaves of T correspond to the suffixes of s$. We assume
that the suffix tree edges are ordered lexicographically.
As a consequence, if we scan T ’s leaves left to right the
associated suffixes are lexicographically ordered.

Since each row of the BWT matrix is prefixed by
one suffix of s$ (see Section 2.2), there is a natural one-
to-one correspondence between leaves of T and rows
of the BWT matrix. Moreover, since the suffixes are
lexicographically ordered both in T and in the BWT
matrix, the i-th leaf (counting from the left) of the suffix
tree corresponds to the i-th row of the BWT matrix.
We associate the i-th leaf of T with the i-th symbol of
the string ŝ. We write `i to denote the i-th leaf of T
and ˆ̀i to denote its associated symbol. From the above
discussion it follows that ŝ = ˆ̀1 ˆ̀2 · · · ˆ̀|s|+1. See Figure 2
for an example.

Definition 1 Let w be a substring of s. The locus of
w is the node τ [w] of T that has associated the shortest
string prefixed by w.

Notice that many strings may have the same locus
because a suffix tree edge may be labelled by a long
substring of s. For example, in Figure 2 the locus of
both ss and ssi is the node reachable by the path
labelled by ssi.

3.1 The notion of leaf cover We now introduce the
notion of leaf cover for T which is related to the concept
of prefix cover defined in Sect. 2.1.

Definition 2 Given a suffix tree T , we say that a
subset L of its nodes is a leaf cover if every leaf of the
suffix tree has a unique ancestor in L.

Example 5 The suffix tree for s = mississippi$
is shown in Figure 2. A leaf cover consists of
all nodes of depth one. Using the notion of
locus, we can describe this leaf cover as L1 =
{τ [$], τ [i], τ [m], τ [p], τ [s]}. Another leaf cover is L2 =
{τ [$], τ [i$], τ [ippi$], τ [issi], τ [m], τ [p], τ [si], τ [ssi]}
which is formed by nodes at various depths.

For any suffix tree node u, let ŝ〈u〉 denote the
substring of ŝ containing the symbols associated to the
leaves descending from u. For example, in Figure 2
we have ŝ〈τ [i]〉 = pssm. Note that these symbols are
exactly the symbols preceding i in mississippi$. More
in general, we have the following result whose immediate
proof follows by the relationship between the suffix tree
and the BWT matrix (recall that ŝ[w] is the substring of
ŝ corresponding to the rows prefixed by w, see Sect. 2.2).

Lemma 3.1. For any string w, it is ŝ〈τ [w]〉 = ŝ[w].

Any leaf cover induces a partition of the suffix
tree leaves and therefore a partition of the string ŝ.
Formally, the partition induced by L = {u1, . . . , uh}
is ŝ〈u1〉, . . . , ŝ〈uh〉. That this is actually a partition of ŝ
follows from the definition of leaf cover: since each leaf
of T has an ancestor in L, the concatenation of these
substrings covers the whole ŝ; moreover, these strings
are non overlapping, by the “uniqueness” property in
Definition 2.

Example 6 Carrying on with Example 5, the partition
of ŝ induced by L1 is {i, pssm, $, pi, ssii}. The parti-
tion of ŝ induced by L2 is {i, p, s, sm, $, pi, ss, ii}.

We are now ready to describe the relationship
between leaf covers and prefix covers. Let P∗k =
{w1, . . . , wh} denote the optimal prefix cover which

defines
←

H∗k (s) (see (2.6)). Let Pk denote the set of nodes
{τ [w1], . . . , τ [wh]} which are the loci of the strings in P

∗
k .

Since P∗k is a cover of Σ
k, any leaf of T corresponding to

a suffix of length greater than k has a unique ancestor in

659

Figure 2: Suffix tree for the string s = mississippi$. The symbol associated to each leaf is displayed inside a
circle.

Pk. This means that in order to transform Pk into a leaf
cover for T we need to add at most k suffix tree nodes.
We formalize this notion with the following definition.

Definition 3 Let Qk denote the set of leaves of T
corresponding to suffixes of s$ of length at most k which
are not prefixed by a string in P∗k , and let L

∗
k = Pk∪Qk.

The set L∗k is a leaf cover and is called the leaf cover
associated to the optimal prefix cover P∗k .

A comment is in order at this point. We are turning
prefix covers into leaf covers for the suffix tree T . This
effort is motivated by Lemma 3.1 which shows that there
is no difference among different prefixes that have the
same locus since they induce the same substring of ŝ.
Intuitively, this means that we can restrict the space
in which the optimal prefix cover has to be searched
into the one induced by the substrings spelled out by
suffix tree nodes. A second crucial observation comes
from Definition 2 which constraints the way a subset of
these nodes can be selected to form a leaf cover. No
every subset of the suffix tree nodes is admissible to
form a leaf cover. Finally, Definition 3 characterizes the
relation that does exist between leaf covers and prefix
covers, thus providing us with a formal bridge between
these two concepts, which we will exploit next.

3.2 The cost of a leaf cover Let C denote the
function which associates to every string x over Σ∪{$}
the positive real value

C(x) = λ|x′|H∗0 (x
′) + µ(3.9)

where λ and µ are positive constants, and x′ is the
string x with the symbol $ removed. The rationale

for considering a cost function C of this form is the
following. We will use C to measure the compression
of substrings of ŝ achieved by a zeroth order encoder
(hence the term H∗0). Since ŝ contains an occurrence of
the special symbol $, a substring of ŝ may contain the
symbol $. However, in our algorithm we store separately
the position of $ within ŝ (see Section 4) and for this
reason we ignore the symbol $ in the definition of the
cost function C.

Having defined C, for any leaf cover L we define

C(L) =
∑

u∈L

C(ŝ〈u〉).(3.10)

Notice that the definition of C(L) is additive and,
loosely speaking, accounts for the cost of individually
compressing the substrings of the partition of ŝ induced
by L.

Example 7 The “smallest” leaf cover of T is {root(T)}
and its induced partition consists of the whole string ŝ.
Hence C({root(T)}) = C(ŝ). The “largest” leaf cover of
T consists of all suffix tree leaves {`1, . . . , `|s|+1} and its

induced partition consists of the singletons ˆ̀1, . . . , ˆ̀|s|+1.

Hence C({`1, . . . , `|s|+1}) =
∑|s|+1

i=1 C(ˆ̀i). Note that

C(ˆ̀i) = λ + µ if ˆ̀i ∈ Σ, and C(ˆ̀i) = µ if ˆ̀i = $ (recall
that according to (3.9) the symbol $ is removed when
we compute the function C).

The next lemma shows that the cost of the leaf cover
L∗k associated to the optimal prefix cover P

∗
k is within

an additive constant from the k-th order entropy of s.

Lemma 3.2. Let C be defined by (3.9) and let L∗k be the
leaf cover associated with P∗k , as defined in Definition 3.

660

For any k ≥ 0 there exists a constant gk such that, for

any string s

C(L∗k) ≤ λ|s|
←

H∗k (s) + gk.

Proof. By Definition 3 we have L∗k = Pk ∪Qk, hence

C(L∗k) =
∑

u∈Pk

C(ŝ〈u〉) +
∑

u∈Qk

C(ŝ〈u〉).

To evaluate the second summation recall that Qk con-
tains only leaves and |Qk| ≤ k. Moreover, if u is a leaf
then |ŝ〈u〉| = 1 and C(ŝ〈u〉) ≤ λ+µ. Hence, the second
summation is bounded by k(λ+µ). To evaluate the first
summation recall that every node u ∈ Pk is the locus of
a string w ∈ P∗k . By Lemma 3.1 and (3.9) we have

C(L∗k) ≤
∑

u∈Pk

C(ŝ〈u〉) + k(λ+ µ)

=
∑

w∈P∗
k

C(ŝ[w]) + k(λ+ µ)

≤ λ





∑

w∈P∗
k

|ŝ[w]|H∗0 (ŝ[w])



+ µ|Σ|k+k(λ+ µ).

Now recall that ŝ[w] is a permutation of
←
ws and there-

fore H∗0 (ŝ[w]) = H∗0 (
←
ws). Hence, using (2.6)

C(L∗k) ≤ λ





∑

w∈P∗
k

|
←
ws|H

∗
0 (
←
ws)



+ gk = λ|s|
←

H∗k (s) + gk

We now consider the leaf cover Lmin which mini-
mizes the value C(L) among all the possible leaf covers
L. That is, we are interested in the leaf cover Lmin such
that

C(Lmin) ≤ C(L)

for any leaf cover L. We say that Lmin induces the op-
timal partition of ŝ with respect to the cost function C.
The relevance of Lmin resides in the following lemma
whose proof immediately derives from Lemma 3.2 and
by the trivial observation that C(Lmin) ≤ C(L∗k).

Lemma 3.3. Let Lmin be the optimal leaf cover for the
cost function C defined by (3.9). For any k ≥ 0 there
exists a constant gk such that, for any string s

C(Lmin) ≤ λ|s|
←

H∗k (s) + gk.

Summing up, we have shown that instead of finding
the optimal prefix cover P∗k we can find the optimal leaf
cover Lmin. The latter has two remarkable properties:
the entropy bound of Lemma 3.3 holds for any k, and
Lmin presents strong structural properties that allow its
computation in optimal linear time. This is the goal of
the next section.

3.3 Computing Lmin in linear time The key ob-
servation for computing Lmin in linear time is a decom-
posability property with respect to the subtrees of the
suffix tree T . With a little abuse of notation, in the
following we denote by Lmin(u) the optimal leaf cover
of the subtree of T rooted at node u.

Lemma 3.4. An optimal leaf cover for the subtree

rooted at u consists of either the single node u, or of
the union of optimal leaf covers of the subtrees rooted at

the children of u in T .

Proof. Let u1, u2, . . . , uc be the children of u in T . Note
that both node sets {u} and ∪c

i=1Lmin(ui) are leaf covers
of the subtree rooted at u (see Definition 2). We now
show that one of them is an optimal leaf cover for that
subtree. Let us assume that Lmin(u) 6= {u}. Then
Lmin(u) consists of nodes which descend from u. We
can partition Lmin(u) as ∪

c
i=1L(ui), where each L(ui) is

a leaf cover for the subtree rooted at ui, child of u in T .
By the optimality of the Lmin(ui)’s and the additivity
of the function C, we have

C(Lmin(u)) =

c
∑

i=1

C(L(ui)) ≥

c
∑

i=1

C(Lmin(ui)).

Hence, ∪c
i=1 Lmin(ui) is an optimal leaf cover for the

subtree rooted at u as claimed.

The above lemma ensures that the computation of
Lmin admits a greedy approach that processes bottom-
up the nodes of the suffix tree T . The corresponding
algorithm is detailed in Figure 3. Note that during the
visit of T we store in L(u) the optimal leaf cover of
the subtree rooted at u and in Z(u) the cost of such
an optimal leaf cover. The correctness of the algorithm
follows immediately from Lemma 3.4.

For what concerns the running time of the algorithm
of Fig. 3 we observe that the only non-trivial operation
during the tree visit is the computation of C(ŝ〈u〉)
in Step (2.1). This requires the knowledge of the
number of occurrences of the symbol ai in ŝ〈u〉 for i =
1, . . . , |Σ|. These values can be obtained in O(1) time
from the number of occurrences of ai in ŝ〈u1〉, . . . , ŝ〈uc〉
where u1, . . . , uc are the children of u in T (recall
that |Σ| = O(1) and that ŝ〈u〉 is the concatenation of

661

(1) Construct the suffix tree T for the string s$.
(2) Visit T in postorder. Let u be the currently visited node, and let u1, u2, . . . , uc be its children:

(2.1) Compute C(ŝ〈u〉).
(2.2) Compute Z(u) = min {C(ŝ〈u〉),

∑

i
Z(ui)}.

(2.3) Set the leaf cover L(u) = {u} if Z(u) = C(ŝ〈u〉); otherwise set L(u) = ∪c

i=1 L(ui).
(3) Set Lmin = L(root(T)).

Figure 3: The pseudocode for the linear-time computation of the optimal leaf cover Lmin.

ŝ〈u1〉, . . . , ŝ〈uc〉). Hence, the visit of T takes constant
time per node and O(|s|) time overall. Since the
construction of the suffix tree at Step (1) takes O(|s|)
time and space [10], we have established the following
result.

Lemma 3.5. The algorithm in Figure 3 computes the

leaf cover Lmin achieving the minimum value for the
cost function C defined by (3.9) in O(|s|) time and using
O(|s|) space.

4 A BWT-based compression booster

We are now ready to describe our compression booster
which turns a zeroth order compressor into a more ef-
fective k-th order compressor without any (asymptotic)
loss in time efficiency. Our booster uses linear space
in addition to the space used by the zeroth order com-
pressor. Our starting point is any compressor A which
satisfies the following property.

Property 4.1. Let A be a compression algorithm such

that, given an input string x ∈ Σ∗, A first appends an
end-of-string symbol # to x and then compresses x#
with the following space and time bounds:

1. A compresses x# in at most λH∗0 (x)+µ bits, where
λ and µ are constants,

2. the running time of A on input x is O(T (|x|)) where
T (·) is a convex function.

Note that the algorithm RHC described in [7, Sect. 6]
satisfies the above property with λ = 2.5 and T (|x|) =
|x|. Given any compressor A satisfying Property 4.1,
we can feed it to the compression booster described
in Figure 4 obtaining a k-th order compressor without
any (asymptotic) loss in time efficiency. The properties
of our compression booster are formally stated in the
following theorem.

Theorem 4.1. Given a compression algorithm A that

satisfies Property 4.1, the booster detailed in Figure 4

compresses any string s within λ|s|
←

H∗k (s)+ log2 |s|+ gk

bits of storage for any k ≥ 0. The compression takes

O(T (|s|)) time and uses O(|s|) space in addition to the
space used by algorithm A.

Proof. First of all, let us show that the output produced
by our booster can be decompressed. Notice that the
symbol $ is initially removed from ŝ (i.e. from each
ŝi). Hence, each string ŝ′i is over the alphabet Σ. The
decoder starts by decompressing the strings ŝ′1, . . . , ŝ

′
m

one at a time. The end-of-string symbol # is used to
distinguish ŝ′i from ŝ′i+1. Since at Step (4) we only
compress non empty strings ŝ′i’s, when the decoder finds
an empty string (that is, the singleton #) it knows that
all strings ŝ′1, . . . , ŝ

′
m have been decoded and it may

compute |s| =
∑

i |ŝ
′
i|. The decoder then fetches the

next (blog2 |s|c+1) bits which contain the position of $
within ŝ (written at Step (6)). At this point, the decoder
has reconstructed the original ŝ and it may recover the
input string s using the inverse BWT.

As far as the compression performance is concerned,
by construction we have |A(x)| ≤ C(x). Since Lmin is
the optimal leaf cover with respect to the cost function
C, using Lemma 3.3 we get

m
∑

i=1

|A(ŝi)| ≤

m
∑

i=1

C(ŝi) = C(Lmin) ≤ λ|s|
←

H∗k (s)+gk.

Since the compression of the empty string # needs
further µ bits and we append (blog2 |s|c + 1) bits
to encode the position of the symbol $, the overall
compression bound follows.

By the convexity of T and the fact that
∑

i |ŝ
′
i| = |s|

we have
∑

i T (|ŝ
′
i|) ≤ T (|s|) + O(1). By Lemma 3.5

computing Lmin takes O(|s|) time. Hence, the overall
running time of our booster is O(T (|s|)) as claimed.

Finally, the space bound follows directly from
Lemma 3.5.

Combining Lemma 2.1 with Theorem 4.1, we get
that applying our compression booster to the string sR

we obtain the following result.

Corollary 4.1. Given a compression algorithm A that

satisfies Property 4.1 we can compress any string s

662

(1) Define the cost function C (see Sect. 3.2) according to the parameters λ and µ which appear in the
compression bound of algorithm A.

(2) Compute the optimal leaf cover Lmin with respect to the cost function C.
(3) Compute the partition ŝ = ŝ1 · · · ŝm induced by Lmin.
(4) For i = 1, . . . ,m, remove from ŝi the occurrence of $ (if any) and compress the resulting string ŝ

′
i,

if not empty, using the algorithm A.
(5) Compress the empty string using algorithm A (A actually compresses the singleton #).
(6) Write the binary encoding of the position of $ in ŝ using blog2 |s|c+ 1 bits.

Figure 4: The pseudocode of our compression booster which turns a zeroth order compressor A into a k-th order
compressor.

within λ|s|H∗k (s) + log2 |s|+ gk bits for any k ≥ 0. The
compression takes O(T (|s|)) time and uses O(|s|) space
in addition to the space used by algorithm A.

The analysis that we have carried out for H∗k can
be repeated almost verbatim for the entropy Hk. We
will provide the details in the full paper. Here we only
state the analogous of Corollary 4.1 for the entropy Hk.

Corollary 4.2. Let A be a compression algorithm

which satisfies Property 4.1 with the only modification

that A compresses x# in at most λH0(x)+η|x|+µ bits,
where λ, η and µ are constants. Then, we can compress
any string s within λ|s|Hk(s) + η|s| + log2 |s| + gk bits

for any k ≥ 0. The above compression takes O(T (|s|))
time and uses O(|s|) space in addition to the space used
by algorithm A.

Acknowledgments

We would like to thank our children Damiano, Davide
and Francesca for boosting our efforts on compressing
the time for doing research.

References

[1] Z. Arnavut. Generalization of the BWT transforma-
tion and inversion ranks. In Proc. IEEE Data Com-
pression Conference, page 447, 2002.

[2] B. Balkenhol, S. Kurtz, and Y. M. Shtarkov. Modifi-
cation of the Burrows and Wheeler data compression
algorithm. In Proceedings of IEEE Data Compression
Conference, 1999.

[3] M. Burrows and D. Wheeler. A block sorting lossless
data compression algorithm. Technical Report 124,
Digital Equipment Corporation, 1994.

[4] S. Deorowicz. Second step algorithms in the Burrows-
Wheeler compression algorithm. Software Practice and
Experience, 32(2):99–111, 2002.

[5] P. Fenwick. The Burrows-Wheeler transform for block
sorting text compression: principles and improve-
ments. The Computer Journal, 39(9):731–740, 1996.

[6] P. Ferragina and G. Manzini. Opportunistic data
structures with applications. In Proc. of the 41st
IEEE Symposium on Foundations of Computer Sci-
ence, pages 390–398, 2000.

[7] R. Giancarlo and M. Sciortino. Optimal partitions of
strings: A new class of Burrows-Wheeler compression
algorithms. In Combinatorial Pattern Matching Con-
ference (CPM ’03), pages 129–143, 2003.

[8] R. Grossi, A. Gupta, and J. Vitter. Indexing equals
compression: Experiments on suffix arrays and trees.
In Proc. 15th Annual ACM-SIAM Symp. on Discrete
Algorithms (SODA’04), 2004. This volume.

[9] G. Manzini. An analysis of the Burrows-Wheeler
transform. Journal of the ACM, 48(3):407–430, 2001.

[10] E. M. McCreight. A space-economical suffix tree con-
struction algorithm. Journal of the ACM, 23(2):262–
272, 1976.

[11] J. Seward. The bzip2 home page, 1997.
http://sources.redhat.com/bzip2.

[12] A. Wirth and A. Moffat. Can we do without ranks
in Burrows-Wheeler transform compression? In Proc.
IEEE Data Compression Conference, pages 419–428,
2001.

663

